1
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Arantes LMRB, Silva-Oliveira RJ, de Carvalho AC, Melendez ME, Sorroche BP, de Jesus Teixeira R, Tostes K, Palmero EI, Reis RM, Carvalho AL. Unveiling the role of MGMT and DAPK hypermethylation in response to anti-EGFR agents: Molecular insights for advancing HNSCC treatment. Head Neck 2024; 46:461-472. [PMID: 38095042 DOI: 10.1002/hed.27602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is frequently activated in head and neck squamous cell carcinoma (HNSCC) and serves as a valuable target for therapy. Despite the availability of the EGFR inhibitors Cetuximab, Afatinib, and Allitinib, there are limited predictive markers for their response. Understanding molecular aberrations in HNSCC could facilitate the identification of new strategies for patient clinical and biological classification, offering novel therapeutic avenues. METHODS We assessed CCNA1, DCC, MGMT, CDKN2A/p16, and DAPK methylation status in HNSCC cell lines and their association with anti-EGFR treatment response. RESULTS MGMT methylation status displayed high sensitivity and specificity in distinguishing sensitive and resistant HNSCC cell lines to Afatinib (AUC = 0.955) and Allitinib (AUC = 0.935). Moreover, DAPK methylation status predicted response to Allitinib with high accuracy (AUC = 0.852), indicating their putative predictive biomarker roles. CONCLUSION These findings hold promise for the development of more personalized and effective treatment approaches for HNSCC patients.
Collapse
Affiliation(s)
| | - Renato José Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, Brazil
| | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
- Molecular Carcinogenesis Program, National Cancer Institute - INCA, Rio de Janeiro, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
| | | | - Katiane Tostes
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
| | - Edenir Inez Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
- Department of Genetics, Brazilian National Cancer Institute - INCA, Rio de Janeiro, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
- Life and Health Sciences Research Institute - ICVS, Health Sciences School, University of Minho - Braga, Braga, Portugal
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
| |
Collapse
|
4
|
Strzelczyk JK, Gołąbek K, Cuber P, Krakowczyk Ł, Owczarek AJ, Fronczek M, Choręża P, Hudziec E, Ostrowska Z. Comparison of Selected Protein Levels in Tumour and Surgical Margin in a Group of Patients with Oral Cavity Cancer. Biochem Genet 2017; 55:322-334. [DOI: 10.1007/s10528-017-9799-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/03/2017] [Indexed: 12/20/2022]
|
5
|
Cai F, Xiao X, Niu X, Shi H, Zhong Y. Aberrant Methylation of MGMT Promoter in HNSCC: A Meta-Analysis. PLoS One 2016; 11:e0163534. [PMID: 27657735 PMCID: PMC5033341 DOI: 10.1371/journal.pone.0163534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/09/2016] [Indexed: 01/20/2023] Open
Abstract
Background O6-methylguanine-DNA methyl-transferase (MGMT) gene, a DNA repair gene, plays a critical role in the repair of alkylated DNA adducts that form following exposure to genotoxic agents. MGMT is generally expressed in various tumors, and its function is frequently lost because of hypermethylation in the promoter. The promoter methylation of MGMT has been extensively investigated in head and neck squamous cell carcinoma (HNSCC). However, the association between the promoter methylation of MGMT and HNSCC risk remains inconclusive and inconsistent. Therefore, we performed a meta-analysis to better clarify the association between the promoter methylation of MGMT and HNSCC risk. Methods A systematical search was conducted in PubMed, Web of Science, EMBASE, and Ovid for studies on the association between MGMT promoter methylation and HNSCC. Odds ratio (ORs) and 95% confidence intervals (CI) were calculated to estimate association between MGMT promoter methylation and risk of HNSCC. The meta-regression and subgroup analysis were undertaken to explore the potential sources of heterogeneity. Results Twenty studies with 1,030 cases and 775 controls were finally included in this study. The frequency of MGMT promoter methylation was 46.70% in HNSCC group and 23.23% in the control group. The frequency of MGMT promoter methylation in HNSCC group was significantly higher than the control group (OR = 2.83, 95%CI = 2.25–3.56). Conclusion This meta-analysis indicates that aberrant methylation of MGMT promoter was significantly associated with the risk of HNSCC, and it may be a potential molecular marker for monitoring the disease and may provide new insights to the treatment of HNSCC.
Collapse
Affiliation(s)
- Fucheng Cai
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiyue Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Niu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Shi
- Department of Epidemiology and Biostatistics, and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
6
|
Men NT, Kikuchi K, Furusawa T, Dang-Nguyen TQ, Nakai M, Fukuda A, Noguchi J, Kaneko H, Viet Linh N, Xuan Nguyen B, Tajima A. Expression of DNA repair genes in porcine oocytes before and after fertilization by ICSI using freeze-dried sperm. Anim Sci J 2016; 87:1325-1333. [PMID: 26988944 DOI: 10.1111/asj.12554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/04/2015] [Accepted: 08/19/2015] [Indexed: 11/30/2022]
Abstract
Boar sperm freeze-dried with trehalose showed a protective effect against sperm DNA fragmentation. However, normal fertilization and embryonic development were not improved. Damaged sperm may activate maternal DNA repair genes when injected into oocytes. Therefore, we investigated the expression profile of some DNA repair genes in porcine oocytes after intra-cytoplasmic sperm injection. First, the expression levels of MGMT, UDG, XPC, MSH2, XRCC6 and RAD51 genes that are concerned with different types of DNA repair were examined in in vitro mature (IVM) oocytes injected with ejaculated sperm, or freeze-dried sperm with or without trehalose. Quantitative reverse transcription polymerase chain reaction revealed that expression of six DNA repair genes in the oocytes at 4 h after injection did not differ among the four groups. Next, we investigated the gene expression levels of these genes at different stages of maturation. The relative expression levels of UDG and XPC were significantly up-regulated in mature oocytes compared with earlier stages. Furthermore, there was an increased tendency in relative expression of MSH2 and RAD51. These results suggested two possible mechanisms that messenger RNA of DNA repair genes are either accumulated during IVM to be ready for fertilization or increased expression levels of DNA repair genes in oocytes caused by suboptimal IVM conditions.
Collapse
Affiliation(s)
- Nguyen Thi Men
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan. .,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan. .,Laboratory of Embryo Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Kazuhiro Kikuchi
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Tadashi Furusawa
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | | | - Michiko Nakai
- Genetically Modified Organism Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Atsunori Fukuda
- Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Junko Noguchi
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Hiroyuki Kaneko
- Division of Animal Sciences, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Nguyen Viet Linh
- Laboratory of Embryo Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Bui Xuan Nguyen
- Laboratory of Embryo Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Atsushi Tajima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Lleras RA, Smith RV, Adrien LR, Schlecht NF, Burk RD, Harris TM, Childs G, Prystowsky MB, Belbin TJ. Unique DNA methylation loci distinguish anatomic site and HPV status in head and neck squamous cell carcinoma. Clin Cancer Res 2013; 19:5444-55. [PMID: 23894057 DOI: 10.1158/1078-0432.ccr-12-3280] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE We have used a genome-wide approach to identify novel differentially methylated CpG dinucleotides that are seen in different anatomic sites of head and neck squamous cell carcinoma (HNSCC), as well as those that might be related to HPV status in the oropharynx. EXPERIMENTAL DESIGN We conducted genome-wide DNA methylation profiling of primary tumor samples and corresponding adjacent mucosa from 118 HNSCC patients undergoing treatment at Montefiore Medical Center, Bronx, NY, using the Illumina HumanMethylation27 beadchip. For each matched tissue set, we measured differentially methylated CpG loci using a change in methylation level (M-value). RESULTS When datasets were individually analyzed by anatomic site of the primary tumor, we identified 293 differentially methylated CpG loci in oral cavity squamous cell carcinoma (SCC), 219 differentially methylated CpG loci in laryngeal SCC, and 460 differentially methylated in oropharyngeal SCC. A subset of these differentially methylated CpG loci was common across all anatomic sites of HNSCC. Stratification by HPV status revealed a significantly higher number of differentially methylated CpG loci in HPV+ patients. CONCLUSION Novel epigenetic biomarkers derived from clinical HNSCC specimens can be used as molecular classifiers of this disease, revealing many new avenues of investigation for this disease.
Collapse
Affiliation(s)
- Roberto A Lleras
- Authors' Affiliations: Departments of Pathology; Epidemiology & Population Health; Pediatrics, Microbiology & Immunology; Obstetrics, Gynecology & Women's Health, Albert Einstein College of Medicine; and Department of Otorhinolaryngology-Head and Neck Surgery, Montefiore Medical Center, Medical Arts Pavilion, Bronx, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Martone T, Gillio-Tos A, De Marco L, Fiano V, Maule M, Cavalot A, Garzaro M, Merletti F, Cortesina G. Association Between Hypermethylated Tumor and Paired Surgical Margins in Head and Neck Squamous Cell Carcinomas. Clin Cancer Res 2007; 13:5089-94. [PMID: 17785562 DOI: 10.1158/1078-0432.ccr-07-0119] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Surgical margin status is reported to be a relevant prognostic factor in head and neck squamous cell carcinoma (HNSCC), associated with a high risk of local recurrence. This study examines whether gene-promoter hypermethylation could be detected in HNSCC surgical margins with no histologic evidence of malignancy, and if so, whether it reflects epigenetic events of primary tumors. EXPERIMENTAL DESIGN Promoter methylation status of MGMT, p16, and DAP-K genes was evaluated by methylation-specific PCR in 20 primary HNSCC tumors. Histopathologically negative surgical margins of hypermethylated tumors were collected, and their methylation status compared with the primary tumor status. RESULTS Promoter hypermethylation in at least one of the three tested genes was detected in 65% (13 of 20) of tumors. MGMT was hypermethylated in 50% (10 of 20), DAP-K in 45% (9 of 20), and p16 in 20% (4 of 20) of tumors. Methylation status was analyzed in 35 margins from 11 of 13 patients showing promoter hypermethylation in the tumor tissue. Identical methylation events were seen for at least one gene in primary tumor and surgical margins in 9 of 11 cases (82%). Association was found for gene-specific hypermethylation status in tumors and paired surgical margins, and gene-specific concordance was 63% for MGMT (kappa = 0.24), 90% for DAP-K (kappa = 0.74), and 90% for p16 (kappa = 0.79). CONCLUSIONS Our results support the hypothesis that detection of gene promoter hypermethylation in HNSCC tumor cells-free surgical margins may be a helpful biomarker to identify molecularly altered fields in areas adjacent to the tumor.
Collapse
Affiliation(s)
- Tiziana Martone
- Division of Otorhinolaryngology, Department of Clinical Physiopathology, University of Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Righini CA, de Fraipont F, Timsit JF, Faure C, Brambilla E, Reyt E, Favrot MC. Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin Cancer Res 2007; 13:1179-85. [PMID: 17317827 DOI: 10.1158/1078-0432.ccr-06-2027] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Our goal was to define tumor and saliva gene methylation profile of head and neck squamous cell carcinoma and to evaluate its prognostic significance and its biomarker potential for early detection of relapse. EXPERIMENTAL DESIGN We prospectively analyzed 11 genes by methylation-specific PCR on primary tumors, histologically normal adjacent mucosa, and saliva from 90 French patients at diagnosis and during follow-up as well as on 30 saliva specimens from control-matched patients with nonmalignant head and neck pathology. Five additional genes were analyzed on 50 tumors of the series. RESULTS Methylation of TIMP3, ECAD, p16, MGMT, DAPK, and RASSF1 was the most frequently observed in tumors and paired saliva samples were analyzed at diagnosis, with an excellent agreement between both samples. At least one of these six genes was methylated in >75% of the samples without additional positive samples when other genes were analyzed. Methylation profile was similar in newly diagnosed and second primary cancers. Aberrant methylation was not associated with a worse prognosis. Ninety percent of normal adjacent mucosa and all control saliva samples were negative. Twenty-two patients were followed after treatment; abnormal methylation was detectable in the saliva of five patients few months before clinical and 2-deoxy-2[(18)F]fluoro-d-glucose-positron emission tomography signs of relapse, allowing curable surgery. Saliva samples were negative for the 17 other patients: 16 were in remission and only 1 relapsed. CONCLUSIONS Gene methylation in saliva is a promising biomarker for the follow-up and early detection of still curable relapses of head and neck squamous cell carcinoma patients.
Collapse
Affiliation(s)
- Christian Adrien Righini
- Institut National de la Sante et de la Recherche Medicale/Université Joseph Fourier, La Tronche, France
| | | | | | | | | | | | | |
Collapse
|