1
|
Zhang Z, Wang R, Chen L. Drug Delivery System Targeting Cancer-Associated Fibroblast for Improving Immunotherapy. Int J Nanomedicine 2025; 20:483-503. [PMID: 39816375 PMCID: PMC11734509 DOI: 10.2147/ijn.s500591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of non-malignant cells that play a crucial role in the tumor microenvironment, increasingly recognized as key contributors to cancer progression, metastasis, and treatment resistance. So, targeting CAFs has always been considered an important part of cancer immunotherapy. However, targeting CAFs to improve the efficacy of tumor therapy is currently a major challenge. Nanomaterials show their unique advantages in the whole process. At present, nanomaterials have achieved significant accomplishments in medical applications, particularly in the field of cancer-targeted therapy, showing enormous potential. It has been confirmed that nanomaterials can not only directly target CAFs, but also interact with the tumor microenvironment (TME) and immune cells to affect tumorigenesis. As for the cancer treatment, nanomaterials could enhance the therapeutic effect in many ways. Therefore, in this review, we first summarized the current understanding of the complex interactions between CAFs and TME, immune cells, and tumor cells. Next, we discussed common nanomaterials in modern medicine and their respective impacts on the TME, CAFs, and interactions with tumors. Finally, we focus on the application of nano drug delivery system targeting CAFs in cancer therapy.
Collapse
Affiliation(s)
- Zhongsong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Rong Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610550, People’s Republic of China
| |
Collapse
|
2
|
Tian H, Wang W, Liang S, Ding J, Hua D. From darkness to light: Targeting CAFs as a new potential strategy for cancer treatment. Int Immunopharmacol 2024; 143:113482. [PMID: 39476569 DOI: 10.1016/j.intimp.2024.113482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
Cancer-associated fibroblasts (CAFs), which are the most frequent stromal cells in the tumor microenvironment (TME), play a key role in the metastasis of tumor cells. Generally speaking, CAFs in cooperation with tumor cells can secrete various cytokines, proteins, growth factors, and metabolites to promote angiogenesis, mediate immune escape of tumor cells, enhance endothelial-to-mesenchymal transition, stimulate extracellular matrix remodeling, and preserve tumor cell stemness. These activities of CAFs provide a favorable exogenous pathway for tumor progression and metastasis, and a microenvironment that allows rapid growth of tumor cells, which always lead to poor prognosis for patients. More importantly, it seems that targeting CAFs is also a potential precision therapeutic strategy in clinical practice. Hence, this review outlines the origin of CAFs, the relationship between CAFs and cancer metastasis, and targeting CAFs as a potential strategy for cancer patients, which could give some inspirations for cancer treatment in clinic.
Collapse
Affiliation(s)
- Haixia Tian
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Weijing Wang
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shuai Liang
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Junli Ding
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Dong Hua
- Department of Oncology, The Affliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
3
|
Schirizzi A, Donghia R, De Nunzio V, Renna N, Centonze M, De Leonardis G, Lorusso V, Fantasia A, Coletta S, Stabile D, Ferro A, Notarnicola M, Ricci AD, Lotesoriere C, Lahn M, D'Alessandro R, Giannelli G. High levels of autotaxin and lysophosphatidic acid predict poor outcome in treatment of resectable gastric carcinoma. Eur J Cancer 2024; 213:115066. [PMID: 39426076 DOI: 10.1016/j.ejca.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Although early-stage gastric cancer is a candidate for curative surgical resection, the absence of specific early symptoms results in a late diagnosis and consequently most patients present advanced or metastatic disease. Identifying noveland tumor-specific biomarkers is needed to increase early detection and match patients to the appropriate treatment. The present study focused on the possible prognostic role of Ectonucleotide Pyrophosphatase/Phosphodiesterase 2 (ENPP2)/Autotaxin (ATX) and lysophosphatidic acid (LPA) in Gastro-Esophageal Adenocarcinoma (GEA). High levels of ATX/LPA are associated with several malignancies including gastrointestinal tumors. METHODS Using a bioinformatics analysis, the incidence of ENPP2 mutations together with its expression in the tumor tissues and the correlation between the presence of mutations and the survival rate were examined in databases of GEA patients. Furthermore, circulating levels of ATX and LPA were studied retrospectively and longitudinally both in patients receiving frontal surgery and in patients receiving preoperative chemotherapy. RESULTS Overall findings suggested that although ENPP2 mutations occur at low incidence, their presence was associated with a particular poor Overall Survival (OS). Furthermore, removal of the tumour by surgery resulted in a decrease in serum ATX and LPA levels within five days, regardless of any previous chemotherapy. Basal circulating ATX were associated with the aggressive diffuse GEA and could be considered of negative prognostic value, mainly in combination models with circulating Carcino-Embryonic Antigen (CEA). CONCLUSIONS Based on these observations, clinical trials with ATX-targeted drugs and standard chemotherapy regimens may benefit from selecting GEA patients based on their levels of ATX, LPA and CEA.
Collapse
Affiliation(s)
- Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Valentina De Nunzio
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Natasha Renna
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Matteo Centonze
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Vincenza Lorusso
- Clinical Trial Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Alessia Fantasia
- Clinical Trial Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Sergio Coletta
- Core Facility Biobank, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Dolores Stabile
- Core Facility Biobank, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Annalisa Ferro
- Clinical Pathology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Maria Notarnicola
- Clinical Pathology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Angela D Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Claudio Lotesoriere
- Medical Oncology Unit, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Michael Lahn
- iOnctura Clinical Research, Avenue Secheron 15, 1202 Geneva, Switzerland.
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS "S. de Bellis" Research Hospital, 70013 Castellana Grotte, BA, Italy.
| |
Collapse
|
4
|
Espona-Fiedler M, Patthey C, Lindblad S, Sarró I, Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem Pharmacol 2024; 229:116492. [PMID: 39153553 DOI: 10.1016/j.bcp.2024.116492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is predicted to become the second leading cause of cancer deaths by 2030 and this is mostly due to therapy failure. Limited treatment options and resistance to standard-of-care (SoC) therapies makes PDAC one of the cancer types with poorest prognosis and survival rates [1,2]. Pancreatic tumors are renowned for their poor response to therapeutic interventions including targeted therapies, chemotherapy and radiotherapy. Herein, we review hallmarks of therapy resistance in PDAC and current strategies aiming to tackle escape mechanisms and to re-sensitize cancer cells to therapy. We will further provide insights on recent advances in the field of drug discovery, nanomedicine, and disease models that are setting the ground for future research.
Collapse
Affiliation(s)
- Margarita Espona-Fiedler
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| | - Cedric Patthey
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden
| | - Stina Lindblad
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden
| | - Irina Sarró
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Universitat de Barcelona, Barcelona, Spain
| | - Daniel Öhlund
- Department of Diagnostic and Intervention, Umeå Universitet, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå Universitet, Umeå, Sweden.
| |
Collapse
|
5
|
Pietrobono S, Bertolini M, De Vita V, Sabbadini F, Fazzini F, Frusteri C, Scarlato E, Mangiameli D, Quinzii A, Casalino S, Zecchetto C, Merz V, Melisi D. CCL3 predicts exceptional response to TGFβ inhibition in basal-like pancreatic cancer enriched in LIF-producing macrophages. NPJ Precis Oncol 2024; 8:246. [PMID: 39478186 PMCID: PMC11525688 DOI: 10.1038/s41698-024-00742-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
The TGFβ receptor inhibitor galunisertib showed promising efficacy in patients with pancreatic ductal adenocarcinoma (PDAC) in the phase 2 H9H-MC-JBAJ study. Identifying biomarkers for this treatment remains essential. Baseline plasma levels of chemokine CCL3 were integrated with clinical outcomes in PDAC patients treated with galunisertib plus gemcitabine (n = 104) or placebo plus gemcitabine (n = 52). High CCL3 was a poor prognostic factor in the placebo group (mOS 3.6 vs. 10.1 months; p < 0.01) but a positive predictor for galunisertib (mOS 9.2 vs. 3.6 months; p < 0.01). Mechanistically, tumor-derived CCL3 activates Tgfβ signaling in macrophages, inducing their M2 phenotype and Lif secretion, sustaining a mesenchymal/basal-like ecotype. TGFβ inhibition redirects macrophage polarization to M1, reducing Lif and shifting PDAC cells to a more epithelial/classical phenotype, improving gemcitabine sensitivity. This study supports exploring TGFβ-targeting agents in PDAC with a mesenchymal/basal-like ecotype driven by high CCL3 levels.
Collapse
Affiliation(s)
- Silvia Pietrobono
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Monica Bertolini
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Veronica De Vita
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Fabio Sabbadini
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Federica Fazzini
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Cristina Frusteri
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Enza Scarlato
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Domenico Mangiameli
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Alberto Quinzii
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Simona Casalino
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Camilla Zecchetto
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Valeria Merz
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy
| | - Davide Melisi
- Department of Medicine, Digestive Molecular Clinical Oncology Research Unit, University of Verona, Verona, Italy.
- Investigational Cancer Therapeutics Clinical Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| |
Collapse
|
6
|
Benesch MG, Wu R, Rog CJ, Brindley DN, Ishikawa T, Takabe K. Insights into autotaxin- and lysophosphatidate-mediated signaling in the pancreatic ductal adenocarcinoma tumor microenvironment: a survey of pathway gene expression. Am J Cancer Res 2024; 14:4004-4027. [PMID: 39267662 PMCID: PMC11387861 DOI: 10.62347/kqnw1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/07/2024] [Indexed: 09/15/2024] Open
Abstract
Lysophosphatidate (LPA)-mediated signaling is a vital component of physiological wound healing, but the pathway is subverted to mediate chronic inflammatory signaling in many pathologies, including cancers. LPA, as an extracellular signaling molecule, is produced by the enzyme autotaxin (ATX, gene name ENPP2) and signals through six LPA receptors (LPARs). Its signaling is terminated by turnover via the ecto-activity of three lipid phosphate phosphatases (LPPs, gene names PLPP1-3). Many pharmacological developments against the LPA-signaling axis are underway, primarily against ATX. An ATX inhibitor against pancreatic ductal adenocarcinoma (PDAC), a very aggressive disease with limited systemic therapeutic options, is currently in clinical trials, and represents the first in-class drug against LPA signaling in cancers. In the present study, we surveyed the expression of ATX, LPARs, and LPPs in human PDACs and their clinical outcomes in two large independent cohorts, the Cancer Genome Atlas (TCGA) and GSE21501. Correlation among gene expressions, biological function and the cell composition of the tumor microenvironment were analysed using gene set enrichment analysis and cell cyber-sorting with xCell. ENPP2, LPAR1, LPAR4, LPAR5, LPAR6, PLPP1, and PLPP2 were significantly elevated in PDACs compared to normal pancreatic tissue, whereas LPAR2, LPAR3, and PLPP3 where downregulated (all P≤0.003). Only ENPP2 demonstrated survival differences, with overall survival favoring ENPP2-high patients (hazard ration 0.5-0.9). ENPP2 was also the only gene with enriched gene patterns for inflammatory and tissue repair gene sets. Epithelial (cancer) cells had increased LPAR2, LPAR5 and PLPP2 expression, and decreased ENPP2, LPAR1, PLPP1, and PLPP3 gene expression (all P<0.02). Tumor fibroblasts had increased ENPP2, LPAR2, LPAR4, PLPP1, and PLPP3 expression and decreased LPAR2, LPAR5, and PLPP2 expression in both cohorts (all P≤0.01). Immune cell populations were not well correlated to gene expression in PDACs, but across both cohorts, cytolytic scores were increased in high-expressing ENPP2, LPAR1, LPAR6, PLPP1, and PLPP3 tumors (P<0.01). Overall, in PDACs, ENPP2 may switch from an anti-to-pro tumor promoting gene with disease progression. LPAR2 and PLPP2 inhibition are also predicted to have potential therapeutic utility. Future multi-omics investigations are necessarily to validate which LPA signaling components are high-value candidates for pharmacological manipulation in PDAC treatment.
Collapse
Affiliation(s)
- Matthew Gk Benesch
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
| | - Rongrong Wu
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
| | - Colin J Rog
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
| | - David N Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta Edmonton, Alberta T6G 2S7, Canada
| | - Takashi Ishikawa
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
| | - Kazuaki Takabe
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center Buffalo, New York 14263, USA
- Department of Breast Surgery and Oncology, Tokyo Medical University Tokyo 160-8402, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine Yokohama 236-0004, Japan
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences Niigata 951-8520, Japan
- Department of Breast Surgery, Fukushima Medical University School of Medicine Fukushima 960-1295, Japan
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, State University of New York Buffalo, New York 14263, USA
| |
Collapse
|
7
|
Karalis T, Poulogiannis G. The Emerging Role of LPA as an Oncometabolite. Cells 2024; 13:629. [PMID: 38607068 PMCID: PMC11011573 DOI: 10.3390/cells13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Signalling and Cancer Metabolism Laboratory, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
8
|
Matas-Rico E, Moolenaar WH. Tumor immune escape by autotaxin: keeping eosinophils at bay. Trends Cancer 2024; 10:283-285. [PMID: 38494373 DOI: 10.1016/j.trecan.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Secreted autotaxin (ATX) promotes tumor progression by producing the pleiotropic lipid mediator lysophosphatidic acid (LPA). In a recent Nature Cancer paper, Bhattacharyya et al. show that ATX/LPA signaling suppresses CCL11-driven infiltration of eosinophils into the pancreatic tumor microenvironment to facilitate tumor progression, thus revealing a new ATX-mediated immune escape mechanism and highlighting the antitumor potential of eosinophils.
Collapse
Affiliation(s)
- Elisa Matas-Rico
- Department of Cell Biology, Genetics and Physiology, University of Málaga, Málaga, Spain
| | - Wouter H Moolenaar
- Division of Biochemistry, the Netherlands Cancer Institute, Plesmanlaan, Amsterdam.
| |
Collapse
|
9
|
Vít O, Petrák J. Autotaxin and Lysophosphatidic Acid Signalling: the Pleiotropic Regulatory Network in Cancer. Folia Biol (Praha) 2023; 69:149-162. [PMID: 38583176 DOI: 10.14712/fb2023069050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autotaxin, also known as ecto-nucleotide pyrophosphatase/phosphodiesterase family member 2, is a secreted glycoprotein that plays multiple roles in human physiology and cancer pathology. This protein, by converting lysophosphatidylcholine into lysophosphatidic acid, initiates a complex signalling cascade with significant biological implications. The article outlines the autotaxin gene and protein structure, expression regulation and physiological functions, but focuses mainly on the role of autotaxin in cancer development and progression. Autotaxin and lysophosphatidic acid signalling influence several aspects of cancer, including cell proliferation, migration, metastasis, therapy resistance, and interactions with the immune system. The potential of autotaxin as a diagnostic biomarker and promising drug target is also examined.
Collapse
Affiliation(s)
- Ondřej Vít
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| | - Jiří Petrák
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|