1
|
Andreotti V, Vanni I, Pastorino L, Ghiorzo P, Bruno W. Germline POT1 Variants: A Critical Perspective on POT1 Tumor Predisposition Syndrome. Genes (Basel) 2024; 15:104. [PMID: 38254993 PMCID: PMC10815363 DOI: 10.3390/genes15010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The Protection of Telomere 1 (POT1) gene was identified as a melanoma predisposition candidate nearly 10 years ago. Thereafter, various cancers have been proposed as associated with germline POT1 variants in the context of the so-called POT1 Predisposition Tumor Syndrome (POT1-TPD). While the key role, and related risks, of the alterations in POT1 in melanoma are established, the correlation between germline POT1 variants and the susceptibility to other cancers partially lacks evidence, due also to the rarity of POT1-TPD. Issues range from the absence of functional or segregation studies to biased datasets or the need for a revised classification of variants. Furthermore, a proposal of a surveillance protocol related to the cancers associated with POT1 pathogenic variants requires reliable data to avoid an excessive, possibly unjustified, burden for POT1 variant carriers. We propose a critical perspective regarding data published over the last 10 years that correlate POT1 variants to various types of cancer, other than cutaneous melanoma, to offer food for thought for the specialists who manage cancer predisposition syndromes and to stimulate a debate on the grey areas that have been exposed.
Collapse
Affiliation(s)
- Virginia Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
| | - Irene Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
| | - Lorenza Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Paola Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - William Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (V.A.); (I.V.); (L.P.); (P.G.)
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| |
Collapse
|
2
|
McDonald MF, Prather LL, Helfer CR, Ludmir EB, Echeverria AE, Yust-Katz S, Patel AJ, Deneen B, Rao G, Jalali A, Dhar SU, Amos CI, Mandel JJ. Prevalence of pathogenic germline variants in adult-type diffuse glioma. Neurooncol Pract 2023; 10:482-490. [PMID: 37720399 PMCID: PMC10502787 DOI: 10.1093/nop/npad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Background No consensus germline testing guidelines currently exist for glioma patients, so the prevalence of germline pathogenic variants remains unknown. This study aims to determine the prevalence and type of pathogenic germline variants in adult glioma. Methods A retrospective review at a single institution with paired tumor/normal sequencing from August 2018-April 2022 was performed and corresponding clinical data were collected. Results We identified 152 glioma patients of which 15 (9.8%) had pathogenic germline variants. Pathogenic germline variants were seen in 11/84 (13.1%) of Glioblastoma, IDH wild type; 3/42 (7.1%) of Astrocytoma, IDH mutant; and 1/26 (3.8%) of Oligodendroglioma, IDH mutant, and 1p/19q co-deleted patients. Pathogenic variants in BRCA2, MUTYH, and CHEK2 were most common (3/15, 20% each). BRCA1 variants occurred in 2/15 (13%) patients, with variants in NF1, ATM, MSH2, and MSH3 occurring in one patient (7%) each. Prior cancer diagnosis was found in 5/15 patients (33%). Second-hit somatic variants were seen in 3/15 patients (20%) in NF1, MUTYH, and MSH2. Referral to genetics was performed in 6/15 (40%) patients with pathogenic germline variants. 14/15 (93%) of patients discovered their pathogenic variant as a result of their paired glioma sequencing. Conclusions These findings suggest a possible overlooked opportunity for determination of hereditary cancer syndromes with impact on surveillance as well as potential broader treatment options. Further studies that can determine the role of variants in gliomagenesis and confirm the occurrence and types of pathogenic germline variants in patients with IDH wild type compared to IDH mutant tumors are necessary.
Collapse
Affiliation(s)
- Malcolm F McDonald
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Lyndsey L Prather
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Cassandra R Helfer
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Ethan B Ludmir
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Alfredo E Echeverria
- Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, USA
| | - Benjamin Deneen
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Shweta U Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chris I Amos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jacob J Mandel
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Choi DJ, Armstrong G, Lozzi B, Vijayaraghavan P, Plon SE, Wong TC, Boerwinkle E, Muzny DM, Chen HC, Gibbs RA, Ostrom QT, Melin B, Deneen B, Bondy ML, Bainbridge MN. The genomic landscape of familial glioma. SCIENCE ADVANCES 2023; 9:eade2675. [PMID: 37115922 PMCID: PMC10146888 DOI: 10.1126/sciadv.ade2675] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Glioma is a rare brain tumor with a poor prognosis. Familial glioma is a subset of glioma with a strong genetic predisposition that accounts for approximately 5% of glioma cases. We performed whole-genome sequencing on an exploratory cohort of 203 individuals from 189 families with a history of familial glioma and an additional validation cohort of 122 individuals from 115 families. We found significant enrichment of rare deleterious variants of seven genes in both cohorts, and the most significantly enriched gene was HERC2 (P = 0.0006). Furthermore, we identified rare noncoding variants in both cohorts that were predicted to affect transcription factor binding sites or cause cryptic splicing. Last, we selected a subset of discovered genes for validation by CRISPR knockdown screening and found that DMBT1, HP1BP3, and ZCH7B3 have profound impacts on proliferation. This study performs comprehensive surveillance of the genomic landscape of familial glioma.
Collapse
Affiliation(s)
- Dong-Joo Choi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Georgina Armstrong
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | | | - Sharon E. Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Terence C. Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Eric Boerwinkle
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Hsiao-Chi Chen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Quinn T. Ostrom
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Melissa L. Bondy
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - The Gliogene Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Genomics England Research Consortium
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
- The University of Texas Health Science Center School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
4
|
Bernhard P, Feilen T, Rogg M, Fröhlich K, Cosenza-Contreras M, Hause F, Schell C, Schilling O. Proteome alterations during clonal isolation of established human pancreatic cancer cell lines. Cell Mol Life Sci 2022; 79:561. [PMID: 36271971 PMCID: PMC9587952 DOI: 10.1007/s00018-022-04584-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
Abstract
Clonal isolation is an integral step of numerous workflows in genome editing and cell engineering. It comprises the isolation of a single progenitor cell from a defined cell line population with subsequent expansion to obtain a monoclonal cell population. This process is associated with transient loss of cell–cell contacts and absence of a multicellular microenvironment. Previous studies have revealed transcriptomic changes upon clonal isolation with cell line specific extent. Since transcriptome alterations are only partially reflected on the proteome level, we sought to investigate the impact of clonal isolation on the cellular proteome to a depth of > 6000 proteins in three established pancreatic cancer cell lines. We show that clonal isolation does have an impact on the cellular proteome, however, with cell line specific extent, affecting different biological processes, and also depending on the isolation method. We demonstrate a different impact of clonal isolation on mesenchymal- and epithelial-derived cell lines mainly affecting cell proliferation, metabolism, cell adhesion and cellular stress. The results bear relevance to the field of genomic editing and cell engineering and highlight the need to consider the impact of clonal isolation when interpreting data stemming from experiments that include this step.
Collapse
Affiliation(s)
- P Bernhard
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - T Feilen
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - M Rogg
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany
| | - K Fröhlich
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - M Cosenza-Contreras
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - F Hause
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany
| | - C Schell
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - O Schilling
- Institute for Surgical Pathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 115A, 79106, Freiburg, Germany. .,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Xu W, Huang L, Xie B, Yang B. Serum microRNA-4297 is a sex-specific predictive biomarker of glioma grade and prognosis. Front Neurol 2022; 13:888221. [PMID: 35968285 PMCID: PMC9363699 DOI: 10.3389/fneur.2022.888221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Gliomas account for nearly 80% of brain cancers, tending to occur more frequently in men with adverse outcomes. Emerging microRNAs have been positioned as promising predictors for glioma's histological grade and prognosis. However, there have been few studies concerning the sex-biased impacts on the clinical approach for the potential microRNA-4297 (miR-4297). Methods We utilized GSE139031micro-RNAs profiling to analyze serum miR-4297 expression in glioma. A total of 114 newly diagnosed glioma patients at the First Affiliated Hospital of Fujian Medical University from January 2017 to February 2021 were recruited and prospectively followed up. The association of miR-4297 levels with glioma grade and prognosis was investigated. Luciferase reporter gene assays and genotype analyses were carried out to explore the potential mechanism of sexually dimorphic miR-4297 in glioma. Results Serum miR-4297 levels were notably down-regulated in glioma. Besides, serum miR-4297 levels were positively associated with the high grades, which were exclusively present for females. The positive correlations of miR-4297 with O6-methylguanine-DNA methyltransferase (MGMT) protein and mean platelet volume were also observed in females. IDH-mutant females had decreased miR-4297. Median PFS time for females with miR-4297 ≥ 1.392 was distinctly shorter than those with miR-4297 <1.392 (12.3 months vs. 42.89 months, p = 0.0289). Based on multivariate logistic regression, miR-4297-based equation model was established as FHGRS. AU-ROC analysis revealed FHGRS exhibited a robust performance in predicting high-grade glioma in females (p < 0.001), whereas there was no such relationship in males. Furthermore, the MGMT-3'UTR variant rs7896488 in the specific binding region of miR-4297 was correlated with prognosis. Conclusion Our study uncovers sex-dependent characterization of serum miR-4297 in predicting glioma grade and the relapse risk for female patients, which underscores the clinical benefits of sex-specific analysis in non-coding RNA research.
Collapse
Affiliation(s)
- Wenshen Xu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liming Huang
- Department of Oncology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Molecular Oncology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bingsen Xie
- Department of Neurosurgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bin Yang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Bin Yang
| |
Collapse
|