1
|
Libert M, Quiquempoix S, Fain JS, Pyr Dit Ruys S, Haidar M, Wulleman M, Herinckx G, Vertommen D, Bouchart C, Arsenijevic T, Van Laethem JL, Jacquemin P. Stress granules are not present in Kras mutant cancers and do not control tumor growth. EMBO Rep 2024; 25:4693-4707. [PMID: 39390257 PMCID: PMC11549491 DOI: 10.1038/s44319-024-00284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
Stress granules (SG) are membraneless ribonucleoprotein-based cytoplasmic organelles that assemble in response to stress. Their formation is often associated with an almost global suppression of translation, and the aberrant assembly or disassembly of these granules has pathological implications in neurodegeneration and cancer. In cancer, and particularly in the presence of oncogenic KRAS mutations, in vivo studies concluded that SG increase the resistance of cancer cells to stress. Hence, SG have recently been considered a promising target for therapy. Here, starting from our observations that genes coding for SG proteins are stimulated during development of pancreatic ductal adenocarcinoma, we analyze the formation of SG during tumorigenesis. We resort to in vitro, in vivo and in silico approaches, using mouse models, human samples and human data. Our analyses do not support that SG are formed during tumorigenesis of KRAS-driven cancers, at least that their presence is not universal, leading us to propose that caution is required before considering SG as therapeutic targets.
Collapse
Affiliation(s)
- Maxime Libert
- Université catholique de Louvain, de Duve Institute, 1200, Brussels, Belgium
| | - Sophie Quiquempoix
- Université catholique de Louvain, de Duve Institute, 1200, Brussels, Belgium
| | - Jean S Fain
- Université catholique de Louvain, de Duve Institute, 1200, Brussels, Belgium
| | | | - Malak Haidar
- Université catholique de Louvain, de Duve Institute, 1200, Brussels, Belgium
| | - Margaux Wulleman
- Université catholique de Louvain, de Duve Institute, 1200, Brussels, Belgium
| | - Gaëtan Herinckx
- Université catholique de Louvain, de Duve Institute, 1200, Brussels, Belgium
| | - Didier Vertommen
- Université catholique de Louvain, de Duve Institute, 1200, Brussels, Belgium
| | | | - Tatjana Arsenijevic
- Université libre de Bruxelles, Erasme University Hospital, Laboratory of Experimental Gastroenterology, Brussels, Belgium
| | - Jean-Luc Van Laethem
- Université libre de Bruxelles, Erasme University Hospital, Laboratory of Experimental Gastroenterology, Brussels, Belgium
| | - Patrick Jacquemin
- Université catholique de Louvain, de Duve Institute, 1200, Brussels, Belgium.
| |
Collapse
|
2
|
Brunet M, Vargas C, Fanjul M, Varry D, Hanoun N, Larrieu D, Pieruccioni L, Labrousse G, Lulka H, Capilla F, Ricard A, Selves J, Couvelard A, Gigoux V, Cordelier P, Guillermet-Guibert J, Dufresne M, Torrisani J. The E3 ubiquitin ligase TRIP12 is required for pancreatic acinar cell plasticity and pancreatic carcinogenesis. J Pathol 2024; 263:466-481. [PMID: 38924548 DOI: 10.1002/path.6298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/15/2024] [Accepted: 04/23/2024] [Indexed: 06/28/2024]
Abstract
The E3 ubiquitin ligase thyroid hormone receptor interacting protein 12 (TRIP12) has been implicated in pancreatic adenocarcinoma (PDAC) through its role in mediating the degradation of pancreas transcription factor 1a (PTF1a). PTF1a is a transcription factor essential for the acinar differentiation state that is notably diminished during the early steps of pancreatic carcinogenesis. Despite these findings, the direct involvement of TRIP12 in the onset of pancreatic cancer has yet to be established. In this study, we demonstrated that TRIP12 protein was significantly upregulated in human pancreatic preneoplastic lesions. Furthermore, we observed that TRIP12 overexpression varied within PDAC samples and PDAC-derived cell lines. We further demonstrated that TRIP12 was required for PDAC-derived cell growth and for the expression of E2F-targeted genes. Acinar-to-ductal cell metaplasia (ADM) is a reversible process that reflects the high plasticity of acinar cells. ADM becomes irreversible in the presence of oncogenic Kras mutations and leads to the formation of preneoplastic lesions. Using two genetically modified mouse models, we showed that a loss of TRIP12 prevented acini from developing ADM in response to pancreatic injury. With two additional mouse models, we further discovered that a depletion of TRIP12 prevented the formation of KrasG12D-induced preneoplastic lesions and impaired metastasis formation in the presence of mutated KrasG12D and Trp53R172H genes. In summary our study identified an overexpression of TRIP12 from the early stages of pancreatic carcinogenesis and proposed this E3 ubiquitin ligase as a novel regulator of acinar plasticity with an important dual role in initiation and metastatic steps of PDAC. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Animals
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/enzymology
- Humans
- Acinar Cells/pathology
- Acinar Cells/metabolism
- Acinar Cells/enzymology
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/enzymology
- Metaplasia/pathology
- Metaplasia/metabolism
- Cell Plasticity
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Mice
- Cell Line, Tumor
- Cell Proliferation
- Mice, Knockout
- Gene Expression Regulation, Neoplastic
- Precancerous Conditions/pathology
- Precancerous Conditions/genetics
- Precancerous Conditions/metabolism
- Precancerous Conditions/enzymology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Carrier Proteins
Collapse
Affiliation(s)
- Manon Brunet
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Claire Vargas
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marjorie Fanjul
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Damien Varry
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Naïma Hanoun
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Dorian Larrieu
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Laetitia Pieruccioni
- Centre de recherches RESTORE, Université de Toulouse, INSERM, CNRS, EFS, ENVT, Toulouse, France
| | - Guillaume Labrousse
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Hubert Lulka
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Florence Capilla
- Service d'Histopathologie expérimentale, INSERM US006-CREFRE, Toulouse, France
| | - Alban Ricard
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Janick Selves
- Département de Pathologie, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Anne Couvelard
- Département de Pathologie Beaujon-Bichat, Hôpital Bichat, APHP and Université Paris Cité, Paris, France
| | - Véronique Gigoux
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Pierre Cordelier
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Marlène Dufresne
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Jérôme Torrisani
- CRCT, Université de Toulouse, INSERM, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
3
|
Wang P, Laster K, Jia X, Dong Z, Liu K. Targeting CRAF kinase in anti-cancer therapy: progress and opportunities. Mol Cancer 2023; 22:208. [PMID: 38111008 PMCID: PMC10726672 DOI: 10.1186/s12943-023-01903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023] Open
Abstract
The RAS/mitogen-activated protein kinase (MAPK) signaling cascade is commonly dysregulated in human malignancies by processes driven by RAS or RAF oncogenes. Among the members of the RAF kinase family, CRAF plays an important role in the RAS-MAPK signaling pathway, as well as in the progression of cancer. Recent research has provided evidence implicating the role of CRAF in the physiological regulation and the resistance to BRAF inhibitors through MAPK-dependent and MAPK-independent mechanisms. Nevertheless, the effectiveness of solely targeting CRAF kinase activity remains controversial. Moreover, the kinase-independent function of CRAF may be essential for lung cancers with KRAS mutations. It is imperative to develop strategies to enhance efficacy and minimize toxicity in tumors driven by RAS or RAF oncogenes. The review investigates CRAF alterations observed in cancers and unravels the distinct roles of CRAF in cancers propelled by diverse oncogenes. This review also seeks to summarize CRAF-interacting proteins and delineate CRAF's regulation across various cancer hallmarks. Additionally, we discuss recent advances in pan-RAF inhibitors and their combination with other therapeutic approaches to improve treatment outcomes and minimize adverse effects in patients with RAF/RAS-mutant tumors. By providing a comprehensive understanding of the multifaceted role of CRAF in cancers and highlighting the latest developments in RAF inhibitor therapies, we endeavor to identify synergistic targets and elucidate resistance pathways, setting the stage for more robust and safer combination strategies for cancer treatment.
Collapse
Affiliation(s)
- Penglei Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Xuechao Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, 450052, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, China-US (Henan) Hormel Cancer Institute, AMS, College of Medicine, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, 450001, Henan, China.
- Basic Medicine Sciences Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
4
|
Pan Z, Van den Bossche JL, Rodriguez-Aznar E, Janssen P, Lara O, Ates G, Massie A, De Paep DL, Houbracken I, Mambretti M, Rooman I. Pancreatic acinar cell fate relies on system x C- to prevent ferroptosis during stress. Cell Death Dis 2023; 14:536. [PMID: 37604805 PMCID: PMC10442358 DOI: 10.1038/s41419-023-06063-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Acinar cell dedifferentiation is one of the most notable features of acute and chronic pancreatitis. It can also be the initial step that facilitates pancreatic cancer development. In the present study, we further decipher the precise mechanisms and regulation using primary human cells and murine experimental models. Our RNAseq analysis indicates that, in both species, early acinar cell dedifferentiation is accompanied by multiple pathways related to cell survival that are highly enriched, and where SLC7A11 (xCT) is transiently upregulated. xCT is the specific subunit of the cystine/glutamate antiporter system xC-. To decipher its role, gene silencing, pharmacological inhibition and a knock-out mouse model were used. Acinar cells with depleted or reduced xCT function show an increase in ferroptosis relating to lipid peroxidation. Lower glutathione levels and more lipid ROS accumulation could be rescued by the antioxidant N-acetylcysteine or the ferroptosis inhibitor ferrostatin-1. In caerulein-induced acute pancreatitis in mice, xCT also prevents lipid peroxidation in acinar cells. In conclusion, during stress, acinar cell fate seems to be poised for avoiding several forms of cell death. xCT specifically prevents acinar cell ferroptosis by fueling the glutathione pool and maintaining ROS balance. The data suggest that xCT offers a druggable tipping point to steer the acinar cell fate in stress conditions.
Collapse
Affiliation(s)
- Zhaolong Pan
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan-Lars Van den Bossche
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Rodriguez-Aznar
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pauline Janssen
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Neuro-Aging & Viro-Immunotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olaya Lara
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Neuro-Aging & Viro-Immunotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Gamze Ates
- Neuro-Aging & Viro-Immunotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Diedert Luc De Paep
- Beta Cell Bank, Universitair Ziekenhuis Brussel and Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Houbracken
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marco Mambretti
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Rooman
- Laboratory for Medical and Molecular Oncology, Oncology Research Center, Vrije Universiteit Brussel, Brussels, Belgium.
- Visual and Spatial Tissue Analysis (VSTA) Core Facility, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
5
|
Ruze R, Song J, Yin X, Chen Y, Xu R, Wang C, Zhao Y. Mechanisms of obesity- and diabetes mellitus-related pancreatic carcinogenesis: a comprehensive and systematic review. Signal Transduct Target Ther 2023; 8:139. [PMID: 36964133 PMCID: PMC10039087 DOI: 10.1038/s41392-023-01376-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/26/2023] Open
Abstract
Research on obesity- and diabetes mellitus (DM)-related carcinogenesis has expanded exponentially since these two diseases were recognized as important risk factors for cancers. The growing interest in this area is prominently actuated by the increasing obesity and DM prevalence, which is partially responsible for the slight but constant increase in pancreatic cancer (PC) occurrence. PC is a highly lethal malignancy characterized by its insidious symptoms, delayed diagnosis, and devastating prognosis. The intricate process of obesity and DM promoting pancreatic carcinogenesis involves their local impact on the pancreas and concurrent whole-body systemic changes that are suitable for cancer initiation. The main mechanisms involved in this process include the excessive accumulation of various nutrients and metabolites promoting carcinogenesis directly while also aggravating mutagenic and carcinogenic metabolic disorders by affecting multiple pathways. Detrimental alterations in gastrointestinal and sex hormone levels and microbiome dysfunction further compromise immunometabolic regulation and contribute to the establishment of an immunosuppressive tumor microenvironment (TME) for carcinogenesis, which can be exacerbated by several crucial pathophysiological processes and TME components, such as autophagy, endoplasmic reticulum stress, oxidative stress, epithelial-mesenchymal transition, and exosome secretion. This review provides a comprehensive and critical analysis of the immunometabolic mechanisms of obesity- and DM-related pancreatic carcinogenesis and dissects how metabolic disorders impair anticancer immunity and influence pathophysiological processes to favor cancer initiation.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, No. 9 Dongdan Santiao, Beijing, China
| | - Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100730, Beijing, China.
- Key Laboratory of Research in Pancreatic Tumors, Chinese Academy of Medical Sciences, 100023, Beijing, China.
| |
Collapse
|
6
|
Sherman MH, Beatty GL. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. ANNUAL REVIEW OF PATHOLOGY 2023; 18:123-148. [PMID: 36130070 PMCID: PMC9877114 DOI: 10.1146/annurev-pathmechdis-031621-024600] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a prominent stromal microenvironment with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. Recent advances in tissue imaging capabilities, single-cell analytics, and disease modeling have shed light on organizing principles that shape the stromal complexity of PDAC tumors. These insights into the functional and spatial dependencies that coordinate cancer cell biology and the relationships that exist between cells and extracellular matrix components present in tumors are expected to unveil therapeutic vulnerabilities. We review recent advances in the field and discuss current understandings of mechanisms by which the tumor microenvironment shapes PDAC pathogenesis and therapy resistance.
Collapse
Affiliation(s)
- Mara H Sherman
- Department of Cell, Developmental and Cancer Biology; and Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
| | - Gregory L Beatty
- Abramson Cancer Center; and Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
7
|
Minati MA, Assi M, Libert M, Cordi S, Lemaigre F, Jacquemin P. KRAS protein expression becomes progressively restricted during embryogenesis and in adulthood. Front Cell Dev Biol 2022; 10:995013. [PMID: 36238685 PMCID: PMC9551567 DOI: 10.3389/fcell.2022.995013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
KRAS mutants are common in many cancers and wild-type KRAS is essential in development as its absence causes embryonic lethality. Despite this critical role in development and disease, the normal expression pattern of KRAS protein is still largely unknown at the tissue level due to the lack of valid antibodies. To address this issue, we used the citrine-Kras mouse model in which the Citrine-KRAS (Cit-K) fusion protein functions as a validated surrogate of endogenous KRAS protein that can be detected on tissue sections by immunolabeling with a GFP antibody. In the embryo, we found expression of KRAS protein in a wide range of organs and tissues. This expression tends to decrease near birth, mainly in mesenchymal cells. During transition to the adult stage, the dynamics of KRAS protein expression vary among organs and detection of KRAS becomes restricted to specific cell types. Furthermore, we found that steady state KRAS protein expression is detectable at the cell membrane and in the cytoplasm and that this subcellular partitioning differed among cell types. Our results reveal hitherto unanticipated dynamics in developmental, tissular, cell-specific and subcellular expression of KRAS protein. They provide insight into the reason why specific cell-types are sensitive to KRAS mutations during cancer initiation.
Collapse
|
8
|
Haidar M, Jacquemin P. Past and Future Strategies to Inhibit Membrane Localization of the KRAS Oncogene. Int J Mol Sci 2021; 22:13193. [PMID: 34947990 PMCID: PMC8707736 DOI: 10.3390/ijms222413193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022] Open
Abstract
KRAS is one of the most studied oncogenes. It is well known that KRAS undergoes post-translational modifications at its C-terminal end. These modifications are essential for its membrane location and activity. Despite significant efforts made in the past three decades to target the mechanisms involved in its membrane localization, no therapies have been approved and taken into the clinic. However, many studies have recently reintroduced interest in the development of KRAS inhibitors, either by directly targeting KRAS or indirectly through the inhibition of critical steps involved in post-translational KRAS modifications. In this review, we summarize the approaches that have been applied over the years to inhibit the membrane localization of KRAS in cancer and propose a new anti-KRAS strategy that could be used in clinic.
Collapse
Affiliation(s)
| | - Patrick Jacquemin
- De Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| |
Collapse
|
9
|
Jo S, Jung YS, Cho YR, Seo JW, Lim WC, Nam TG, Lim TG, Byun S. Oral Administration of Rosa gallica Prevents UVB-Induced Skin Aging through Targeting the c-Raf Signaling Axis. Antioxidants (Basel) 2021; 10:antiox10111663. [PMID: 34829534 PMCID: PMC8614869 DOI: 10.3390/antiox10111663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/05/2022] Open
Abstract
Rosa gallica is a widely used Rosa species for medicinal and culinary purposes. Rosa gallica has been reported to display antioxidant, anti−inflammatory, and antibacterial activities. However, the effect of Rosa gallica against skin aging in vivo is unknown and its active components have not been fully understood. Oral administration of Rosa gallica prevented UVB−mediated skin wrinkle formation and loss of collagen/keratin fibers in the dorsal skin of mice. Examination of biomarkers at the molecular level showed that Rosa gallica downregulates UVB−induced COX−2 and MMP−1 expression in the skin. Through a direct comparison of major compounds identified using the UHPLC−MS/MS system, we discovered gallic acid as the primary component contributing to the anti-skin aging effect exhibited by Rosa gallica. Examination of the molecular mechanism revealed that gallic acid can potently and selectively target the c−Raf/MEK/ERK/c−Fos signaling axis. In addition, both gallic acid and MEK inhibitor blocked UVB−induced MMP−1 expression and restored collagen levels in a reconstructed 3D human skin model. Collectively, Rosa gallica could be used as a functional ingredient in the development of nutraceuticals against skin aging.
Collapse
Affiliation(s)
- Seongin Jo
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea; (S.J.); (Y.-R.C.)
| | - Young-Sung Jung
- Korea Food Research Institute, Wanju-gun 55365, Korea; (Y.-S.J.); (W.-C.L.)
| | - Ye-Ryeong Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea; (S.J.); (Y.-R.C.)
| | - Ji-Won Seo
- Department of Agricultural Biotechnology and Research, Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Won-Chul Lim
- Korea Food Research Institute, Wanju-gun 55365, Korea; (Y.-S.J.); (W.-C.L.)
| | - Tae-Gyu Nam
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyonggi University, Suwon 16227, Korea;
| | - Tae-Gyu Lim
- Korea Food Research Institute, Wanju-gun 55365, Korea; (Y.-S.J.); (W.-C.L.)
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Korea
- Correspondence: (T.-G.L.); (S.B.); Tel.: +82-2-3408-3260 (T.-G.L.); +82-2-2123-5896 (S.B.)
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea; (S.J.); (Y.-R.C.)
- Correspondence: (T.-G.L.); (S.B.); Tel.: +82-2-3408-3260 (T.-G.L.); +82-2-2123-5896 (S.B.)
| |
Collapse
|
10
|
Jiang X, Wang J, Chen P, He Z, Xu J, Chen Y, Liu X, Jiang J. [6]-Paradol suppresses proliferation and metastases of pancreatic cancer by decreasing EGFR and inactivating PI3K/AKT signaling. Cancer Cell Int 2021; 21:420. [PMID: 34376189 PMCID: PMC8353760 DOI: 10.1186/s12935-021-02118-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background The underlying mechanism behind the tumorigenesis and progression of pancreatic cancer is not clear, and treatment failure is generally caused by early metastasis, recurrence, drug resistance and vascular invasion. Exploring novel therapeutic regimens is necessary to overcome drug resistance and improve patients outcomes. Methods Functional assays were performed to investigate the role of [6]-Paradol (6-P) in proliferation and metastasis of pancreatic cancer in vitro and in vivo. The interaction between EGFR and 6-P was tested by KEGG enrichment analysis and molecular docking analysis. qRT-PCR was performed to detect the mRNA expression of EGFR in 6-P treated groups. Involvement of the PI3K/AKT pathway was measured by western blotting. Results 6-P significantly suppressed pancreatic cancer cell proliferation and metastasis. KEGG enrichment analysis and molecular docking analysis suggested that there existed certain interaction between EGFR and 6-P. In addition, 6-P obviously decreased EGFR protein expression level but did not change the mRNA expression level of EGFR. 6-P could induce degradation of EGFR through decreasing the protein stability of EGFR and enhancing the ubiquitin-mediated proteasome-dependent degradation, 6-P-mediated EGFR degradation led to inactivation of PI3K/AKT signaling pathway. However, ectopic expression of EGFR protein resulted in resistance to 6-P-mediated inactivity of PI3K/AKT signaling and inhibition of malignant phenotype of pancreatic cancer. Inversely, erlotinib could enhance the 6-P-mediated anticancer activity. Conclusion Our data indicated that 6-P/EGFR/PI3K/AKT signaling axis might become one of the potential therapies for the treatment of pancreatic cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02118-0.
Collapse
Affiliation(s)
- Xueyi Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China
| | - Peng Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiwei He
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China.,Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jian Xu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China
| | - Yankun Chen
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xinyuan Liu
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, 99 Ziyang Road, Wuhan City, Hubei Province, 430060, People's Republic of China.
| |
Collapse
|
11
|
N-Acetylcysteine Reduces the Pro-Oxidant and Inflammatory Responses during Pancreatitis and Pancreas Tumorigenesis. Antioxidants (Basel) 2021; 10:antiox10071107. [PMID: 34356340 PMCID: PMC8301003 DOI: 10.3390/antiox10071107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatitis, an inflammation of the pancreas, appears to be a main driver of pancreatic cancer when combined with Kras mutations. In this context, the exact redox mechanisms are not clearly elucidated. Herein, we treated mice expressing a KrasG12D mutation in pancreatic acinar cells with cerulein to induce acute pancreatitis. In the presence of KrasG12D, pancreatitis triggered significantly greater redox unbalance and oxidative damages compared to control mice expressing wild-type Kras alleles. Further analyses identified the disruption in glutathione metabolism as the main redox event occurring during pancreatitis. Compared to the wild-type background, KrasG12D-bearing mice showed a greater responsiveness to treatment with a thiol-containing compound, N-acetylcysteine (NAC). Notably, NAC treatment increased the pancreatic glutathione pool, reduced systemic markers related to pancreatic and liver damages, limited the extent of pancreatic edema and fibrosis as well as reduced systemic and pancreatic oxidative damages. The protective effects of NAC were, at least, partly due to a decrease in the production of tumor necrosis factor-α (TNF-α) by acinar cells, which was concomitant with the inhibition of NF-κB(p65) nuclear translocation. Our data provide a rationale to use thiol-containing compounds as an adjuvant therapy to alleviate the severity of inflammation during pancreatitis and pancreatic tumorigenesis.
Collapse
|
12
|
Dahou H, Minati MA, Jacquemin P, Assi M. Genetic Inactivation of Peroxiredoxin-I Impairs the Growth of Human Pancreatic Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10040570. [PMID: 33917763 PMCID: PMC8068151 DOI: 10.3390/antiox10040570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with few therapeutic options. The identification of new promising targets is, therefore, an urgent need. Using available transcriptomic datasets, we first found that Peroxiredoxin-1 gene (PRDX1) expression was significantly increased in human pancreatic tumors, but not in the other gastrointestinal cancers; its high expression correlated with shortened patient survival. We confirmed by immunostaining on mouse pancreata the increased Peroxiredoxin-I protein (PRX-I) expression in pancreatic neoplastic lesions and PDAC. To question the role of PRX-I in pancreatic cancer, we genetically inactivated its expression in multiple human PDAC cell lines, using siRNA and CRISPR/Cas9. In both strategies, PRX-I ablation led to reduced survival of PDAC cells. This was mainly due to an increase in the production of reactive oxygen species (ROS), accumulation of oxidative DNA damage (i.e., 8-oxoguanine), and cell cycle blockade at G2/M. Finally, we found that PRX-I ablation disrupts the autophagic flux in PDAC cells, which is essential for their survival. This proof-of-concept study supports a pro-oncogenic role for PRX-I in PDAC.
Collapse
Affiliation(s)
| | | | | | - Mohamad Assi
- Correspondence: (P.J.); (M.A.); Tel.: +32-2764-75-31 (P.J. & M.A.)
| |
Collapse
|