1
|
Gutierrez F, Murphy QM, Swartwout BK, Read KA, Edwards MR, Abdelhamid L, Cabana-Puig X, Testerman JC, Xu T, Lu R, Amin P, Cecere TE, Reilly CM, Oestreich KJ, Ciupe SM, Luo XM. TCDD and CH223191 Alter T Cell Balance but Fail to Induce Anti-Inflammatory Response in Adult Lupus Mice. Immunohorizons 2024; 8:172-181. [PMID: 38353996 PMCID: PMC10916358 DOI: 10.4049/immunohorizons.2300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Aryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus. The effects of TCDD on lupus in adults with pre-existing autoimmunity have not been described. We present novel evidence that AhR stimulation by TCDD alters T cell responses but fails to impact lupus-like disease using an adult mouse model. Interestingly, AhR antagonist CH223191 also changed T cell balance in our model. We next developed a conceptual framework for identifying cellular and molecular factors that contribute to physiological outcomes in lupus and created models that describe cytokine dynamics that were fed into a system of differential equations to predict the kinetics of T follicular helper (Tfh) and regulatory T (Treg) cell populations. The model predicted that Tfh cells expanded to larger values following TCDD exposure compared with vehicle and CH223191. Following the initial elevation, both Tfh and Treg cell populations continuously decayed over time. A function based on the ratio of predicted Treg/Tfh cells showed that Treg cells exceed Tfh cells in all groups, with TCDD and CH223191 showing lower Treg/Tfh cell ratios than the vehicle and that the ratio is relatively constant over time. We conclude that AhR ligands did not induce an anti-inflammatory response to attenuate autoimmunity in adult lupus mice. This study challenges the dogma that TCDD supports an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Fernando Gutierrez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Quiyana M. Murphy
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Brianna K. Swartwout
- Translational Biology Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Roanoke, VA
| | - Kaitlin A. Read
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Michael R. Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Leila Abdelhamid
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xavier Cabana-Puig
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - James C. Testerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Tian Xu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Ran Lu
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Pavly Amin
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Christopher M. Reilly
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Blacksburg, VA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, Ohio State University College of Medicine, Columbus, OH
| | - Stanca M. Ciupe
- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Xin M. Luo
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
2
|
Zhao Y, Meijer J, Walker DI, Kim J, Portengen L, Jones DP, Saberi Hosnijeh F, Vlaanderen J, Vermeulen R. Dioxin(-like)-Related Biological Effects through Integrated Chemical-wide and Metabolome-wide Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:258-268. [PMID: 38149779 PMCID: PMC10785760 DOI: 10.1021/acs.est.3c07588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Dioxin(-like) exposures are linked to adverse health effects, including cancer. However, metabolic alterations induced by these chemicals remain largely unknown. Beyond known dioxin(-like) compounds, we leveraged a chemical-wide approach to assess chlorinated co-exposures and parent compound products [termed dioxin(-like)-related compounds] among 137 occupational workers. Endogenous metabolites were profiled by untargeted metabolomics, namely, reversed-phase chromatography with negative electrospray ionization (C18-negative) and hydrophilic interaction liquid chromatography with positive electrospray ionization (HILIC-positive). We performed a metabolome-wide association study to select dioxin(-like) associated metabolic features using a 20% false discovery rate threshold. Metabolic features were then characterized by pathway enrichment analyses. There are no significant features associated with polychlorinated dibenzo-p-dioxins (PCDDs), a subgroup of known dioxin(-like) compounds. However, 3,110 C18-negative and 2,894 HILIC-positive features were associated with at least one of the PCDD-related compounds. Abundant metabolic changes were also observed for polychlorinated dibenzofuran-related and polychlorinated biphenyl-related compounds. These metabolic features were primarily enriched in pathways of amino acids, lipid and fatty acids, carbohydrates, cofactors, and nucleotides. Our study highlights the potential of chemical-wide analysis for comprehensive exposure assessment beyond targeted chemicals. Coupled with advanced endogenous metabolomics, this approach allows for an in-depth exploration of metabolic alterations induced by environmental chemicals.
Collapse
Affiliation(s)
- Yujia Zhao
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Jeroen Meijer
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
- Department
Environment & Health, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Douglas I. Walker
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Juni Kim
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Lützen Portengen
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Dean P. Jones
- Division
of Pulmonary, Allergy, Critical Care and Sleep Medicine, School of
Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Fatemeh Saberi Hosnijeh
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Jelle Vlaanderen
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
| | - Roel Vermeulen
- Institute
for Risk Assessment Sciences, Utrecht University, Utrecht 3584 CM, The Netherlands
- Julius
Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
3
|
Saberi Hosnijeh F, Kolijn PM, Casabonne D, Nieters A, Solans M, Naudin S, Ferrari P, Mckay JD, Weiderpass E, Perduca V, Besson C, Mancini FR, Masala G, Krogh V, Ricceri F, Huerta JM, Petrova D, Sala N, Trichopoulou A, Karakatsani A, La Vecchia C, Kaaks R, Canzian F, Aune D, Boeing H, Schulze MB, Perez-Cornago A, Langerak AW, van der Velden VHJ, Vermeulen R. Mediating effect of soluble B-cell activation immune markers on the association between anthropometric and lifestyle factors and lymphoma development. Sci Rep 2020; 10:13814. [PMID: 32796953 PMCID: PMC7429856 DOI: 10.1038/s41598-020-70790-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Sustained B-cell activation is an important mechanism contributing to B-cell lymphoma (BCL). We aimed to validate four previously reported B-cell activation markers predictive of BCL risk (sCD23, sCD27, sCD30, and CXCL13) and to examine their possible mediating effects on the association between anthropometric and lifestyle factors and major BCL subtypes. Pre-diagnostic serum levels were measured for 517 BCL cases and 525 controls in a nested case-control study. The odds ratios of BCL were 6.2 in the highest versus lowest quartile for sCD23, 2.6 for sCD30, 4.2 for sCD27, and 2.6 for CXCL13. Higher levels of all markers were associated with increased risk of chronic lymphocytic leukemia (CLL), follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). Following mutual adjustment for the other immune markers, sCD23 remained associated with all subtypes and CXCL13 with FL and DLBCL. The associations of sCD23 with CLL and DLBCL and CXCL13 with DLBCL persisted among cases sampled > 9 years before diagnosis. sCD23 showed a good predictive ability (area under the curve = 0.80) for CLL, in particular among older, male participants. sCD23 and CXCL13 showed a mediating effect between body mass index (positive) and DLBCL risk, while CXCL13 contributed to the association between physical activity (inverse) and DLBCL. Our data suggest a role of B-cell activation in BCL development and a mediating role of the immune system for lifestyle factors.
Collapse
MESH Headings
- Antigens, CD
- B-Lymphocytes/immunology
- Biomarkers
- Body Mass Index
- Case-Control Studies
- Chemokine CXCL13
- Cohort Studies
- Exercise/physiology
- Female
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Life Style
- Lymphocyte Activation/immunology
- Lymphoma, Follicular/etiology
- Lymphoma, Follicular/immunology
- Lymphoma, Large B-Cell, Diffuse/etiology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Male
- Prospective Studies
Collapse
Affiliation(s)
- Fatemeh Saberi Hosnijeh
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD, Utrecht, The Netherlands.
| | - Pieter M Kolijn
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Delphine Casabonne
- Centro de Investigación Biomédica en Red de Epidemiología y. Salud Pública, M.P. (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research PRogramme, Catalan Institute of Oncology, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Alexandra Nieters
- Faculty of Medicine and Medical Center, Institute for Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Marta Solans
- Centro de Investigación Biomédica en Red de Epidemiología y. Salud Pública, M.P. (CIBERESP), Madrid, Spain
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
| | - Sabine Naudin
- Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Pietro Ferrari
- Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - James D Mckay
- Section of Genetics, International Agency for Research on Cancer, Lyon, France
| | - Elisabete Weiderpass
- International Agency for Research on Cancer- World Health Organization, Lyon, France
| | - Vittorio Perduca
- CNRS, MAP5 UMR 8145, Université de Paris, 75006, Paris, France
- CESP, Fac. de Médecine - Univ. Paris-Sud, Fac de Médecine - UVSQ, INSERM, Université Paris Saclay, 94805, Villejuif, France
| | - Caroline Besson
- CESP, Fac. de Médecine - Univ. Paris-Sud, Fac de Médecine - UVSQ, INSERM, Université Paris Saclay, 94805, Villejuif, France
- Gustave Roussy, 94805, Villejuif, France
- Department of Hematology and Oncology, Hospital of Versailles, Le Chesnay, France
| | - Francesca Romana Mancini
- CESP, Fac. de Médecine - Univ. Paris-Sud, Fac de Médecine - UVSQ, INSERM, Université Paris Saclay, 94805, Villejuif, France
- Gustave Roussy, 94805, Villejuif, France
| | - Giovanna Masala
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Unit of Epidemiology, Regional Health Service ASL, Turin, Italy
| | - José M Huerta
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Dafina Petrova
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Andalusian School of Public Health (EASP), Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Núria Sala
- Unit of Nutrition, Environment and Cancer, Cancer Epidemiology Research Program and Translational Research Laboratory, Catalan Institute of Oncology (ICO), Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | | | - Anna Karakatsani
- Hellenic Health Foundation, Athens, Greece
- Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece
| | - Carlo La Vecchia
- Hellenic Health Foundation, Athens, Greece
- Department of Clinical Sciences and Community Health Università Degli Studi di Milano, 20133, Milan, Italy
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Research Group Genomic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Heiner Boeing
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Sciences, University of Potsdam, Nuthetal, Germany
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Anton W Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Vincent H J van der Velden
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508 TD, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| |
Collapse
|
4
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, Fürst P, Håkansson H, Halldorsson T, Lundebye AK, Pohjanvirta R, Rylander L, Smith A, van Loveren H, Waalkens-Berendsen I, Zeilmaker M, Binaglia M, Gómez Ruiz JÁ, Horváth Z, Christoph E, Ciccolallo L, Ramos Bordajandi L, Steinkellner H, Hoogenboom LR. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J 2018; 16:e05333. [PMID: 32625737 PMCID: PMC7009407 DOI: 10.2903/j.efsa.2018.5333] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The European Commission asked EFSA for a scientific opinion on the risks for animal and human health related to the presence of dioxins (PCDD/Fs) and DL-PCBs in feed and food. The data from experimental animal and epidemiological studies were reviewed and it was decided to base the human risk assessment on effects observed in humans and to use animal data as supportive evidence. The critical effect was on semen quality, following pre- and postnatal exposure. The critical study showed a NOAEL of 7.0 pg WHO2005-TEQ/g fat in blood sampled at age 9 years based on PCDD/F-TEQs. No association was observed when including DL-PCB-TEQs. Using toxicokinetic modelling and taking into account the exposure from breastfeeding and a twofold higher intake during childhood, it was estimated that daily exposure in adolescents and adults should be below 0.25 pg TEQ/kg bw/day. The CONTAM Panel established a TWI of 2 pg TEQ/kg bw/week. With occurrence and consumption data from European countries, the mean and P95 intake of total TEQ by Adolescents, Adults, Elderly and Very Elderly varied between, respectively, 2.1 to 10.5, and 5.3 to 30.4 pg TEQ/kg bw/week, implying a considerable exceedance of the TWI. Toddlers and Other Children showed a higher exposure than older age groups, but this was accounted for when deriving the TWI. Exposure to PCDD/F-TEQ only was on average 2.4- and 2.7-fold lower for mean and P95 exposure than for total TEQ. PCDD/Fs and DL-PCBs are transferred to milk and eggs, and accumulate in fatty tissues and liver. Transfer rates and bioconcentration factors were identified for various species. The CONTAM Panel was not able to identify reference values in most farm and companion animals with the exception of NOAELs for mink, chicken and some fish species. The estimated exposure from feed for these species does not imply a risk.
Collapse
|
5
|
't Mannetje A, Eng A, Walls C, Dryson E, Douwes J, Bertazzi P, Ryder-Lewis S, Scott D, Brooks C, McLean D, Cheng S, Pearce N. Morbidity in New Zealand pesticide producers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). ENVIRONMENT INTERNATIONAL 2018; 110:22-31. [PMID: 29031942 DOI: 10.1016/j.envint.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To conduct a cross-sectional morbidity survey among 245 former employees of a pesticide production plant exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in New Zealand. METHODS Demographic factors and health information were collected in face-to-face interviews. TCDD, lipids, thyroid hormones, glucose and immunoglobulin G (IgG) were determined in non-fasting blood. For 111 participants, a neurological examination was conducted. Associations between health outcomes and working in a TCDD exposed job (prevalence 49%) and serum TCDD concentration≥10pg/g lipid (18%) were assessed using logistic regression whilst controlling for age, gender, smoking, body mass index and ethnicity. RESULTS Diabetes was more common in those who had worked in TCDD exposed jobs (OR 4.0, 95%CI 1.0-15.4) and in those with serum TCDD ≥10pg/g (OR 3.1, 95%CI 0.9-10.7). Non-fasting glucose levels >6.6mmol/l were more common in those with TCDD exposed jobs (OR 3.6, 95%CI 1.0-12.9), as were serum free thyroxine 4<12.8pmol/l (OR 4.5, 95%CI 1.4-14.4), triglycerides >1.7mmol/l (OR 2.5, 95%CI 1.1-5.7) and high density lipoprotein cholesterol (HDL) <1mmol/l (OR 4.0, 95%CI 1.2-13.2). IgG was negatively associated with TCDD (linear regression p=0.05). The neurological examination revealed a higher frequency of abnormal reflexes in those with serum TCDD ≥10pg/g (OR 4.8, 95%CI 1.1-21.0). CONCLUSIONS In this occupationally exposed population, TCDD was associated with an increased risk of diabetes and a range of subclinical responses in multiple systems (peripheral nervous system, immune system, thyroid hormones and lipid metabolism), several decades after last exposure. These results need to be interpreted with caution due to the small study size and the cross-sectional nature of the study.
Collapse
Affiliation(s)
- Andrea 't Mannetje
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand.
| | - Amanda Eng
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Chris Walls
- Occupational Medicine, Auckland, New Zealand
| | - Evan Dryson
- Occupational Medicine, Auckland, New Zealand
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Pier Bertazzi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | - Collin Brooks
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Dave McLean
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Soo Cheng
- Centre for Public Health Research, Massey University, PO Box 756, Wellington 6021, New Zealand
| | - Neil Pearce
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Hosnijeh FS, Portengen L, Späth F, Bergdahl IA, Melin B, Mattiello A, Masala G, Sacerdote C, Naccarati A, Krogh V, Tumino R, Chadeau-Hyam M, Vineis P, Vermeulen R. Soluble B-cell activation marker of sCD27 and sCD30 and future risk of B-cell lymphomas: A nested case-control study and meta-analyses. Int J Cancer 2016; 138:2357-67. [DOI: 10.1002/ijc.29969] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 11/30/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Fatemeh Saberi Hosnijeh
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University; Utrecht The Netherlands
- Department of Internal Medicine; Erasmus University Medical Center; Rotterdam The Netherlands
| | - Lutzen Portengen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University; Utrecht The Netherlands
| | - Florentin Späth
- Department of Radiation Sciences; Oncology, Umeå University; Umeå Sweden
| | - Ingvar A. Bergdahl
- Department of Biobank Research; Umeå University; Umeå Sweden
- Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine; Umeå University; Umeå Sweden
| | - Beatrice Melin
- Department of Radiation Sciences; Oncology, Umeå University; Umeå Sweden
| | - Amalia Mattiello
- Department of Clinical Medicine and Surgery; Federico II University; Naples Italy
| | - Giovanna Masala
- Molecular and Nutritional Epidemiology Unit; Cancer Research and Prevention Institute-ISPO; Florence Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, AO Citta' Della Salute E Della Scienza; University of Turin and Center for Cancer Prevention; Turin Italy
| | - Alessio Naccarati
- Unit of Genetic and Molecular Epidemiology; Human Genetics Foundation-HUGEF; Turin Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit; Fondazione IRCCS Istituto Nazionale Dei Tumori; Milan Italy
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit; “CIVIC-M.P.AREZZO” Hospital; ASP Ragusa Italy
| | - Marc Chadeau-Hyam
- Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health; Imperial College London; London United Kingdom
| | - Paolo Vineis
- Unit of Genetic and Molecular Epidemiology; Human Genetics Foundation-HUGEF; Turin Italy
- Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health; Imperial College London; London United Kingdom
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University; Utrecht The Netherlands
- Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health; Imperial College London; London United Kingdom
| |
Collapse
|