1
|
Hebert JD, Tang YJ, Szamecz M, Andrejka L, Lopez SS, Petrov DA, Boross G, Winslow MM. Combinatorial In Vivo Genome Editing Identifies Widespread Epistasis and an Accessible Fitness Landscape During Lung Tumorigenesis. Mol Biol Evol 2025; 42:msaf023. [PMID: 39907430 PMCID: PMC11824425 DOI: 10.1093/molbev/msaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Lung adenocarcinoma, the most common subtype of lung cancer, is genomically complex, with tumors containing tens to hundreds of non-synonymous mutations. However, little is understood about how genes interact with each other to enable the evolution of cancer in vivo, largely due to a lack of methods for investigating genetic interactions in a high-throughput and quantitative manner. Here, we employed a novel platform to generate tumors with inactivation of pairs of ten diverse tumor suppressor genes within an autochthonous mouse model of oncogenic KRAS-driven lung cancer. By quantifying the fitness of tumors with every single and double mutant genotype, we show that most tumor suppressor genetic interactions exhibited negative epistasis, with diminishing returns on tumor fitness. In contrast, Apc inactivation showed positive epistasis with the inactivation of several other genes, including synergistic effects on tumor fitness in combination with Lkb1 or Nf1 inactivation. Sign epistasis was extremely rare, suggesting a surprisingly accessible fitness landscape during lung tumorigenesis. These findings expand our understanding of the interactions that drive tumorigenesis in vivo.
Collapse
Affiliation(s)
- Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuning J Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Márton Szamecz
- Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
- National Laboratory for Health Security, Centre for Eco-Epidemiology, Budapest, Hungary
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven S Lopez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Gábor Boross
- National Laboratory for Health Security, Centre for Eco-Epidemiology, Budapest, Hungary
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Ashkin EL, Tang YJ, Xu H, Hung KL, Belk JA, Cai H, Lopez SS, Dolcen DN, Hebert JD, Li R, Ruiz PA, Keal T, Andrejka L, Chang HY, Petrov DA, Dixon JR, Xu Z, Winslow MM. A STAG2-PAXIP1/PAGR1 axis suppresses lung tumorigenesis. J Exp Med 2025; 222:e20240765. [PMID: 39652422 PMCID: PMC11627241 DOI: 10.1084/jem.20240765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/16/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The cohesin complex is a critical regulator of gene expression. STAG2 is the most frequently mutated cohesin subunit across several cancer types and is a key tumor suppressor in lung cancer. Here, we coupled somatic CRISPR-Cas9 genome editing and tumor barcoding with an autochthonous oncogenic KRAS-driven lung cancer model and showed that STAG2 is uniquely tumor-suppressive among all core and auxiliary cohesin components. The heterodimeric complex components PAXIP1 and PAGR1 have highly correlated effects with STAG2 in human lung cancer cell lines, are tumor suppressors in vivo, and are epistatic to STAG2 in oncogenic KRAS-driven lung tumorigenesis in vivo. STAG2 inactivation elicits changes in gene expression, chromatin accessibility, and 3D genome conformation that impact the cancer cell state. Gene expression and chromatin accessibility similarities between STAG2- and PAXIP1-deficient neoplastic cells further relate STAG2-cohesin to PAXIP1/PAGR1. These findings reveal a STAG2-PAXIP1/PAGR1 tumor-suppressive axis and uncover novel PAXIP1-dependent and PAXIP1-independent STAG2-cohesin-mediated mechanisms of lung tumor suppression.
Collapse
Affiliation(s)
- Emily L. Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuning J. Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Haiqing Xu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - King L. Hung
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven S. Lopez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Deniz Nesli Dolcen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jess D. Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Paloma A. Ruiz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tula Keal
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A. Petrov
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jesse R. Dixon
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Zhichao Xu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Monte M. Winslow
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
3
|
Shuldiner EG, Karmakar S, Tsai MK, Hebert JD, Tang YJ, Andrejka L, Wang M, Detrick CR, Cai H, Tang R, Petrov DA, Winslow MM. Aging represses lung tumorigenesis and alters tumor suppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596319. [PMID: 38853826 PMCID: PMC11160591 DOI: 10.1101/2024.05.28.596319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Most cancers are diagnosed in persons over the age of sixty, but little is known about how age impacts tumorigenesis. While aging is accompanied by mutation accumulation - widely understood to contribute to cancer risk - it is also associated with numerous other cellular and molecular changes likely to impact tumorigenesis. Moreover, cancer incidence decreases in the oldest part of the population, suggesting that very old age may reduce carcinogenesis. Here we show that aging represses tumor initiation and growth in genetically engineered mouse models of human lung cancer. Moreover, aging dampens the impact of inactivating many, but not all, tumor suppressor genes with the impact of inactivating PTEN, a negative regulator of the PI3K/AKT pathway, weakened to a disproportionate extent. Single-cell transcriptomic analysis revealed that neoplastic cells from tumors in old mice retain many age-related transcriptomic changes, showing that age has an enduring impact that persists through oncogenic transformation. Furthermore, the consequences of PTEN inactivation were strikingly age-dependent, with PTEN deficiency reducing signatures of aging in cancer cells and the tumor microenvironment. Our findings suggest that the relationship between age and lung cancer incidence may reflect an integration of the competing effects of driver mutation accumulation and tumor suppressive effects of aging.
Collapse
|
4
|
Hebert JD, Xu H, Tang YJ, Ruiz PA, Detrick CR, Wang J, Hughes NW, Donosa O, Andrejka L, Karmakar S, Aboiralor I, Tang R, Sage J, Cong L, Petrov DA, Winslow MM. Efficient and multiplexed somatic genome editing with Cas12a mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583774. [PMID: 38496463 PMCID: PMC10942438 DOI: 10.1101/2024.03.07.583774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Somatic genome editing in mouse models has increased our understanding of the in vivo effects of genetic alterations in areas ranging from neuroscience to cancer biology and beyond. However, existing models are limited in their ability to create multiple targeted edits. Thus, our understanding of the complex genetic interactions that underlie development, homeostasis, and disease remains incomplete. Cas12a is an RNA-guided endonuclease with unique attributes that enable simple targeting of multiple genes with crRNA arrays containing tandem guides. To accelerate and expand the generation of complex genotypes in somatic cells, we generated transgenic mice with Cre-regulated and constitutive expression of enhanced Acidaminococcus sp. Cas12a (enAsCas12a). In these mice, enAsCas12a-mediated somatic genome editing robustly generated compound genotypes, as exemplified by the initiation of diverse cancer types driven by homozygous inactivation of trios of tumor suppressor genes. We further integrated these modular crRNA arrays with clonal barcoding to quantify the size and number of tumors with each array, as well as the efficiency of each crRNA. These Cas12a alleles will enable the rapid generation of disease models and broadly facilitate the high-throughput investigation of coincident genomic alterations in somatic cells in vivo .
Collapse
|
5
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
6
|
Hebert JD, Tang YJ, Andrejka L, Lopez SS, Petrov DA, Boross G, Winslow MM. Combinatorial in vivo genome editing identifies widespread epistasis during lung tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583981. [PMID: 38496564 PMCID: PMC10942407 DOI: 10.1101/2024.03.07.583981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Lung adenocarcinoma, the most common subtype of lung cancer, is genomically complex, with tumors containing tens to hundreds of non-synonymous mutations. However, little is understood about how genes interact with each other to enable tumorigenesis in vivo , largely due to a lack of methods for investigating genetic interactions in a high-throughput and multiplexed manner. Here, we employed a novel platform to generate tumors with all pairwise inactivation of ten tumor suppressor genes within an autochthonous mouse model of oncogenic KRAS-driven lung cancer. By quantifying the fitness of tumors with every single and double mutant genotype, we show that most tumor suppressor genetic interactions exhibited negative epistasis, with diminishing returns on tumor fitness. In contrast, Apc inactivation showed positive epistasis with the inactivation of several other genes, including dramatically synergistic effects on tumor fitness in combination with Lkb1 or Nf1 inactivation. This approach has the potential to expand the scope of genetic interactions that may be functionally characterized in vivo , which could lead to a better understanding of how complex tumor genotypes impact each step of carcinogenesis.
Collapse
|
7
|
Shen W, Hu F, Lei P, Tang Y. Applications of CRISPR screening to lung cancer treatment. Front Cell Dev Biol 2023; 11:1295555. [PMID: 38169973 PMCID: PMC10760454 DOI: 10.3389/fcell.2023.1295555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Lung cancer is an extremely aggressive and highly prevalent disease worldwide, and it is one of the leading causes of cancer death. Deciphering intrinsic genetic mechanism, finding new targets, and overcoming drug resistance are the key to lung cancer treatment. High-throughput CRISPR screening has been extensively used to obtain the genes related to cancers including lung cancer. This review describes CRISPR/Cas9 or CRISPR/dCas9-based technologies for high-throughput screening. We summarize the applications of CRISPR screening technology in exploring the mechanism of lung cancer development in vivo or in vitro, overcoming drug resistance, improving the effect of immunotherapy, and discovering new therapeutic targets. This review highlights the potential of CRISPR screening in combination with tumor barcoding and high-throughput sequencing (Tuba-seq) to precisely quantify the impact of alterations in many tumor suppressor genes on lung cancer.
Collapse
Affiliation(s)
- Wanying Shen
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Fangli Hu
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Pan Lei
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yijun Tang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Sodir NM, Pathria G, Adamkewicz JI, Kelley EH, Sudhamsu J, Merchant M, Chiarle R, Maddalo D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov 2023; 13:2339-2355. [PMID: 37682219 PMCID: PMC10618746 DOI: 10.1158/2159-8290.cd-23-0383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 09/09/2023]
Abstract
The protein phosphatase SHP2/PTPN11 has been reported to be a key modulator of proliferative pathways in a wide range of malignancies. Intriguingly, SHP2 has also been described as a critical regulator of the tumor microenvironment. Based on this evidence SHP2 is considered a multifaceted target in cancer, spurring the notion that the development of direct inhibitors of SHP2 would provide the twofold benefit of tumor intrinsic and extrinsic inhibition. In this review, we will discuss the role of SHP2 in cancer and the tumor microenvironment, and the clinical strategies in which SHP2 inhibitors are leveraged as combination agents to improve therapeutic response. SIGNIFICANCE The SHP2 phosphatase functions as a pleiotropic factor, and its inhibition not only hinders tumor growth but also reshapes the tumor microenvironment. Although their single-agent activity may be limited, SHP2 inhibitors hold the potential of being key combination agents to enhance the depth and the durability of tumor response to therapy.
Collapse
Affiliation(s)
- Nicole M. Sodir
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Gaurav Pathria
- Department of Oncology Biomarker Development, Genentech, South San Francisco, California
| | | | - Elizabeth H. Kelley
- Department of Discovery Chemistry, Genentech, South San Francisco, California
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, South San Francisco, California
| | - Mark Merchant
- Department of Translational Oncology, Genentech, South San Francisco, California
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo Maddalo
- Department of Translational Oncology, Genentech, South San Francisco, California
| |
Collapse
|
9
|
Yousefi M, Andrejka L, Szamecz M, Winslow MM, Petrov DA, Boross G. Fully accessible fitness landscape of oncogene-negative lung adenocarcinoma. Proc Natl Acad Sci U S A 2023; 120:e2303224120. [PMID: 37695905 PMCID: PMC10515140 DOI: 10.1073/pnas.2303224120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/12/2023] [Indexed: 09/13/2023] Open
Abstract
Cancer genomes are almost invariably complex with genomic alterations cooperating during each step of carcinogenesis. In cancers that lack a single dominant oncogene mutation, cooperation between the inactivation of multiple tumor suppressor genes can drive tumor initiation and growth. Here, we shed light on how the sequential acquisition of genomic alterations generates oncogene-negative lung tumors. We couple tumor barcoding with combinatorial and multiplexed somatic genome editing to characterize the fitness landscapes of three tumor suppressor genes NF1, RASA1, and PTEN, the inactivation of which jointly drives oncogene-negative lung adenocarcinoma initiation and growth. The fitness landscape was surprisingly accessible, with each additional mutation leading to growth advantage. Furthermore, the fitness landscapes remained fully accessible across backgrounds with the inactivation of additional tumor suppressor genes. These results suggest that while predicting cancer evolution will be challenging, acquiring the multiple alterations that drive the growth of oncogene-negative tumors can be facilitated by the lack of constraints on mutational order.
Collapse
Affiliation(s)
- Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
| | - Márton Szamecz
- Eötvös Loránd University, Faculty of Informatics, Budapest1053, Hungary
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA94305
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Pathology, Stanford University School of Medicine, Stanford, CA94305
| | - Dmitri A. Petrov
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA94305
- Department of Biology, Stanford University, Stanford, CA94305
| | - Gábor Boross
- Department of Biology, Stanford University, Stanford, CA94305
| |
Collapse
|
10
|
Schubert L, Le AT, Hinz TK, Navarro AC, Nelson-Taylor SK, Nemenoff RA, Heasley LE, Doebele RC. A functional sgRNA-CRISPR screening method for generating murine RET and NTRK1 rearranged oncogenes. Biol Open 2023; 12:bio059994. [PMID: 37470475 PMCID: PMC10445739 DOI: 10.1242/bio.059994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
CRISPR/Cas9 gene editing represents a powerful tool for investigating fusion oncogenes in cancer biology. Successful experiments require that sgRNAs correctly associate with their target sequence and initiate double stranded breaks which are subsequently repaired by endogenous DNA repair systems yielding fusion chromosomes. Simple tests to ensure sgRNAs are functional are not generally available and often require single cell cloning to identify successful CRISPR-editing events. Here, we describe a novel method relying on acquisition of IL3-independence in Ba/F3 cells to identify sgRNA pairs that generate oncogenic gene rearrangements of the Ret and Ntrk1 tyrosine kinases. The rearrangements were confirmed with PCR, RT-PCR and sequencing and Ba/F3 cells harboring Ret or Ntrk1 rearrangements acquired sensitivity to RET and TRK inhibitors, respectively. Adenoviruses encoding Cas9 and sgRNA pairs inducing the Kif5b-Ret and Trim24-Ret rearrangements were intratracheally instilled into mice and yielded lung adenocarcinomas. A cell line (TR.1) established from a Trim24-Ret positive tumor exhibited high in vitro sensitivity to the RET inhibitors LOXO-292 and BLU-667 and orthotopic TR.1 cell-derived tumors underwent marked shrinkage upon LOXO-292 treatment. Thus, the method offers an efficient means to validate sgRNAs that successfully target their intended loci for the generation of novel, syngeneic murine oncogene-driven tumor models.
Collapse
Affiliation(s)
- Laura Schubert
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Anh T. Le
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Trista K. Hinz
- Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Andre C. Navarro
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Sarah K. Nelson-Taylor
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Raphael A. Nemenoff
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| | - Lynn E. Heasley
- Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO80045, USA
| | - Robert C. Doebele
- Departments of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045, USA
| |
Collapse
|
11
|
Tang YJ, Shuldiner EG, Karmakar S, Winslow MM. High-Throughput Identification, Modeling, and Analysis of Cancer Driver Genes In Vivo. Cold Spring Harb Perspect Med 2023; 13:a041382. [PMID: 37277208 PMCID: PMC10317066 DOI: 10.1101/cshperspect.a041382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The vast number of genomic and molecular alterations in cancer pose a substantial challenge to uncovering the mechanisms of tumorigenesis and identifying therapeutic targets. High-throughput functional genomic methods in genetically engineered mouse models allow for rapid and systematic investigation of cancer driver genes. In this review, we discuss the basic concepts and tools for multiplexed investigation of functionally important cancer genes in vivo using autochthonous cancer models. Furthermore, we highlight emerging technical advances in the field, potential opportunities for future investigation, and outline a vision for integrating multiplexed genetic perturbations with detailed molecular analyses to advance our understanding of the genetic and molecular basis of cancer.
Collapse
Affiliation(s)
- Yuning J Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Emily G Shuldiner
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Saswati Karmakar
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
12
|
Schubert L, Le AT, Hinz TK, Navarro A, Nelson-Taylor SK, Nemenoff RA, Heasley LE, Doebele RC. A Rapid, Functional sgRNA Screening Method for Generating Murine RET and NTRK1 Fusion Oncogenes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535912. [PMID: 37066347 PMCID: PMC10104125 DOI: 10.1101/2023.04.06.535912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
CRISPR/Cas9 gene editing technology is an indispensable and powerful tool in the field of cancer biology. To conduct successful CRISPR-based experiments, it is crucial that sgRNAs generate their designed alterations. Here, we describe a simple and efficient sgRNA screening method for validating sgRNAs that generate oncogenic gene rearrangements. We used IL3-independence in Ba/F3 cells as an assay to identify sgRNA pairs that generate fusion oncogenes involving the Ret and Ntrk1 tyrosine kinases. We confirmed these rearrangements with PCR or RT-PCR as well as sequencing. Ba/F3 cells harboring Ret or Ntrk1 rearrangements acquired sensitivity to RET and TRK inhibitors, respectively. Adenoviruses encoding Cas9 and sgRNAs that catalyze the Kif5b-Ret and Trim24-Ret rearrangements were intratracheally instilled into mice and yielded lung adenocarcinomas. A cell line (TR.1) was established from a Trim24-Ret positive tumor that exhibited high in vitro sensitivity to RET-specific TKIs. Moreover, orthotopic transplantation of TR.1 cells into the left lung yielded well-defined tumors that shrank in response to LOXO-292 treatment. The method offers an efficient means to validate sgRNAs that successfully target their intended loci for the generation of novel murine oncogene-driven tumor models.
Collapse
Affiliation(s)
- Laura Schubert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anh T. Le
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Trista K. Hinz
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Andre Navarro
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Raphael A. Nemenoff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Eastern Colorado VA Healthcare System, Rocky Mountain Regional VA Medical Center, Aurora, CO
| | - Robert C. Doebele
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
13
|
Yousefi M, Andrejka L, Winslow MM, Petrov DA, Boross G. Fully accessible fitness landscape of oncogene-negative lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526178. [PMID: 36778226 PMCID: PMC9915475 DOI: 10.1101/2023.01.30.526178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cancer genomes are almost invariably complex with genomic alterations cooperating during each step of carcinogenesis. In cancers that lack a single dominant oncogene mutation, cooperation between the inactivation of multiple tumor suppressor genes can drive tumor initiation and growth. Here, we shed light on how the sequential acquisition of genomic alterations generates oncogene-negative lung tumors. We couple tumor barcoding with combinatorial and multiplexed somatic genome editing to characterize the fitness landscapes of three tumor suppressor genes NF1, RASA1, and PTEN, the inactivation of which jointly drives oncogene-negative lung adenocarcinoma initiation and growth. The fitness landscape was surprisingly accessible, with each additional mutation leading to growth advantage. Furthermore, the fitness landscapes remained fully accessible across backgrounds with additional tumor suppressor mutations. These results suggest that while predicting cancer evolution will be challenging, acquiring the multiple alterations required for the growth of oncogene-negative tumors can be facilitated by the lack of constraints on mutational order.
Collapse
|