1
|
McGinnis AJ, Cull ME, Peterson NT, Tang MK, Natale BV, Natale DRC. Exploring the differentiation potential of Eomes POS mouse trophoblast cells in mid-gestation. Dev Biol 2025; 521:75-84. [PMID: 39922418 DOI: 10.1016/j.ydbio.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/19/2024] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Mouse trophoblast stem (mTS) cells can be derived from the blastocyst or extraembryonic ectoderm as late as embryonic day (E) 6.5 and when cultured in vitro, can differentiate to all trophoblast subtypes of the mature placenta. Expression of the T-box transcription factor, Eomes, is required for the maintenance of, and used to identify mTS cells. During development, Eomes is restricted to the ExE and, by E7.5, to the chorion, after which its expression declines. The placental junctional zone and labyrinth layers are thought to develop exclusively from the ectoplacental cone and chorion, respectively. While it is well established that mTS cells express Eomes in vitro, it is unknown if Eomes-positive (EomesPOS) trophoblast that reside in the chorion after E6.5 are restricted in their developmental potential to the labyrinth layer in vivo. This study utilized a lineage tracing technique to evaluate the in vivo differentiation of EomesPOS trophoblast. Using an Ai6 reporter mouse crossed with a tamoxifen-inducible Eomes-Cre-ERT2 mouse, Cre was activated from E7.5 to E9.5, permanently marking all EomesPOS trophoblast and daughter cells with the ZsGreen fluorescent protein. This approach was complemented with immunofluorescence staining to assess how the EomesPOS trophoblast had contributed to the differentiated trophoblast population within the placenta by E17.5. Importantly, the results show that daughter cells of EomesPOS trophoblast in which Cre was activated, contributed to both placental layers; specifically, spongiotrophoblast and glycogen trophoblast within the junctional zone and syncytiotrophoblast and sinusoidal trophoblast giant cells within the labyrinth. This confirms that EomesPOS trophoblast maintain the capacity to contribute to both placental layers in vivo and do so after E7.5. This study expands our understanding of trophoblast differentiation in vivo and may prove useful in assessing how EomesPOS trophoblast contribute placental development later in gestation and in the context of placental pathology, where Eomes expression has been reported.
Collapse
Affiliation(s)
- Avery J McGinnis
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Megan E Cull
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Nichole T Peterson
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Matthew K Tang
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - Bryony V Natale
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada
| | - David R C Natale
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart St., Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
2
|
Moore J, Gkantalis J, Guix I, Chou W, Yuen K, Lazar AA, Spitzer M, Combes A, Barcellos-Hoff MH. Identification of a conserved subset of cold tumors responsive to immune checkpoint blockade. J Immunother Cancer 2025; 13:e010528. [PMID: 40050047 PMCID: PMC11887281 DOI: 10.1136/jitc-2024-010528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The efficacy of immune checkpoint blockade (ICB) depends on restoring immune recognition of cancer cells that have evaded immune surveillance. Transforming growth factor-beta (TGFβ) is associated with immune-poor, so-called cold tumors whereas loss of its signaling promotes DNA misrepair that could stimulate immune response. METHODS We analyzed transcriptomic data from IMvigor210, The Cancer Genome Atlas, and Tumor Immune Syngeneic MOuse data sets to evaluate the predictive value of high βAlt, a score representing low expression of a signature consisting of TGFβ targets and high expression of genes involved in error-prone DNA repair. The immune context of βAlt was assessed by evaluating tumor-educated immune signatures. An ICB-resistant, high βAlt preclinical tumor model was treated with a TGFβ inhibitor, radiation, and/or ICB and assessed for immune composition and tumor control. RESULTS We found that a high βAlt score predicts ICB response yet is paradoxically associated with an immune-poor tumor microenvironmentcancer in both human and mouse tumors. We postulated that high βAlt cancers consist of cancer cells in which loss of TGFβ signaling generates a TGFβ rich, immunosuppressive tumor microenvironment. Accordingly, preclinical modeling showed that TGFβ inhibition followed by radiotherapy could convert an immune-poor, high βAlt tumor to an immune-rich, ICB-responsive tumor. Mechanistically, TGFβ inhibition increased activated natural killer (NK) cells, which were required to recruit lymphocytes to respond to ICB in irradiated tumors. NK cell activation signatures were also increased in high βAlt, cold mouse and human tumors that responded to ICB. CONCLUSIONS These studies indicate that loss of TGFβ signaling competency and gain of error-prone DNA repair identifies a subset of cold tumors that are responsive to ICB. Our mechanistic studies show that inhibiting TGFβ activity can convert a high βAlt, cold tumor into ICB-responsive tumors via NK cells. A biomarker consisting of combined TGFβ, DNA repair, and immune context signatures is a means to prospectively identify patients whose cancers may be converted from cold to hot with appropriate therapy.
Collapse
Affiliation(s)
- Jade Moore
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Jim Gkantalis
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Ines Guix
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - William Chou
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Kobe Yuen
- Oncology Biomarker Development, Genentech, South San Francisco, California, USA
| | - Ann A Lazar
- Division of Oral Epidemiology and Division of Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Matthew Spitzer
- Depts of Otolaryngology-Head and Neck Surgery and of Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Alexis Combes
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
3
|
Moore J, Gkantalis J, Guix I, Chou W, Yuen K, Lazar AA, Spitzer M, Combes AJ, Barcellos-Hoff MH. A conserved subset of cold tumors responsive to immune checkpoint blockade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.06.583752. [PMID: 38496519 PMCID: PMC10942434 DOI: 10.1101/2024.03.06.583752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background The efficacy of immune checkpoint blockade (ICB) depends on restoring immune recognition of cancer cells that have evaded immune surveillance. At the time of diagnosis, patients with lymphocyte-infiltrated cancers are the most responsive to ICB, yet a considerable fraction of patients have immune-poor tumors. Methods We analyzed transcriptomic data from IMvigor210, TCGA, and TISMO datasets to evaluate the predictive value of βAlt, a score representing the negative correlation of signatures consisting of transforming growth factor beta (TGFβ) targets and genes involved in error-prone DNA repair. The immune context of βAlt was assessed by evaluating tumor-educated immune signatures. An ICB-resistant, high βAlt preclinical tumor model was treated with a TGFβ inhibitor, radiation, and/or ICB and assessed for immune composition and tumor control. Results Here, we show that high βAlt is associated with an immune-poor context yet is predictive of ICB response in both humans and mice. A high βAlt cancer in which TGFβ signaling is compromised generates a TGFβ rich, immunosuppressive tumor microenvironment. Accordingly, preclinical modeling showed that TGFβ inhibition followed by radiotherapy could convert an immune-poor, ICB-resistant tumor to an immune-rich, ICB-responsive tumor. Mechanistically, TGFβ blockade in irradiated tumors activated natural killer cells that were required to recruit lymphocytes to respond to ICB. In support of this, natural killer cell activation signatures were also increased in immune-poor mouse and human tumors that responded to ICB. Conclusions These studies suggest that loss of TGFβ competency identifies a subset of cold tumors that are candidates for ICB. Our mechanistic studies show that inhibiting TGFβ activity converts high βAlt, cold tumors into ICB-responsive tumors via NK cells. Thus, a biomarker consisting of combined TGFβ, DNA repair, and immune context signatures provides a means to prospectively identify patients whose cancers may be converted from 'cold' to 'hot,' which could be exploited for therapeutic treatment.
Collapse
Affiliation(s)
- Jade Moore
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- A member of the imCORE Network
| | - Jim Gkantalis
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Ines Guix
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - William Chou
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Kobe Yuen
- Oncology Biomarker Development, Genentech Inc., South San Francisco, CA, USA
| | - Ann A. Lazar
- Division of Oral Epidemiology and Division of Biostatistics, University of California, San Francisco, CA, USA
| | - Mathew Spitzer
- Parker Institute for Cancer Immunotherapy, Department of Otolaryngology-Head and Neck Surgery, Department of Microbiology and Immunology, University of California, San Francisco, CA USA
- A member of the imCORE Network
| | - Alexis J. Combes
- Department of Pathology, CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- A member of the imCORE Network
| |
Collapse
|
4
|
Huang HN, Kuo CW, Hung YL, Yang CH, Hsieh YH, Lin YC, Chang MDT, Lin YY, Ko JC. Optimizing immunofluorescence with high-dynamic-range imaging to enhance PD-L1 expression evaluation for 3D pathology assessment from NSCLC tumor tissue. Sci Rep 2024; 14:15176. [PMID: 38956114 PMCID: PMC11219731 DOI: 10.1038/s41598-024-65187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Assessing programmed death ligand 1 (PD-L1) expression through immunohistochemistry (IHC) is the golden standard in predicting immunotherapy response of non-small cell lung cancer (NSCLC). However, observation of heterogeneous PD-L1 distribution in tumor space is a challenge using IHC only. Meanwhile, immunofluorescence (IF) could support both planar and three-dimensional (3D) histological analyses by combining tissue optical clearing with confocal microscopy. We optimized clinical tissue preparation for the IF assay focusing on staining, imaging, and post-processing to achieve quality identical to traditional IHC assay. To overcome limited dynamic range of the fluorescence microscope's detection system, we incorporated a high dynamic range (HDR) algorithm to restore the post imaging IF expression pattern and further 3D IF images. Following HDR processing, a noticeable improvement in the accuracy of diagnosis (85.7%) was achieved using IF images by pathologists. Moreover, 3D IF images revealed a 25% change in tumor proportion score for PD-L1 expression at various depths within tumors. We have established an optimal and reproducible process for PD-L1 IF images in NSCLC, yielding high quality data comparable to traditional IHC assays. The ability to discern accurate spatial PD-L1 distribution through 3D pathology analysis could provide more precise evaluation and prediction for immunotherapy targeting advanced NSCLC.
Collapse
Affiliation(s)
- Hsien-Neng Huang
- Department of Pathology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department and Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei Kuo
- Department of Pathology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | | | | | | | | | | | | | - Jen-Chung Ko
- Department of Internal Medicine, National Taiwan University HospitalHsin-Chu Branch, No. 25, Ln. 442, Sec. 1, Jingguo Rd., North Dist., Hsinchu City, 300, Taiwan, ROC.
| |
Collapse
|
5
|
Zhang D, Zou T, Liu Q, Chen J, Xiao M, Zheng A, Zhang Z, Du F, Dai Y, Xiang S, Wu X, Li M, Chen Y, Zhao Y, Shen J, Chen G, Xiao Z. Transcriptomic characterization revealed that METTL7A inhibits melanoma progression via the p53 signaling pathway and immunomodulatory pathway. PeerJ 2023; 11:e15799. [PMID: 37547717 PMCID: PMC10404031 DOI: 10.7717/peerj.15799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023] Open
Abstract
METTL7A is a protein-coding gene expected to be associated with methylation, and its expression disorder is associated with a range of diseases. However, few research have been carried out to explore the relationship between METTL7A and tumor malignant phenotype as well as the involvement potential mechanism. We conducted our research via a combination of silico analysis and molecular biology techniques to investigate the biological function of METTL7A in the progression of cancer. Gene expression and clinical information were extracted from the TCGA database to explore expression variation and prognostic value of METTL7A. In vitro, CCK8, transwell, wound healing and colony formation assays were conducted to explore the biological functions of METT7A in cancer cell. GSEA was performed to explore the signaling pathway involved in METTL7A and validated via western blotting. In conclusion, METTL7A was downregulated in most cancer tissues and its low expression was associated with shorter overall survival. In melanoma, METTL7A downregulation was associated with poorer clinical staging, lower levels of TIL infiltration, higher IC50 levels of chemotherapeutic agents, and poorer immunotherapy outcomes. QPCR results confirm that METTL7A is down-regulated in melanoma cells. Cell function assays showed that METTL7A knockdown promoted proliferation, invasion, migration and clone formation of melanoma cells. Mechanistic studies showed that METTL7A inhibits tumorigenicity through the p53 signaling pathway. Meanwhile, METTL7A is also a potential immune regulatory factor.
Collapse
Affiliation(s)
- Duoli Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
| | - Tao Zou
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
| | - Qingsong Liu
- Department of Pathology, The First People’s Hospital of Neijiang, Neijiang, China
| | - Jie Chen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
| | - Mintao Xiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
| | - Anfu Zheng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
| | - Fukuan Du
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yalan Dai
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shixin Xiang
- Department of Pharmacy, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Mingxing Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Jing Shen
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Guiquan Chen
- Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Laboratory of Molecular Pharmacology, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| |
Collapse
|