1
|
Cheng L, Hu Q, Wang Y, Nie W, Lu H, Zhang B, Zhao G, Ding S, Pan F, Shen Y, Zhong R, Zhang R. Cis-Regulation of an m 6A Eraser by an Insertion Variant Associated with Survival of Patients With Non-Small Cell Lung Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407652. [PMID: 39680684 PMCID: PMC11791940 DOI: 10.1002/advs.202407652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/07/2024] [Indexed: 12/18/2024]
Abstract
N6-methyladenosine (m6A) serves as one of the crucial RNA modifications for genes involved in cancer progression. Here, 7273 expression quantitative trait loci potentially regulating 30 m6A pathway genes are identified from the GTEx database, with 69 single nucleotide polymorphisms significantly associated with survival of non-small cell lung carcinoma (NSCLC) patients (n = 1523) from the ongoing genome-wide association study after false positive probability tests. Notably, the rs151198415 locus, situated in a potential enhancer region, demonstrated a prolonged survival effect with the C>CCACG insertion, which is validated in an independent prospective cohort (n = 237), yielding a pooled hazard ratio of 0.72 (p = 0.007). Mechanistically, the rs151198415 C>CCACG insertion engaged in long-range interaction with the promoter of m6A eraser ALKBH5, promoting ALKBH5 transcription by the creation of an EGR1 binding site. Then, ALKBH5 upregulated FBXL5 expression by m6A demethylation, which is dependent on the ALKBH5 H204 amino acid site and specific m6A sites on FBXL5 mRNA. Finally, the ALKBH5-FBXL5 axis reduces intracellular reactive oxygen species levels, leading to PI3K/AKT and NF-kB pathway inhibition and consequently suppresses NSCLC proliferation and metastasis in vitro and in vivo. Triggered by an insertion variant, this remote cis-regulation of m6A eraser and the downstream molecular events modulate the survival of NSCLC patients.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Respiratory and Critical Care MedicineShanghai Chest HospitalShanghai Jiaotong University School of MedicineHuaihai West Road No.241Shanghai200030China
| | - Qiangsheng Hu
- Department of Thoracic SurgeryShanghai Pulmonary HospitalTongji University School of MedicineShanghai200433China
| | - Yanan Wang
- Department of Medical OncologyThe Affiliated Hospital of Qingdao UniversityQingdaoShandong266000China
| | - Wei Nie
- Department of Respiratory and Critical Care MedicineShanghai Chest HospitalShanghai Jiaotong University School of MedicineHuaihai West Road No.241Shanghai200030China
| | - Haijiao Lu
- Department of Respiratory and Critical Care MedicineShanghai Chest HospitalShanghai Jiaotong University School of MedicineHuaihai West Road No.241Shanghai200030China
| | - Bo Zhang
- Department of Respiratory and Critical Care MedicineShanghai Chest HospitalShanghai Jiaotong University School of MedicineHuaihai West Road No.241Shanghai200030China
| | - Genming Zhao
- Department of EpidemiologySchool of Public HealthKey Laboratory of Public Health SafetyMinistry of EducationFudan UniversityShanghai200032China
| | - Shiyun Ding
- Department of EpidemiologySchool of Public HealthKey Laboratory of Public Health SafetyMinistry of EducationFudan UniversityShanghai200032China
| | - Feng Pan
- Department of Respiratory and Critical Care MedicineShanghai Chest HospitalShanghai Jiaotong University School of MedicineHuaihai West Road No.241Shanghai200030China
| | - Yinchen Shen
- Department of Respiratory and Critical Care MedicineShanghai Chest HospitalShanghai Jiaotong University School of MedicineHuaihai West Road No.241Shanghai200030China
| | - Runbo Zhong
- Department of Respiratory and Critical Care MedicineShanghai Chest HospitalShanghai Jiaotong University School of MedicineHuaihai West Road No.241Shanghai200030China
| | - Ruoxin Zhang
- Department of EpidemiologySchool of Public HealthKey Laboratory of Public Health SafetyMinistry of EducationFudan UniversityShanghai200032China
- Yiwu Research Institute of Fudan UniversityYiwuZhejiang322000China
- Cancer InstituteFudan University Shanghai Cancer Center Department of OncologyShanghai Medical College Fudan UniversityShanghai200032China
| |
Collapse
|
2
|
Vandenhoeck J, Ibrahim J, De Meulenaere N, Peeters D, Raskin J, Hendriks JMH, Van Schil P, van Meerbeeck J, Van Camp G, Op de Beeck K. Genome-wide DNA methylation analysis reveals a unique methylation pattern for pleural mesothelioma compared to healthy pleura and other lung diseases. Clin Epigenetics 2024; 16:176. [PMID: 39627815 PMCID: PMC11616176 DOI: 10.1186/s13148-024-01790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/20/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Pleural mesothelioma (PM) is a rare and aggressive cancer type, typically diagnosed at advanced stages. Distinguishing PM from other lung diseases is often challenging. There is an urgent need for biomarkers that can enable early detection. Interest in the field of epigenetics has increased, particularly in the context of tumour development and biomarker discovery. This study aims to identify specific changes in DNA methylation from healthy pleural tissue to PM and to compare these methylation patterns with those found in other lung diseases. RESULTS EPIC methylation array data (850 K) were generated for 11 PM and 29 healthy pleura in-house collected samples. This is the first time such a large dataset of healthy pleura samples has been generated. Additional EPIC methylation array data (850 K) for pleural mesothelioma and other lung-related diseases were downloaded from public databases. We conducted pairwise differential methylation analyses across all tissue types, which facilitated the identification of significantly differentially methylated CpG sites. Extensive differential methylation between PM and healthy pleura was observed, identifying 81,968 differentially methylated CpG sites across all genomic regions. Among these, five CpG sites located within four genes (MIR21, RNF39, SPEN and C1orf101) exhibited the most significant and pronounced methylation differences between PM and healthy pleura. Moreover, our analysis delineated distinct methylation patterns specific to PM subtypes. Finally, the methylation profiles of PM were distinctly different from those of other lung cancers, enabling accurate differentiation. CONCLUSIONS DNA methylation analyses provide a robust method for distinguishing PM from healthy pleural tissues, and specific methylation patterns exist within PM subtypes. These methylation differences underscore their importance in understanding disease progression and may serve as viable biomarkers or therapeutic targets. Moreover, differential methylation patterns between PM and other lung cancers highlights its diagnostic potential. These findings necessitate further translational studies to explore their clinical applications.
Collapse
Affiliation(s)
- Janah Vandenhoeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Joe Ibrahim
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Nele De Meulenaere
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Dieter Peeters
- Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Jo Raskin
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Jeroen M H Hendriks
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Paul Van Schil
- Department of Thoracic and Vascular Surgery, Antwerp University Hospital, Edegem, Belgium
- Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), University of Antwerp, Wilrijk, Belgium
| | - Jan van Meerbeeck
- Department of Thoracic Oncology, Antwerp University Hospital, Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
- Centre for Oncological Research Antwerp (CORE), University of Antwerp and Antwerp University Hospital, Wilrijk, Belgium.
| |
Collapse
|
3
|
Dubey NK, Kumar V, Goswami C. Sperm-Specific CatSper is Not Conserved in All Vertebrates and May Not be the Only Progesterone-Responsive Ion Channel Present in Sperm. J Membr Biol 2024; 257:215-230. [PMID: 38970681 PMCID: PMC11289002 DOI: 10.1007/s00232-024-00316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Progesterone (P4) acts as a key conserved signalling molecule in vertebrate reproduction. P4 is especially important for mature sperm physiology and subsequent reproductive success. "CatSpermasome", a multi-unit molecular complex, has been suggested to be the main if not the only P4-responsive atypical Ca2+-ion channel present in mature sperm. Altogether, here we analyse the protein sequences of CatSper1-4 from more than 500 vertebrates ranging from early fishes to humans. CatSper1 becomes longer in mammals due to sequence gain mainly at the N-terminus. Overall the conservation of full-length CatSper1-4 as well as the individual TM regions remain low. The lipid-water-interface residues (i.e. a 5 amino acid stretch sequence present on both sides of each TM region) also remain highly diverged. No specific patterns of amino acid distributions were observed. The total frequency of positively charged, negatively charged or their ratios do not follow in any specific pattern. Similarly, the frequency of total hydrophobic, total hydrophilic residues or even their ratios remain random and do not follow any specific pattern. We noted that the CatSper1-4 genes are missing in amphibians and the CatSper1 gene is missing in birds. The high variability of CatSper1-4 and gene-loss in certain clades indicate that the "CatSpermasome" is not the only P4-responsive ion channel. Data indicate that the molecular evolution of CatSper is mostly guided by diverse hydrophobic ligands rather than only P4. The comparative data also suggest possibilities of other Ca2+-channel/s in vertebrate sperm that can also respond to P4.
Collapse
Affiliation(s)
- Nishant Kumar Dubey
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, 752050, Odisha, India.
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| | - Vikash Kumar
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, 752050, Odisha, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda, 752050, Odisha, India.
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
4
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
5
|
Wang S, Chen S, Li H, Ben S, Zhao T, Zheng R, Wang M, Gu D, Liu L. Causal genetic regulation of DNA replication on immune microenvironment in colorectal tumorigenesis: Evidenced by an integrated approach of trans-omics and GWAS. J Biomed Res 2023; 38:37-50. [PMID: 38111199 PMCID: PMC10818172 DOI: 10.7555/jbr.37.20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 12/20/2023] Open
Abstract
The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis, but a comprehensive understanding of their association with and relevant biomarkers involved in colorectal tumorigenesis is lacking. To address this gap, we conducted a study aiming to investigate this association and identify relevant biomarkers. We analyzed transcriptomic and proteomic profiles of 904 colorectal tumor tissues and 342 normal tissues to examine pathway enrichment, biological activity, and the immune microenvironment. Additionally, we evaluated genetic effects of single variants and genes on colorectal cancer susceptibility using data from genome-wide association studies (GWASs) involving both East Asian (7062 cases and 195745 controls) and European (24476 cases and 23073 controls) populations. We employed mediation analysis to infer the causal pathway, and applied multiplex immunofluorescence to visualize colocalized biomarkers in colorectal tumors and immune cells. Our findings revealed that both DNA replication activity and the flap structure-specific endonuclease 1 ( FEN1) gene were significantly enriched in colorectal tumor tissues, compared with normal tissues. Moreover, a genetic variant rs4246215 G>T in FEN1 was associated with a decreased risk of colorectal cancer (odds ratio = 0.94, 95% confidence interval: 0.90-0.97, P meta = 4.70 × 10 -9). Importantly, we identified basophils and eosinophils that both exhibited a significantly decreased infiltration in colorectal tumors, and were regulated by rs4246215 through causal pathways involving both FEN1 and DNA replication. In conclusion, this trans-omics incorporating GWAS data provides insights into a plausible pathway connecting DNA replication and immunity, expanding biological knowledge of colorectal tumorigenesis and therapeutic targets.
Collapse
Affiliation(s)
- Sumeng Wang
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Huiqin Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tingyu Zhao
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Genetic Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Lingxiang Liu
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
6
|
Yu S, Cheng J, Li P, Tian L, Chen Z, Chen Z, Li Y, Song J. Association study for the role of MMP8 gene polymorphisms in Colorectal cancer susceptibility. BMC Cancer 2023; 23:1169. [PMID: 38031100 PMCID: PMC10688471 DOI: 10.1186/s12885-023-11662-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignant tumors, influenced by several genetic loci in its clinical phenotypes. The aim of this study was to determine the relationship between the MMP8 gene polymorphism and CRC risk in the Chinese Han population. METHOD This study recruited 688 CRC patients and 690 healthy controls. The relationship between MMP8 polymorphism and CRC susceptibility was assessed by calculating the odds ratio (OR) and 95% confidence interval (CI) after stratifying by age, gender, body mass index (BMI), smoking, and alcohol consumption under a multi-genetic model. RESULTS MMP8 rs3740938 was associated with increased CRC predisposition (p = 0.016, OR = 1.24, 95% CI: 1.04-1.48), and this association was detected particularly in subjects aged > 60 years, females, people with BMI > 24 kg/m2, smokers, and drinkers. Moreover, rs3740938 was found to be associated with the pathological type of rectal cancer. CONCLUSIONS Our results first displayed that rs3740938 in MMP8 was a risk factor for CRC predisposition. This finding may provide a new biological perspective for understanding the role of the MMP8 gene in CRC pathogenesis.
Collapse
Affiliation(s)
- Shuyong Yu
- Department of Gastrointestinal Surgery IV, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Jiajia Cheng
- Department of Gastrointestinal Surgery IV, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Ping Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Le Tian
- Department of Digestive Endoscopy, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Zhuang Chen
- Department of Gastroenterology, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Zhaowei Chen
- Department of Gastroenterology, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Yongyu Li
- Department of Gastroenterology, Hainan Cancer Hospital, 570100, Haikou, Hainan, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, No. 6019 Liuxian Avenue, Nanshan District, 518000, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Li S, Xu S, Chen Y, Zhou J, Ben S, Guo M, Chu H, Gu D, Zhang Z, Wang M. Metal Exposure Promotes Colorectal Tumorigenesis via the Aberrant N6-Methyladenosine Modification of ATP13A3. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2864-2876. [PMID: 36745568 DOI: 10.1021/acs.est.2c07389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Element contamination, including that from heavy metals, is associated with gastrointestinal tumorigenesis, but the effects and mechanisms of crucial element exposure associated with colorectal cancer remain unclear. We profiled 56 elements by ICP-MS and used logistic regression, LASSO, BKMR, and GAM to identify colorectal cancer-relevant elements. A series of biochemical experiments were performed to demonstrate the cytotoxicity and the mechanisms of malignant transformation after metal exposure. Using an elementomics approach, we first found that the metal thallium (Tl) was positively correlated with many toxic metals and was associated with a significantly increased risk of colorectal cancer. Acute exposure to Tl induced cytotoxicity and cell death by accelerating the generation of reactive oxygen species and DNA damage. Chronic exposure to Tl led to the inhibition of cell death and thereby induced the malignant transformation of normal colon cells and xenograft tumor formation in nude mice. Furthermore, we describe the first identification of a significant metal quantitative trait locus for the novel colorectal cancer susceptibility locus rs1511625 near ATP13A3. Mechanistically, Tl increased the level of aberrant N6-methyladenosine (m6A) modification of ATP13A3 via the METLL3/METTL14/ALKBH5-ATP13A3 axis to promote colorectal tumorigenesis. This study provides a basis for the development of public health strategies for reducing metal exposure among populations at high risk for colorectal cancer.
Collapse
Affiliation(s)
- Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shenya Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yehua Chen
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jieyu Zhou
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mengfan Guo
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Haiyan Chu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, Jiangsu, China
| |
Collapse
|