1
|
Qin LT, Huang SW, Huang ZG, Dang YW, Fang YY, He J, Niu YT, Lin CX, Wu JY, Wei ZX. Clinical value and potential mechanisms of BUB1B up-regulation in nasopharyngeal carcinoma. BMC Med Genomics 2022; 15:272. [PMID: 36577966 PMCID: PMC9798722 DOI: 10.1186/s12920-022-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has insidious onset, late clinical diagnosis and high recurrence rate, which leads to poor quality of patient life. Therefore, it is necessary to further explore the pathogenesis and therapy targets of NPC. BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) was found to be up-regulated in a variety of cancers, but only two previous study showed that BUB1B was overexpressed in NPC and the sample size was small. The clinical role of BUB1B expression and its underlying mechanism in NPC require more in-depth research. Immunohistochemical samples and public RNA-seq data indicated that BUB1B protein and mRNA expression levels were up-regulated in NPC, and summary receiver operating characteristic curve indicated that BUB1B expression level had a strong ability to distinguish NPC tissues from non-NPC tissues. Gene ontology and Kyoto Encyclopedia of genes and genomes were performed and revealed that BUB1B and its related genes were mainly involved in cell cycle and DNA replication. Protein- Protein Interaction were built to interpret the BUB1B molecular mechanism. Histone deacetylase 2 (HDAC2) could be the upstream regulation factor of BUB1B, which was verified by Chromatin Immunoprecipitation Sequencing samples. In summary, BUB1B was highly expressed in NPC, and HDAC2 may affect cell cycle by regulating BUB1B to promote cancer progression.
Collapse
Affiliation(s)
- Li-Ting Qin
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Si-Wei Huang
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Zhi-Guang Huang
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Yi-Wu Dang
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Ye-Ying Fang
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Juan He
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Yi-Tong Niu
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Cai-Xing Lin
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Ji-Yun Wu
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Zhu-Xin Wei
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| |
Collapse
|
2
|
Taguchi YH, Turki T. A tensor decomposition-based integrated analysis applicable to multiple gene expression profiles without sample matching. Sci Rep 2022; 12:21242. [PMID: 36481877 PMCID: PMC9732005 DOI: 10.1038/s41598-022-25524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
The integrated analysis of multiple gene expression profiles previously measured in distinct studies is problematic since missing both sample matches and common labels prevent their integration in fully data-driven, unsupervised training. In this study, we propose a strategy to enable the integration of multiple gene expression profiles among multiple independent studies with neither labeling nor sample matching using tensor decomposition unsupervised feature extraction. We apply this strategy to Alzheimer's disease (AD)-related gene expression profiles that lack precise correspondence among samples, including AD single-cell RNA sequence (scRNA-seq) data. We were able to select biologically reasonable genes using the integrated analysis. Overall, integrated gene expression profiles can function analogously to prior- and/or transfer-learning strategies in other machine-learning applications. For scRNA-seq, the proposed approach significantly reduces the required computational memory.
Collapse
Affiliation(s)
- Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, 112-8551, Japan.
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Liu PC, Chan C, Huang YH, Chen YJ, Liao SF, Lin YJ, Huang C, Lu SN, Jen CL, Wang LY, Yang HI, Shen CY, Chen CJ, Lee MH. Genetic variants associated with serum alanine aminotransferase levels among patients with hepatitis C virus infection: A genome-wide association study. J Viral Hepat 2021; 28:1265-1273. [PMID: 34003538 DOI: 10.1111/jvh.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 04/17/2021] [Indexed: 12/09/2022]
Abstract
Information on genetic variants associated with elevated serum alanine aminotransferase (ALT) levels remains limited. A genome-wide association study was performed to identify single-nucleotide polymorphisms (SNPs) associated with ALT levels. The ALT-associated SNP was further evaluated for hepatocellular carcinoma (HCC) risk. A cohort of 892 anti-HCV seropositive patients was used for genome-wide SNP array to examine the associations with baseline ALT levels. SNPs <10-5 were further tested for associations with serial ALT levels then validated in 486 anti-HCV seropositives. Multinomial logistic regressions were used to estimate odds ratios (ORs) and 95% confidence intervals of SNPs associated with ALT. The SNP was evaluated for HCC risk by using Cox's proportional hazards models. After quality control, 803 participants with 564,464 SNPs were included in the analysis. Of these, 12 SNPs were associated with ALT (p < 10-5 ). Among the participants, 158 (19.7%) had ALT persistently ≤15 U/L, 327 (40.7%) ever >15 U/L but never >45 U/L, and 318 (39.6%) ever >45 U/L during follow-up. The rs568800 was associated with serial ALT levels, and this was replicated in the external population significantly (p < .05). The A allele (vs C) of rs568800 was associated with ALT >15 U/L but ≤45 U/L and ALT >45 U/L, with the adjusted ORs of 1.41 (1.11-1.78) and 1.86 (1.34-2.60), respectively. The adjusted HRs for HCC were 2.09 (0.90-4.89) for AC and 2.64 (1.13-6.17) for AA (CC as a reference). In conclusion, the rs568800 was associated with serum ALT levels and HCC risk. Clinical utility should be evaluated among patients who have received antivirals.
Collapse
Affiliation(s)
- Po-Chun Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi Chan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Han Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Ju Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Fen Liao
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ju Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Claire Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Nan Lu
- Department of Gastroenterology, Chang-Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chin-Lan Jen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Yu Wang
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Hwai-I Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Gene expression profiles analysis identifies a novel two-gene signature to predict overall survival in diffuse large B-cell lymphoma. Biosci Rep 2019; 39:BSR20181293. [PMID: 30393234 PMCID: PMC6328866 DOI: 10.1042/bsr20181293] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/05/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common hematologic malignancy, however, specific tumor-associated genes and signaling pathways are yet to be deciphered. Differentially expressed genes (DEGs) were computed based on gene expression profiles from GSE32018, GSE56315, and The Cancer Genome Atlas (TCGA) DLBC. Overlapping DEGs were then evaluated for gene ontology (GO), pathways enrichment, DNA methylation, protein–protein interaction (PPI) network analysis as well as survival analysis. Seventy-four up-regulated and 79 down-regulated DEGs were identified. From PPI network analysis, majority of the DEGs were involved in cell cycle, oocyte meiosis, and epithelial-to-mesenchymal transition (EMT) pathways. Six hub genes including CDC20, MELK, PBK, prostaglandin D2 synthase (PTGDS), PCNA, and CDK1 were selected using the Molecular Complex Detection (MCODE). CDC20 and PTGDS were able to predict overall survival (OS) in TCGA DLBC and in an additional independent cohort GSE31312. Furthermore, CDC20 DNA methylation negatively regulated CDC20 expression and was able to predict OS in DLBCL. A two-gene panel consisting of CDC20 and PTGDS had a better prognostic value compared with CDC20 or PTGDS alone in the TCGA cohort (P=0.026 and 0.039). Overall, the present study identified a set of novel genes and pathways that may play a significant role in the initiation and progression of DLBCL. In addition, CDC20 and PTGDS will provide useful guidance for therapeutic applications.
Collapse
|
5
|
Simonetti G, Bruno S, Padella A, Tenti E, Martinelli G. Aneuploidy: Cancer strength or vulnerability? Int J Cancer 2018; 144:8-25. [PMID: 29981145 PMCID: PMC6587540 DOI: 10.1002/ijc.31718] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
Aneuploidy is a very rare and tissue‐specific event in normal conditions, occurring in a low number of brain and liver cells. Its frequency increases in age‐related disorders and is one of the hallmarks of cancer. Aneuploidy has been associated with defects in the spindle assembly checkpoint (SAC). However, the relationship between chromosome number alterations, SAC genes and tumor susceptibility remains unclear. Here, we provide a comprehensive review of SAC gene alterations at genomic and transcriptional level across human cancers and discuss the oncogenic and tumor suppressor functions of aneuploidy. SAC genes are rarely mutated but frequently overexpressed, with a negative prognostic impact on different tumor types. Both increased and decreased SAC gene expression show oncogenic potential in mice. SAC gene upregulation may drive aneuploidization and tumorigenesis through mitotic delay, coupled with additional oncogenic functions outside mitosis. The genomic background and environmental conditions influence the fate of aneuploid cells. Aneuploidy reduces cellular fitness. It induces growth and contact inhibition, mitotic and proteotoxic stress, cell senescence and production of reactive oxygen species. However, aneuploidy confers an evolutionary flexibility by favoring genome and chromosome instability (CIN), cellular adaptation, stem cell‐like properties and immune escape. These properties represent the driving force of aneuploid cancers, especially under conditions of stress and pharmacological pressure, and are currently under investigation as potential therapeutic targets. Indeed, promising results have been obtained from synthetic lethal combinations exploiting CIN, mitotic defects, and aneuploidy‐tolerating mechanisms as cancer vulnerability.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Antonella Padella
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Elena Tenti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
6
|
Bruce JP, Yip K, Bratman SV, Ito E, Liu FF. Nasopharyngeal Cancer: Molecular Landscape. J Clin Oncol 2015; 33:3346-55. [DOI: 10.1200/jco.2015.60.7846] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique epithelial malignancy arising from the superior aspect of the pharyngeal mucosal space, associated with latent Epstein-Barr virus infection in most cases. The capacity to characterize cancer genomes in unprecedented detail is now providing insights into the genesis and molecular underpinnings of this disease. Herein, we provide an overview of the molecular aberrations that likely drive nasopharyngeal tumor development and progression. The contributions of major Epstein-Barr virus–encoded factors, including proteins, small RNAs, and microRNAs, along with their interactions with pathways regulating cell proliferation and survival are highlighted. We review recent analyses that clearly define the role of genetic and epigenetic variations affecting the human genome in NPC. These findings point to the impact of DNA methylation and histone modifications on gene expression programs that promote this malignancy. The molecular interactions that allow NPC cells to evade immune recognition and elimination, which is crucial for the survival of cells expressing potentially immunogenic viral proteins, are also described. Finally, the potential utility of detecting host and viral factors for the diagnosis and prognosis of NPC is discussed. Altogether, the studies summarized herein have greatly expanded our knowledge of the molecular biology of NPC, yet much remains to be uncovered. Emerging techniques for using and analyzing well-annotated biospecimens from patients with NPC will ultimately lead to a greater level of understanding, and enable improvements in precision therapies and clinical outcomes.
Collapse
Affiliation(s)
- Jeff P. Bruce
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Kenneth Yip
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Scott V. Bratman
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Emma Ito
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| | - Fei-Fei Liu
- Jeff P. Bruce, Kenneth Yip, Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University Health Network; and Scott V. Bratman, Emma Ito, and Fei-Fei Liu, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Tulalamba W, Larbcharoensub N, Sirachainan E, Tantiwetrueangdet A, Janvilisri T. Transcriptome meta-analysis reveals dysregulated pathways in nasopharyngeal carcinoma. Tumour Biol 2015; 36:5931-42. [PMID: 25724187 DOI: 10.1007/s13277-015-3268-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/17/2015] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant cancer arising from the epithelial surface of the nasopharynx that mostly appears in advanced stages of the disease, leading to a poor prognosis. To date, a number of mRNA profiling investigations on NPC have been reported in order to identify suitable biomarkers for early detection. However, the results may be specific to each study with distinct sample types. In this study, an integrative meta-analysis of NPC transcriptome data was performed to determine dysregulated pathways, potentially leading to identification of molecular markers. Ten independent NPC gene expression profiling microarray datasets, including 135 samples from NPC cell lines, primary cell lines, and tissues were assimilated into a meta-analysis and cross-validation to identify a cohort of genes that were significantly dysregulated in NPC. Bioinformatics analyses of these genes revealed the significant pathways and individual players involving in cellular metabolism, cell cycle regulation, DNA repair, as well as ErbB pathway. Altogether, we propose that dysregulation of these molecular pathways in NPC might play a role in the NPC pathogenesis, providing clues, which could eventually translate into diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Warut Tulalamba
- Graduate Programme in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | | | | | | |
Collapse
|
8
|
Poon RYC. DNA damage checkpoints in nasopharyngeal carcinoma. Oral Oncol 2014; 50:339-44. [PMID: 24503238 DOI: 10.1016/j.oraloncology.2014.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a highly invasive cancer with poor prognosis. One of the recurring themes of NPC biology and treatments is DNA damage. Epstein-Barr virus infection, which is generally accepted as a key etiological factor for NPC, triggers DNA damage responses. In normal cells, DNA damage checkpoints are able to prevent cell cycle progression following DNA damage and are critical for maintaining genome stability. Main features of the checkpoints include activation of ATM and ATR by sensors of DNA damage, which activates effector kinases CHK1 and CHK2; they in turn targets the CDC25/WEE1-cyclin B1-CDK1 axis to cause G(2) arrest, or the p53-p21(CIP1/WAF1) and pRb pathways to cause G(1) arrest. Significantly, these checkpoints are typically disrupted in NPC cells. While mutations are relatively rare, mechanisms including promoter modifications, miRNAs, and actions of Epstein-Barr virus-encoded proteins such as EBNA3C and LMP1 have been described. Paradoxically, radiation-mediated DNA damage remains the primary treatment of NPC. How dysregulation of the DNA damage checkpoints contribute to NPC tumorigenesis and responses to treatment remain poorly understood. In this review, the current understanding of the molecular mechanisms of the various DNA damage checkpoints and what is known about them in NPC are discussed.
Collapse
Affiliation(s)
- Randy Y C Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| |
Collapse
|
9
|
Fridley BL, Abo R, Tan XL, Jenkins GD, Batzler A, Moyer AM, Biernacka JM, Wang L. Integrative gene set analysis: application to platinum pharmacogenomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:34-41. [PMID: 24199607 PMCID: PMC3903166 DOI: 10.1089/omi.2013.0099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrative genomics has the potential to uncover relevant loci, as clinical outcome and response to chemotherapies are most likely not due to a single gene (or data type) but rather a complex relationship involving genetic variation, mRNA, DNA methylation, and copy number variation. In addition to this complexity, many complex phenotypes are thought to be controlled by the interplay of multiple genes within the same molecular pathway or gene set (GS). To address these two challenges, we propose an integrative gene set analysis approach and apply this strategy to a cisplatin (CDDP) pharmacogenomics study involving lymphoblastoid cell lines for which genome-wide SNP and mRNA expression data was collected. Application of the integrative GS analysis implicated the role of the RNA binding and cytoskeletal part GSs. The genes LMNB1 and CENPF, within the cytoskeletal part GS, were functionally validated with siRNA knockdown experiments, where the knockdown of LMNB1 and CENPF resulted in CDDP resistance in multiple cancer cell lines. This study demonstrates the utility of an integrative GS analysis strategy for detecting novel genes associated with response to cancer therapies, moving closer to tailored therapy decisions for cancer patients.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Chromosomal Proteins, Non-Histone/antagonists & inhibitors
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Cisplatin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Genome, Human
- Genome-Wide Association Study
- Humans
- Lamin Type B/antagonists & inhibitors
- Lamin Type B/genetics
- Lamin Type B/metabolism
- Microfilament Proteins/antagonists & inhibitors
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Multigene Family
- Pharmacogenetics
- Polymorphism, Single Nucleotide
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Transcriptome/drug effects
Collapse
Affiliation(s)
- Brooke L. Fridley
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas
| | - Ryan Abo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xiang-Lin Tan
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gregory D. Jenkins
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Ann M. Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joanna M. Biernacka
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
10
|
Sun Y, Shen S, Tang H, Xiang J, Peng Y, Tang A, Li N, Zhou W, Wang Z, Zhang D, Xiang B, Ge J, Li G, Wu M, Li X. miR-429 identified by dynamic transcriptome analysis is a new candidate biomarker for colorectal cancer prognosis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 18:54-64. [PMID: 24237355 DOI: 10.1089/omi.2012.0132] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is a common malignant gastrointestinal cancer. Efforts for preventive and personalized medicine have intensified in the last decade with attention to novel forms of biomarkers. In the present study, microRNA and genetic analyses were performed in tandem for differential transcriptome profiling between primary tumors with or without nodes or distant metastases. Serial Test Cluster (STC) analysis demonstrated that 20 genes and two microRNAs showed distinctive expression patterns associated with the tumor, node, and metastasis (TNM) stage. The selected target genes were characterized by GO and Pathway analysis. A microRNA-target gene network analysis showed that miR-429 resided in the center of the network, indicating that miR-429 might serve important roles in the development of CRC. Real-time PCR and tissue microarrays showed that miR-429 had a dynamic expression pattern during the CRC progression stage, and was significantly downregulated in stage II and stage III clinical progression. The low expression of miR-429 was correlated with poor prognosis for CRC. Taken together, miR-429 warrant further clinical translation research as a candidate biomarker for CRC prognosis. Additional downstream targets and attendant gene function also need to be discerned to design a sound critical path to personalized medicine for persons susceptible to, or diagnosed with CRC.
Collapse
Affiliation(s)
- Yingnan Sun
- 1 Department of Gastroenterology, The Third Xiangya Hospital, Central South University , Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Song Q, Li Y, Zheng X, Fang Y, Chao Y, Yao K, Zhu X. MTA1 contributes to actin cytoskeleton reorganization and metastasis of nasopharyngeal carcinoma by modulating Rho GTPases and Hedgehog signaling. Int J Biochem Cell Biol 2013; 45:1439-46. [PMID: 23618874 DOI: 10.1016/j.biocel.2013.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is prone to appearing regional lymph node and distant metastasis. And its underlying mechanism is unclear. Recent study suggests that overexpression of metastasis-associated gene 1 (MTA1) was independently associated with poorer distant metastasis-free survival in NPC. However, it is still lack of direct evidence that MTA1 is responsible for aggressive phenotypes of NPC. Using stably transfected MTA1 knockdown or overexpression cells, we discovered the function of MTA1 in actin cytoskeleton reorganization and metastasis processing of NPC in this study. For the first time, our data demonstrate two tumor relevant molecular mechanisms, i.e. Rho GTPases and Hedgehog signaling both contribute to the effect of MTA1 on the aggressive phenotypes of NPC cells. In summary, the novel findings in this work provide further insight into the function of MTA1 and the molecular mechanism in the progression of NPC. Our results indicate that MTA1 might serve as a potential therapeutic target for advanced NPC.
Collapse
Affiliation(s)
- Qingcui Song
- Cancer Research Institute, Key Lab for Transcriptomics and Proteomics of Human Fatal Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Lambrou GI, Adamaki M, Delakas D, Spandidos DA, Vlahopoulos S, Zaravinos A. Gene expression is highly correlated on the chromosome level in urinary bladder cancer. Cell Cycle 2013; 12:1544-1559. [PMID: 23624844 PMCID: PMC3680534 DOI: 10.4161/cc.24673] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/19/2013] [Accepted: 04/11/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Chromosome correlation maps display correlations between gene expression patterns on the same chromosome. Our goal was to map the genes on chromosome regions and to identify correlations through their location on chromosome regions. MATERIALS AND METHODS Following microarray analysis we used Ingenuity Pathway Analysis (IPA) to construct gene networks of the co-deregulated genes in bladder cancer. Chromosome mapping, mathematical modeling and data simulations were performed using the WebGestalt and Matlab(®) softwares. RESULTS The top deregulated molecules among 129 bladder cancer samples were implicated in the PI3K/AKT signaling, cell cycle, Myc-mediated apoptosis signaling and ERK5 signaling pathways. Their most prominent molecular and cellular functions were related to cell cycle, cell death, gene expression, molecular transport and cellular growth and proliferation. Chromosome correlation maps allowed us to detect significantly co-expressed genes along the chromosomes. We identified strong correlations among tumors of Tα-grade 1, as well as for those of Tα-grade 2, in chromosomes 1, 2, 3, 7, 12 and 19. Chromosomal domains of gene co-expression were revealed for the normal tissues, as well. The expression data were further simulated, exhibiting an excellent fit (0.7 < R(2) < 0.9). The simulations revealed that along the different samples, genes on same chromosomes are expressed in a similar manner. CONCLUSIONS Gene expression is highly correlated on the chromosome level. Chromosome correlation maps of gene expression signatures can provide further information on gene regulatory mechanisms. Gene expression data can be simulated using polynomial functions.
Collapse
Affiliation(s)
- George I. Lambrou
- First Department of Pediatrics; University of Athens; Choremeio Research Laboratory; Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics; University of Athens; Choremeio Research Laboratory; Athens, Greece
| | - Dimitris Delakas
- Department of Urology; Asklipieio General Hospital; Athens, Greece
| | | | - Spyros Vlahopoulos
- First Department of Pediatrics; University of Athens; Choremeio Research Laboratory; Athens, Greece
| | - Apostolos Zaravinos
- Laboratory of Clinical Virology; Medical School; University of Crete; Crete, Greece
| |
Collapse
|
13
|
Krikelis D, Bobos M, Karayannopoulou G, Resiga L, Chrysafi S, Samantas E, Andreopoulos D, Vassiliou V, Ciuleanu E, Fountzilas G. Expression profiling of 21 biomolecules in locally advanced nasopharyngeal carcinomas of Caucasian patients. BMC Clin Pathol 2013; 13:1. [PMID: 23360534 PMCID: PMC3563444 DOI: 10.1186/1472-6890-13-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 01/24/2013] [Indexed: 12/28/2022] Open
Abstract
Background Since scarce data exist on the pathogenesis of nasopharyngeal carcinoma in Caucasian patients, we attempted to elucidate the responsible molecular pathways in this patient population. Methods Formalin-fixed paraffin-embedded tumor tissue samples from 107 patients, diagnosed with locally-advanced nasopharyngeal carcinoma and treated with chemotherapy or chemo-radiotherapy, were analyzed by immunohistochemistry for the expression of the following proteins: E-cadherin, P-cadherin, Fascin-1, Cyclin D1, COX-2, EGFR, VEGF-A, VEGF-C, VEGFR-2, VEGFR-3, ERCC1, p53, p63, Ki67, MAPT, phospho-p44/42MAPK, PTEN, phospho-AKT, phospho-mTOR, and phospho-GSK-3β. EBER status was assessed by in situ hybridization. The majority of the cases were included in tissue microarray. All stains were performed and assessed centrally by two pathologists. The median follow-up time was 76.8 (42.3 – 99.2) months. Results Biomolecules expressed in >90% of cases were: p53, COX-2, P-cadherin, EBER, phospho-GSK-3β, and Fascin-1. WHO II+III tumors were more frequently EBER & PTEN positive and VEGF-A negative. Advanced age was significantly associated with positive phospho-GSK-3β and ERCC1 expression; male gender with positive phospho-AKT and phospho-p44/42MAPK; and worse performance status (1 or 2) with negative Ki67, ERCC1, PTEN, and phospho-mTOR expression. Earlier disease stage was closely associated with p63, MAPT, PTEN, and Cyclin D1 positivity. Univariate Cox regression analysis highlighted Cyclin D1 as a negative prognostic factor for disease-free survival (p=0.034) and EBER as a positive one for overall survival (p=0.048). In multivariate analysis, advanced age and stage, poor performance status, and positive ERCC1 emerged as predictors of worse disease-free and overall survival, as opposed to positive phospho-mTOR. Clustering analysis defined two protein-expression groups being predictive of better overall survival (p=0.043). Conclusions Our study is the first to examine the activation and interaction of established biomolecules and signaling pathways in Caucasian NPC patients in an effort to reveal new therapeutic targets.
Collapse
Affiliation(s)
- Dimitrios Krikelis
- Department of Medical Oncology "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Ring Road of Thessaloniki, Nea Efkarpia, Thessaloniki, PC, 56403, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Georgia Karayannopoulou
- Department of Pathology, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Liliana Resiga
- Department of Pathology, "Ion Chiricuta" Cancer Institute, Cluj, Romania
| | - Sofia Chrysafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research, Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Epaminontas Samantas
- Third Department of Medical Oncology, "Agii Anargiri" Cancer Hospital, Athens, Greece
| | | | - Vassilios Vassiliou
- Department of Radiation Oncology, Bank of Cyprus Oncology Centre, Nicosia, Cyprus
| | - Elisabeta Ciuleanu
- Department of Pathology, "Ion Chiricuta" Cancer Institute, Cluj, Romania
| | - George Fountzilas
- Department of Medical Oncology "Papageorgiou" Hospital, Aristotle University of Thessaloniki School of Medicine, Ring Road of Thessaloniki, Nea Efkarpia, Thessaloniki, PC, 56403, Greece
| |
Collapse
|
14
|
Amiano NO, Costa MJ, Reiteri RM, Payés C, Guerrieri D, Tateosian NL, Sánchez ML, Maffia PC, Diament M, Karas R, Orqueda A, Rizzo M, Alaniz L, Mazzolini G, Klein S, Sallenave JM, Chuluyan HE. Anti-tumor effect of SLPI on mammary but not colon tumor growth. J Cell Physiol 2013; 228:469-75. [PMID: 22767220 DOI: 10.1002/jcp.24153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that was related to cancer development and metastasis dissemination on several types of tumors. However, it is not known the effect of SLPI on mammary and colon tumors. The aim of this study was to examine the effect of SLPI on mammary and colon tumor growth. The effect of SLPI was tested on in vitro cell apoptosis and in vivo tumor growth experiments. SLPI over-expressing human and murine mammary and colon tumor cells were generated by gene transfection. The administration of murine mammary tumor cells over-expressing high levels of SLPI did not develop tumors in mice. On the contrary, the administration of murine colon tumor cells over-expressing SLPI, developed faster tumors than control cells. Intratumoral, but not intraperitoneal administration of SLPI, delayed the growth of tumors and increased the survival of mammary but not colon tumor bearing mice. In vitro culture of mammary tumor cell lines treated with SLPI, and SLPI producer clones were more prone to apoptosis than control cells, mainly under serum deprivation culture conditions. Herein we demonstrated that SLPI induces the apoptosis of mammary tumor cells in vitro and decreases the mammary but not colon tumor growth in vivo. Therefore, SLPI may be a new potential therapeutic tool for certain tumors, such as mammary tumors.
Collapse
Affiliation(s)
- Nicolás O Amiano
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|