1
|
Sharifi N, Diaz R, Lin HM, Roberts E, Horvath LG, Martin A, Stockler MR, Yip S, Subhash VV, Portman N, Davis ID, Sweeney CJ. Survival of men with metastatic hormone-sensitive prostate cancer and adrenal-permissive HSD3B1 inheritance. J Clin Invest 2024; 134:e183583. [PMID: 39286977 PMCID: PMC11405037 DOI: 10.1172/jci183583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/23/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDMetastatic hormone-sensitive prostate cancer (mHSPC) is androgen dependent, and its treatment includes androgen deprivation therapy (ADT) with gonadal testosterone suppression. Since 2014, overall survival (OS) has been prolonged with addition of other systemic therapies, such as adrenal androgen synthesis blockers, potent androgen receptor blockers, or docetaxel, to ADT. HSD3B1 encodes the rate-limiting enzyme for nongonadal androgen synthesis, 3β-hydroxysteroid dehydrogenase-1, and has a common adrenal-permissive missense-encoding variant that confers increased synthesis of potent androgens from nongonadal precursor steroids and poorer prostate cancer outcomes.METHODSOur prespecified hypothesis was that poor outcome associated with inheritance of the adrenal-permissive HSD3B1 allele with ADT alone is reversed in patients with low-volume (LV) mHSPC with up-front ADT plus addition of androgen receptor (AR) antagonists to inhibit the effect of adrenal androgens. HSD3B1 genotype was obtained in 287 patients with LV disease treated with ADT + AR antagonist only in the phase III Enzalutamide in First Line Androgen Deprivation Therapy for Metastatic Prostate Cancer (ENZAMET) trial and was associated with clinical outcomes.RESULTSPatients who inherited the adrenal-permissive HSD3B1 allele had more favorable 5-year clinical progression-free survival and OS when treated with ADT plus enzalutamide or ADT plus nonsteroidal antiandrogen compared with their counterparts who did not have adrenal-permissive HSD3B1 inheritance. HSD3B1 was also associated with OS after accounting for known clinical variables. Patients with both genotypes benefited from early enzalutamide.CONCLUSIONThese data demonstrated an inherited physiologic driver of prostate cancer mortality is associated with clinical outcomes and is potentially pharmacologically reversible.FUNDINGNational Cancer Institute, NIH; Department of Defense; Prostate Cancer Foundation, Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Nima Sharifi
- Desai Sethi Urology Institute and
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Robert Diaz
- Desai Sethi Urology Institute and
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hui-Ming Lin
- Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
| | - Evan Roberts
- Desai Sethi Urology Institute and
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lisa G. Horvath
- Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
- Chris O’Brien Lifehouse, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia
| | - Andrew Martin
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
- Centre for Clinical Research, University of Queensland, Herston, Queensland, Australia
| | - Martin R. Stockler
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Sonia Yip
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia
- National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Vinod V. Subhash
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia
| | - Neil Portman
- Advanced Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia
| | - Ian D. Davis
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Cancer Services, Eastern Health, Melbourne, Victoria, Australia
| | - Christopher J. Sweeney
- Australian and New Zealand Urogenital and Prostate Cancer Trials Group (ANZUP), Sydney, New South Wales, Australia
- South Australian Immunogenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Sharifi N, Azad AA, Patel M, Hearn JWD, Wozniak M, Zohren F, Sugg J, Haas GP, Stenzl A, Armstrong AJ. HSD3B1 genotype and outcomes in metastatic hormone-sensitive prostate cancer with androgen deprivation therapy and enzalutamide: ARCHES. Cell Rep Med 2024; 5:101644. [PMID: 39168093 PMCID: PMC11384952 DOI: 10.1016/j.xcrm.2024.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 08/23/2024]
Abstract
HSD3B1 encodes 3β-hydroxysteroid dehydrogenase-1, which converts adrenal dehydroepiandrosterone to 5α-dihydrotestosterone and is inherited in adrenal-permissive (AP) or adrenal-restrictive forms. The AP allele is linked to castration resistance, mainly in low-volume tumors. Here, we investigate the association of HSD3B1 alleles with outcomes in ARCHES, a multinational, double-blind, randomized, placebo-controlled phase 3 trial that demonstrated clinical benefit with enzalutamide plus androgen deprivation therapy (ADT) in men with metastatic hormone-sensitive prostate cancer (mHSPC) compared to those treated with placebo plus ADT. There are no significant differences between genotypes for clinical efficacy endpoints. Enzalutamide significantly improves radiographic progression-free survival and overall survival vs. placebo irrespective of HSD3B1 status. Men with the AP genotype have higher post-progression mortality and treatment-emergent adverse events, including hypertension, cardiovascular events, and gynecomastia, but a lower fracture rate. Overall, enzalutamide is beneficial in men with mHSPC independent of the HSD3B1 genotype. Inherited polymorphisms of HSD3B1 may account for differential toxicities.
Collapse
Affiliation(s)
- Nima Sharifi
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Arun A Azad
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mona Patel
- Desai Sethi Urology Institute and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jason W D Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - Arnulf Stenzl
- Department of Urology, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andrew J Armstrong
- Divisions of Medical Oncology and Urology, Duke Cancer Institute Center for Prostate & Urologic Cancers, Durham, NC, USA
| |
Collapse
|
3
|
Qin L, Berk M, Chung YM, Cui D, Zhu Z, Chakraborty AA, Sharifi N. Chronic hypoxia stabilizes 3βHSD1 via autophagy suppression. Cell Rep 2024; 43:113575. [PMID: 38181788 PMCID: PMC10851248 DOI: 10.1016/j.celrep.2023.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024] Open
Abstract
Progression of prostate cancer depends on androgen receptor, which is usually activated by androgens. Therefore, a mainstay treatment is androgen deprivation therapy. Unfortunately, despite initial treatment response, resistance nearly always develops, and disease progresses to castration-resistant prostate cancer (CRPC), which remains driven by non-gonadal androgens synthesized in prostate cancer tissues. 3β-Hydroxysteroid dehydrogenase/Δ5-->4 isomerase 1 (3βHSD1) catalyzes the rate-limiting step in androgen synthesis. However, how 3βHSD1, especially the "adrenal-permissive" 3βHSD1(367T) that permits tumor synthesis of androgen from dehydroepiandrosterone (DHEA), is regulated at the protein level is not well understood. Here, we investigate how hypoxia regulates 3βHSD1(367T) protein levels. Our results show that, in vitro, hypoxia stabilizes 3βHSD1 protein by suppressing autophagy. Autophagy inhibition promotes 3βHSD1-dependent tumor progression. Hypoxia represses transcription of autophagy-related (ATG) genes by decreasing histone acetylation. Inhibiting deacetylase (HDAC) restores ATG gene transcription under hypoxia. Therefore, HDAC inhibition may be a therapeutic target for hypoxic tumor cells.
Collapse
Affiliation(s)
- Liang Qin
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael Berk
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yoon-Mi Chung
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Di Cui
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ziqi Zhu
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Abhishek A Chakraborty
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Shiota M, Ushijima M, Tsukahara S, Nagakawa S, Blas L, Takamatsu D, Kobayashi S, Matsumoto T, Inokuchi J, Eto M. NR5A2/HSD3B1 pathway promotes cellular resistance to second-generation antiandrogen darolutamide. Drug Resist Updat 2023; 70:100990. [PMID: 37478518 DOI: 10.1016/j.drup.2023.100990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
This study investigated cellular mechanisms in steroidogenesis responsible for treatment resistance to the novel antiandrogen agent darolutamide in prostate cancer. HSD3B1 was overexpressed in darolutamide-resistant cells and induced by darolutamide treatment and AR knockdown. Inversely, HSD3B1 knockdown increased cellular sensitivity to darolutamide. Similarly, its upstream regulator NR5A2 was up-regulated in darolutamide-resistant cells and induced by darolutamide treatment and AR knockdown. Inversely, NR5A2 knockdown and NR5A2 inhibitor ML180 decreased expression of various steroidogenic enzymes including HSD3B1, leading to increased cellular sensitivity to darolutamide. The NR5A2/HSD3B1 pathway promoted cellular resistance to darolutamide and targeting NR5A2/HSD3B1 pathway is a promising therapeutic strategy to overcome darolutamide resistance.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Miho Ushijima
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Leandro Blas
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Dai Takamatsu
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Kobayashi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
5
|
Guo WB, Wu C, Yang L, Miao AJ. Pre-exposure to titanium or iron oxide nanoparticles suppresses the subsequent cellular uptake of gold nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162491. [PMID: 36889398 DOI: 10.1016/j.scitotenv.2023.162491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Humans are exposed to a wide variety of natural and engineered nanoparticles (NPs) during their lifetime. However, the effects of pre-exposure to NPs on subsequent uptake of other NPs have not been investigated. In the present study, we investigated the effects of pre-exposure to three NPs (TiO2, Fe2O3, and SiO2 NPs) on the subsequent uptake of gold NPs (AuNPs) by hepatocellular carcinoma cells (HepG2). When HepG2 cells were pre-exposed to TiO2 or Fe2O3 NPs, but not SiO2 NPs for 2 days, their subsequent uptake of AuNPs was inhibited. Such inhibition was also observed in human cervical cancer (HeLa) cells, suggesting that this phenomenon is present in different cell types. The mechanisms underlying the inhibitory effect of NP pre-exposure include altered plasma membrane fluidity due to changes in lipid metabolism and reduced intracellular ATP production due to decreased intracellular oxygen. Despite the inhibitory effects of NP pre-exposure, full recovery was observed after transferring the cells to medium without NPs, even when the pre-exposure time was extended from 2 days to 2 weeks. Overall, the pre-exposure effects observed in the present study should be considered in the biological application and risk evaluation of NPs.
Collapse
Affiliation(s)
- Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Chao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
6
|
Zhang N, Huang D, Ruan X, Ng ATL, Tsu JHL, Jiang G, Huang J, Zhan Y, Na R. CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger protein 19 A (RNF19A) in prostate cancer. Drug Resist Updat 2023; 67:100912. [PMID: 36623445 DOI: 10.1016/j.drup.2022.100912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Prostate cancer (PCa) is one of the most lethal causes of cancer-related death in male. It is characterized by chromosomal instability and disturbed signaling transduction. E3 ubiquitin ligases are well-recognized as mediators leading to genomic alterations and malignant phenotypes. There is a lack of systematic study on novel oncodrivers with genomic and clinical significance in PCa. In this study we used clustered regularly interspaced short palindromic repeats (CRISPR) system to screen 656 E3 ubiquitin ligases as oncodrivers or tumor repressors in PCa cells. We identified 51 significantly changed genes, and conducted genomic and clinical analysis on these genes. It was found that the Ring Finger Protein 19 A (RNF19A) was a novel oncodriver in PCa. RNF19A was frequently amplified and highly expressed in PCa and other cancer types. Clinically, higher RNF19A expression correlated with advanced Gleason Score and predicted castration resistance. Mechanistically, transcriptomics, quantitative and ubiquitination proteomic analysis showed that RNF19A ubiquitylated Thyroid Hormone Receptor Interactor 13 (TRIP13) and was transcriptionally activated by androgen receptor (AR) and Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A). This study uncovers the genomic and clinical significance of a oncodriver RNF19A in PCa. The results of this study indicate that targeting AR/HIF1A-RNF19A-TRIP13 signaling axis could be an alternative option for PCa diagnosis and therapy.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ada Tsui-Lin Ng
- Division of Urology, Department of Surgery, Queen Mary Hospital, Hong Kong, China; Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - James Hok-Leung Tsu
- Division of Urology, Department of Surgery, Queen Mary Hospital, Hong Kong, China; Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Guangliang Jiang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongle Zhan
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rong Na
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|