1
|
Khorshid Shamshiri A, Alidoust M, Hemmati Nokandei M, Pasdar A, Afzaljavan F. Genetic architecture of mammographic density as a risk factor for breast cancer: a systematic review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1729-1747. [PMID: 36639603 DOI: 10.1007/s12094-022-03071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mammography Density (MD) is a potential risk marker that is influenced by genetic polymorphisms and can subsequently modulate the risk of breast cancer. This qualitative systematic review summarizes the genes and biological pathways involved in breast density and discusses the potential clinical implications in view of the genetic risk profile for breast density. METHODS The terms related to "Common genetic variations" and "Breast density" were searched in Scopus, PubMed, and Web of Science databases. Gene pathways analysis and assessment of protein interactions were also performed. RESULTS Eighty-six studies including 111 genes, reported a significant association between mammographic density in different populations. ESR1, IGF1, IGFBP3, and ZNF365 were the most prevalent genes. Moreover, estrogen metabolism, signal transduction, and prolactin signaling pathways were significantly related to the associated genes. Mammography density was an associated phenotype, and eight out of 111 genes, including COMT, CYP19A1, CYP1B1, ESR1, IGF1, IGFBP1, IGFBP3, and LSP1, were modifiers of this trait. CONCLUSION Genes involved in developmental processes and the evolution of secondary sexual traits play an important role in determining mammographic density. Due to the effect of breast tissue density on the risk of breast cancer, these genes may also be associated with breast cancer risk.
Collapse
Affiliation(s)
- Asma Khorshid Shamshiri
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alidoust
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Hemmati Nokandei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Fahimeh Afzaljavan
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran.
| |
Collapse
|
2
|
Moshina N, Bjørnson E, Holen Å, Larsen M, Hansestad B, Tøsdal L, Hofvind S. Standardised or individualised X-ray tube angle for mediolateral oblique projection in digital mammography? Radiography (Lond) 2022; 28:772-778. [DOI: 10.1016/j.radi.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/24/2022]
|
3
|
Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review. Cancers (Basel) 2021; 13:cancers13030552. [PMID: 33535569 PMCID: PMC7867056 DOI: 10.3390/cancers13030552] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The increasing interest in implementing artificial intelligence in radiomic models has occurred alongside advancement in the tools used for computer-aided diagnosis. Such tools typically apply both statistical and machine learning methodologies to assess the various modalities used in medical image analysis. Specific to prostate cancer, the radiomics pipeline has multiple facets that are amenable to improvement. This review discusses the steps of a magnetic resonance imaging based radiomics pipeline. Present successes, existing opportunities for refinement, and the most pertinent pending steps leading to clinical validation are highlighted. Abstract The management of prostate cancer (PCa) is dependent on biomarkers of biological aggression. This includes an invasive biopsy to facilitate a histopathological assessment of the tumor’s grade. This review explores the technical processes of applying magnetic resonance imaging based radiomic models to the evaluation of PCa. By exploring how a deep radiomics approach further optimizes the prediction of a PCa’s grade group, it will be clear how this integration of artificial intelligence mitigates existing major technological challenges faced by a traditional radiomic model: image acquisition, small data sets, image processing, labeling/segmentation, informative features, predicting molecular features and incorporating predictive models. Other potential impacts of artificial intelligence on the personalized treatment of PCa will also be discussed. The role of deep radiomics analysis-a deep texture analysis, which extracts features from convolutional neural networks layers, will be highlighted. Existing clinical work and upcoming clinical trials will be reviewed, directing investigators to pertinent future directions in the field. For future progress to result in clinical translation, the field will likely require multi-institutional collaboration in producing prospectively populated and expertly labeled imaging libraries.
Collapse
|
4
|
Spjuth O, Karlsson A, Clements M, Humphreys K, Ivansson E, Dowling J, Eklund M, Jauhiainen A, Czene K, Grönberg H, Sparén P, Wiklund F, Cheddad A, Pálsdóttir Þ, Rantalainen M, Abrahamsson L, Laure E, Litton JE, Palmgren J. E-Science technologies in a workflow for personalized medicine using cancer screening as a case study. J Am Med Inform Assoc 2018; 24:950-957. [PMID: 28444384 PMCID: PMC7651972 DOI: 10.1093/jamia/ocx038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Objective We provide an e-Science perspective on the workflow from risk factor discovery and classification of disease to evaluation of personalized intervention programs. As case studies, we use personalized prostate and breast cancer screenings. Materials and Methods We describe an e-Science initiative in Sweden, e-Science for Cancer Prevention and Control (eCPC), which supports biomarker discovery and offers decision support for personalized intervention strategies. The generic eCPC contribution is a workflow with 4 nodes applied iteratively, and the concept of e-Science signifies systematic use of tools from the mathematical, statistical, data, and computer sciences. Results The eCPC workflow is illustrated through 2 case studies. For prostate cancer, an in-house personalized screening tool, the Stockholm-3 model (S3M), is presented as an alternative to prostate-specific antigen testing alone. S3M is evaluated in a trial setting and plans for rollout in the population are discussed. For breast cancer, new biomarkers based on breast density and molecular profiles are developed and the US multicenter Women Informed to Screen Depending on Measures (WISDOM) trial is referred to for evaluation. While current eCPC data management uses a traditional data warehouse model, we discuss eCPC-developed features of a coherent data integration platform. Discussion and Conclusion E-Science tools are a key part of an evidence-based process for personalized medicine. This paper provides a structured workflow from data and models to evaluation of new personalized intervention strategies. The importance of multidisciplinary collaboration is emphasized. Importantly, the generic concepts of the suggested eCPC workflow are transferrable to other disease domains, although each disease will require tailored solutions.
Collapse
Affiliation(s)
- Ola Spjuth
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden.,Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala Universitet, Uppsala, Sweden
| | - Andreas Karlsson
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Mark Clements
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Keith Humphreys
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Emma Ivansson
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Jim Dowling
- School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Martin Eklund
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Jauhiainen
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden.,Early Clinical Biometrics, AstraZeneca AB R&D, Gothenburg, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Pär Sparén
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Abbas Cheddad
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden.,Department of Computer Science and Engineering, Blekinge Institute of Technology, Karlskrona, Sweden
| | - Þorgerður Pálsdóttir
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden.,Nordic Information for Action e-Science Center, Stockholm, Sweden
| | - Mattias Rantalainen
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Linda Abrahamsson
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Erwin Laure
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jan-Eric Litton
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden.,Biobanking and Biomolecular Resources Research Infrastructure-European Research Infrastructure Consortium, Graz, Austria
| | - Juni Palmgren
- Department of Medical Epidemiology and Biostatistics and Swedish e-Science Research Centre, Karolinska Institutet, Stockholm, Sweden.,Institute for Molecular Medicine Finland, Helsinki University, Helsinki, Finland
| |
Collapse
|