1
|
Barchi A, Dell’Anna G, Massimino L, Mandarino FV, Vespa E, Viale E, Passaretti S, Annese V, Malesci A, Danese S, Ungaro F. Unraveling the pathogenesis of Barrett's esophagus and esophageal adenocarcinoma: the "omics" era. Front Oncol 2025; 14:1458138. [PMID: 39950103 PMCID: PMC11821489 DOI: 10.3389/fonc.2024.1458138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025] Open
Abstract
Barrett's esophagus (BE) represents a pre-cancerous condition that is characterized by the metaplastic conversion of the squamous esophageal epithelium to a columnar intestinal-like phenotype. BE is the consequence of chronic reflux disease and has a potential progression burden to esophageal adenocarcinoma (EAC). The pathogenesis of BE and EAC has been extensively studied but not completely understood, and it is based on two main hypotheses: "transdifferentiation" and "transcommitment". Omics technologies, thanks to the potentiality of managing huge amounts of genetic and epigenetic data, sequencing the whole genome, have revolutionized the understanding of BE carcinogenesis, paving the way for biomarker development helpful in early diagnosis and risk progression assessment. Genomics and transcriptomics studies, implemented with the most advanced bioinformatics technologies, have brought to light many new risk loci and genomic alterations connected to BE and its progression to EAC, further exploring the complex pathogenesis of the disease. Early mutations of the TP53 gene, together with late aberrations of other oncosuppressor genes (SMAD4 or CKND2A), represent a genetic driving force behind BE. Genomic instability, nonetheless, is the central core of the disease. The implementation of transcriptomic and proteomic analysis, even at the single-cell level, has widened the horizons, complementing the genomic alterations with their transcriptional and translational bond. Increasing interest has been gathered around small circulating genetic traces (circulating-free DNA and micro-RNAs) with a potential role as blood biomarkers. Epigenetic alterations (such as hyper or hypo-methylation) play a meaningful role in esophageal carcinogenesis as well as the study of the tumor micro-environment, which has led to the development of novel immunological therapeutic options. Finally, the esophageal microbiome could be the protagonist to be investigated, deepening our understanding of the subtle association between the host microbiota and tumor development.
Collapse
Affiliation(s)
- Alberto Barchi
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giuseppe Dell’Anna
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, Milan, Italy
| | - Luca Massimino
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | | | - Edoardo Vespa
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Edi Viale
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Sandro Passaretti
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vito Annese
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, Milan, Italy
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | - Alberto Malesci
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS Policlinico San Donato, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Qureshi S, Abbasi WA, Qureshi MA, Jalil HA, Quraishy MS. Identification of PGC as a Potential Biomarker for Progression from Barrett's Esophagus to Esophageal Adenocarcinoma: A Comprehensive Bioinformatic Analysis. Diagnostics (Basel) 2024; 14:2863. [PMID: 39767224 PMCID: PMC11675858 DOI: 10.3390/diagnostics14242863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Barrett's esophagus (BE), with metaplastic columnar epithelium in the lower esophagus, predisposes patients to esophageal adenocarcinoma (EAC). Despite extensive research, mechanisms underlying BE progression to EAC remain unclear, and no validated biomarkers are available for clinical use. Progastricsin/Pepsinogen-C (PGC), an aspartic proteinase linked to maintaining normal epithelial morphology, is often absent in advanced gastrointestinal malignancies. This study comprehensively investigates PGC expression across cancers, particularly in esophageal cancer (ESCA), to clarify its role in BE progression to EAC. Methods: We utilized multiple bioinformatic platforms (TIMER, UALCAN, cBioPortal, GEPIA, STRING, Metascape, and GEO database) to assess PGC expression, genomic alterations, and correlations with clinicopathological features, survival, and immune infiltration. Additionally, using the GEO dataset, we compared non-dysplastic Barrett's esophagus (NDBE) patients with those who progressed to malignancy, identifying differentially expressed genes (DEGs), their interactions, and potential roles in progression. Results: PGC was notably upregulated in various cancers, especially in adjacent normal tissues of ESCA. Genomic amplifications of PGC were linked to improved survival in EAC patients, particularly those with high PGC expression, suggesting a protective role. Moreover, PGC expression positively correlated with favorable immune infiltration, notably B cells and CD8+ T cells. Enrichment analysis of downregulated DEGs revealed significant involvement in key biological processes, specifically in extracellular matrix organization. Among the downregulated DEGs, we identified PGC among the top 10 hub genes, underscoring its role in tissue homeostasis. Conclusions: These findings suggest that PGC could serve as a promising biomarker for predicting the high-risk transformation from BE to EAC, offering new insights into EAC progression and future therapeutic targets.
Collapse
|
3
|
Wang W, Ye L, Li H, Mao W, Xu X. Targeting esophageal carcinoma: molecular mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e782. [PMID: 39415846 PMCID: PMC11480525 DOI: 10.1002/mco2.782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Esophageal cancer (EC) is identified as a predominant health threat worldwide, with its highest incidence and mortality rates reported in China. The complex molecular mechanisms underlying EC, coupled with the differential incidence of esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) across various regions, highlight the necessity for in-depth research targeting molecular pathogenesis and innovative treatment strategies. Despite recent progress in targeted therapy and immunotherapy, challenges such as drug resistance and the lack of effective biomarkers for patient selection persist, impeding the optimization of therapeutic outcomes. Our review delves into the molecular pathology of EC, emphasizing genetic and epigenetic alterations, aberrant signaling pathways, tumor microenvironment factors, and the mechanisms of metastasis and immune evasion. We further scrutinize the current landscape of targeted therapies, including the roles of EGFR, HER2, and VEGFR, alongside the transformative impact of ICIs. The discussion extends to evaluating combination therapies, spotlighting the synergy between targeted and immune-mediated treatments, and introduces the burgeoning domain of antibody-drug conjugates, bispecific antibodies, and multitarget-directed ligands. This review lies in its holistic synthesis of EC's molecular underpinnings and therapeutic interventions, fused with an outlook on future directions including overcoming resistance mechanisms, biomarker discovery, and the potential of novel drug formulations.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lisha Ye
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Huihui Li
- Department of Medical Thoracic OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouZhejiangChina
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Weimin Mao
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC)Chinese Academy of SciencesHangzhouZhejiangChina
| | - Xiaoling Xu
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouZhejiangChina
- Department of Radiation OncologyShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Choi Y, Bedford A, Pollack S. The Aberrant Expression of Biomarkers and Risk Prediction for Neoplastic Changes in Barrett's Esophagus-Dysplasia. Cancers (Basel) 2024; 16:2386. [PMID: 39001449 PMCID: PMC11240336 DOI: 10.3390/cancers16132386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Barrett's esophagus (BE) is a pre-neoplastic condition associated with an increased risk of esophageal adenocarcinoma (EAC). The accurate diagnosis of BE and grading of dysplasia can help to optimize the management of patients with BE. However, BE may be missed and the accurate grading of dysplasia based on a routine histology has a considerable intra- and interobserver variability. Thus, well-defined biomarker testing remains indispensable. The aim of our study was to identify routinely applicable and relatively specific biomarkers for an accurate diagnosis of BE, as well as determining biomarkers to predict the risk of progression in BE-dysplasia. Methods: Retrospectively, we performed immunohistochemistry to test mucin 2(MUC2), trefoil factor 3 (TFF3), p53, p16, cyclin D1, Ki-67, beta-catenin, and minichromosome maintenance (MCM2) in biopsies. Prospectively, to identify chromosomal alterations, we conducted fluorescent in situ hybridization testing on fresh brush samples collected at the time of endoscopy surveillance. Results: We discovered that MUC2 and TFF3 are specific markers for the diagnosis of BE. Aberrant expression, including the loss and strong overexpression of p53, Ki-67, p16, beta-catenin, cyclin D1, and MCM2, was significantly associated with low-grade dysplasia (LGD), high-grade dysplasia (HGD), and EAC histology, with a relatively high risk of neoplastic changes. Furthermore, the aberrant expressions of p53 and p16 in BE-indefinite dysplasia (IND) progressor cohorts predicted the risk of progression. Conclusions: Assessing the biomarkers would be a suitable adjunct to accurate BE histology diagnoses and improve the accuracy of BE-dysplasia grading, thus reducing interobserver variability, particularly of LGD and risk prediction.
Collapse
Affiliation(s)
- Young Choi
- Department of Pathology, Yale School of Medicine, 434 Pine Grove Lane, Hartsdale, NY 10530, USA
| | - Andrew Bedford
- Department of Internal Medicine, Yale School of Medicine, Bridgeport Hospital, 267 Grant St., Bridgeport, CT 06610, USA;
| | - Simcha Pollack
- Department of Business Analytics Statistics, St. John’s University Tobin College of Business, Queens, NY 11423, USA;
| |
Collapse
|
5
|
Patil DT, Odze RD. Barrett's Esophagus and Associated Dysplasia. Gastroenterol Clin North Am 2024; 53:1-23. [PMID: 38280743 DOI: 10.1016/j.gtc.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Early detection of dysplasia and effective management are critical steps in halting neoplastic progression in patients with Barrett's esophagus (BE). This review provides a contemporary overview of the BE-related dysplasia, its role in guiding surveillance and management, and discusses emerging diagnostic and therapeutic approaches that might further enhance patient management. Novel, noninvasive techniques for sampling and surveillance, adjunct biomarkers for risk assessment, and their limitations are also discussed.
Collapse
Affiliation(s)
- Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
| | - Robert D Odze
- Department of Pathology and Lab Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Guo Y, Wu Z, Cen K, Bai Y, Dai Y, Mai Y, Hong K, Qu L. Establishment and validation of a ubiquitination-related gene signature associated with prognosis in pancreatic duct adenocarcinoma. Front Immunol 2023; 14:1171811. [PMID: 37359528 PMCID: PMC10289160 DOI: 10.3389/fimmu.2023.1171811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Patients with pancreatic duct adenocarcinoma (PDAC) have varied prognoses that depend on numerous variables. However, additional research is required to uncover the latent impact of ubiquitination-related genes (URGs) on determining PDAC patients' prognoses. Methods The URGs clusters were discovered via consensus clustering, and the prognostic differentially expressed genes (DEGs) across clusters were utilized to develop a signature using a least absolute shrinkage and selection operator (LASSO) regression analysis of data from TCGA-PAAD. Verification analyses were conducted across TCGA-PAAD, GSE57495 and ICGC-PACA-AU to show the robustness of the signature. RT-qPCR was used to verify the expression of risk genes. Lastly, we formulated a nomogram to improve the clinical efficacy of our predictive tool. Results The URGs signature, comprised of three genes, was developed and was shown to be highly correlated with the prognoses of PAAD patients. The nomogram was established by combining the URGs signature with clinicopathological characteristics. We discovered that the URGs signature was remarkably superior than other individual predictors (age, grade, T stage, et al). Also, the immune microenvironment analysis indicated that ESTIMATEscore, ImmuneScores, and StromalScores were elevated in the low-risk group. The immune cells that infiltrated the tissues were different between the two groups, as did the expression of immune-related genes. Conclusion The URGs signature could act as the biomarker of prognosis and selecting appropriate therapeutic drugs for PDAC patients.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhixuan Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kenan Cen
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yongheng Bai
- National Key Clinical Specialty (General Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Dai
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yifeng Mai
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kai Hong
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Liangchen Qu
- Department of Emergency, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
7
|
Zagari RM, Iascone V, Fuccio L, Panarese A, Frazzoni L. Management of Barrett's Esophagus: Practice-Oriented Answers to Clinical Questions. Cancers (Basel) 2023; 15:cancers15071928. [PMID: 37046590 PMCID: PMC10093467 DOI: 10.3390/cancers15071928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Barrett's esophagus is the most important complication of gastro-esophageal reflux disease and the only known precursor of esophageal adenocarcinoma. The diagnosis and treatment of Barrett's esophagus are clinically challenging as it requires a high level of knowledge and competence in upper gastrointestinal endoscopy. For instance, endoscopists should know when and how to perform biopsies when Barrett's esophagus is suspected. Furthermore, the correct identification and treatment of dysplastic Barrett's esophagus is crucial to prevent progression to cancer as well as it is the endoscopic surveillance of treated patients. Herein, we report practice-oriented answers to clinical questions that clinicians should be aware of when approaching patients with Barrett's esophagus.
Collapse
Affiliation(s)
- Rocco Maurizio Zagari
- Department of Digestive Diseases, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Veronica Iascone
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Lorenzo Fuccio
- Department of Digestive Diseases, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Alba Panarese
- Division of Gastroenterology and Digestive Endoscopy, Department of Medical Sciences, Central Hospital, Azienda Ospedaliera, 74100 Taranto, Italy
| | - Leonardo Frazzoni
- Department of Digestive Diseases, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
8
|
Zhang Y, Weh KM, Howard CL, Riethoven JJ, Clarke JL, Lagisetty KH, Lin J, Reddy RM, Chang AC, Beer DG, Kresty LA. Characterizing isoform switching events in esophageal adenocarcinoma. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:749-768. [PMID: 36090744 PMCID: PMC9437810 DOI: 10.1016/j.omtn.2022.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022]
Abstract
Isoform switching events with predicted functional consequences are common in many cancers, but characterization of switching events in esophageal adenocarcinoma (EAC) is lacking. Next-generation sequencing was used to detect levels of RNA transcripts and identify specific isoforms in treatment-naïve esophageal tissues ranging from premalignant Barrett’s esophagus (BE), BE with low- or high-grade dysplasia (BE.LGD, BE.HGD), and EAC. Samples were stratified by histopathology and TP53 mutation status, identifying significant isoform switching events with predicted functional consequences. Comparing BE.LGD with BE.HGD, a histopathology linked to cancer progression, isoform switching events were identified in 75 genes including KRAS, RNF128, and WRAP53. Stratification based on TP53 status increased the number of significant isoform switches to 135, suggesting switching events affect cellular functions based on TP53 mutation and tissue histopathology. Analysis of isoforms agnostic, exclusive, and shared with mutant TP53 revealed unique signatures including demethylation, lipid and retinoic acid metabolism, and glucuronidation, respectively. Nearly half of isoform switching events were identified without significant gene-level expression changes. Importantly, two TP53-interacting isoforms, RNF128 and WRAP53, were significantly linked to patient survival. Thus, analysis of isoform switching events may provide new insight for the identification of prognostic markers and inform new potential therapeutic targets for EAC.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M. Weh
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Connor L. Howard
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean-Jack Riethoven
- Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jennifer L. Clarke
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kiran H. Lagisetty
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jules Lin
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rishindra M. Reddy
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew C. Chang
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - David G. Beer
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura A. Kresty
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Corresponding author Laura A. Kresty, PhD, Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Cranberry Polyphenols in Esophageal Cancer Inhibition: New Insights. Nutrients 2022; 14:nu14050969. [PMID: 35267943 PMCID: PMC8912450 DOI: 10.3390/nu14050969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/31/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is a cancer characterized by rapidly rising incidence and poor survival, resulting in the need for new prevention and treatment options. We utilized two cranberry polyphenol extracts, one proanthocyanidin enriched (C-PAC) and a combination of anthocyanins, flavonoids, and glycosides (AFG) to assess inhibitory mechanisms utilizing premalignant Barrett’s esophagus (BE) and EAC derived cell lines. We employed reverse phase protein arrays (RPPA) and Western blots to examine cancer-associated pathways and specific signaling cascades modulated by C-PAC or AFG. Viability results show that C-PAC is more potent than AFG at inducing cell death in BE and EAC cell lines. Based on the RPPA results, C-PAC significantly modulated 37 and 69 proteins in JH-EsoAd1 (JHAD1) and OE19 EAC cells, respectively. AFG treatment significantly altered 49 proteins in both JHAD1 and OE19 cells. Bioinformatic analysis of RPPA results revealed many previously unidentified pathways as modulated by cranberry polyphenols including NOTCH signaling, immune response, and epithelial to mesenchymal transition. Collectively, these results provide new insight regarding mechanisms by which cranberry polyphenols exert cancer inhibitory effects targeting EAC, with implications for potential use of cranberry constituents as cancer preventive agents.
Collapse
|
10
|
Maity AK, Stone TC, Ward V, Webster AP, Yang Z, Hogan A, McBain H, Duku M, Ho KMA, Wolfson P, Graham DG, Beck S, Teschendorff AE, Lovat LB. Novel epigenetic network biomarkers for early detection of esophageal cancer. Clin Epigenetics 2022; 14:23. [PMID: 35164838 PMCID: PMC8845366 DOI: 10.1186/s13148-022-01243-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Early detection of esophageal cancer is critical to improve survival. Whilst studies have identified biomarkers, their interpretation and validity is often confounded by cell-type heterogeneity. RESULTS Here we applied systems-epigenomic and cell-type deconvolution algorithms to a discovery set encompassing RNA-Seq and DNA methylation data from esophageal adenocarcinoma (EAC) patients and matched normal-adjacent tissue, in order to identify robust biomarkers, free from the confounding effect posed by cell-type heterogeneity. We identify 12 gene-modules that are epigenetically deregulated in EAC, and are able to validate all 12 modules in 4 independent EAC cohorts. We demonstrate that the epigenetic deregulation is present in the epithelial compartment of EAC-tissue. Using single-cell RNA-Seq data we show that one of these modules, a proto-cadherin module centered around CTNND2, is inactivated in Barrett's Esophagus, a precursor lesion to EAC. By measuring DNA methylation in saliva from EAC cases and controls, we identify a chemokine module centered around CCL20, whose methylation patterns in saliva correlate with EAC status. CONCLUSIONS Given our observations that a CCL20 chemokine network is overactivated in EAC tissue and saliva from EAC patients, and that in independent studies CCL20 has been found to be overactivated in EAC tissue infected with the bacterium F. nucleatum, a bacterium that normally inhabits the oral cavity, our results highlight the possibility of using DNAm measurements in saliva as a proxy for changes occurring in the esophageal epithelium. Both the CTNND2/CCL20 modules represent novel promising network biomarkers for EAC that merit further investigation.
Collapse
Affiliation(s)
- Alok K Maity
- CAS Key Lab of Computational Biology, Shanghai Institute for Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Timothy C Stone
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Vanessa Ward
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Amy P Webster
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Zhen Yang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Aine Hogan
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Hazel McBain
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Margaraet Duku
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kai Man Alexander Ho
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul Wolfson
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - David G Graham
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK.,Division of GI Services, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU, UK
| | | | - Stephan Beck
- UCL Cancer Institute, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew E Teschendorff
- CAS Key Lab of Computational Biology, Shanghai Institute for Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| | - Laurence B Lovat
- Division of Surgery and Interventional Science, University College London, Gower Street, London, WC1E 6BT, UK. .,Division of GI Services, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London, NW1 2BU, UK.
| |
Collapse
|
11
|
Genomic instability signals offer diagnostic possibility in early cancer detection. Trends Genet 2021; 37:966-972. [PMID: 34218956 DOI: 10.1016/j.tig.2021.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Emerging evidence from the large numbers of cancer genomes analyzed in recent years indicates that chromosomal instability (CI), a well-established hallmark of cancer cells, is detectable in precancerous lesions. In this opinion, we discuss the association of this instability with tumor progression and cancer risk. We highlight the opportunity that early genomic instability presents for the diagnosis of esophageal adenocarcinoma (EAC) and its precancerous lesion, Barrett's esophagus (BE). With a growing body of evidence suggesting that only a small pool of cancer-related genes are involved in early tumor development, we argue that general genomic instability may hold greater diagnostic potential for early cancer detection as opposed to the identification of individual mutational biomarkers.
Collapse
|
12
|
Madabhushi A, Toro P, Willis JE. Artificial Intelligence in Surveillance of Barrett's Esophagus. Cancer Res 2021; 81:3446-3448. [PMID: 34252041 PMCID: PMC9494280 DOI: 10.1158/0008-5472.can-21-1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
A study by Waterhouse and colleagues in a previous issue of Cancer Research describes the development and prospective validation of an artificial intelligence approach in conjunction with spectral imaging to enhance endoscopic detection of Barrett's esophagus-related neoplasia. The authors developed a novel spectral endoscope with external optics suitable for routine Barrett's esophagus surveillance with diffuse tissue reflectance to define multispectral data correlated with histopathology. A convolutional neural network was trained on the absis of the spectral signatures acquired as part of a small, prospective clinical trial to distinguish Barrett's esophagus from Barrett's esophagus neoplasia. The results from the study suggest the utility of artificial intelligence for diagnosis of Barrett's esophagus.See related article by Waterhouse et al., Cancer Res 2021;81:3415-25.
Collapse
Affiliation(s)
- Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
- Louis Stokes VA Medical Center, Cleveland, Ohio
| | - Paula Toro
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Joseph E Willis
- University Hospitals Cleveland Medical Center, Cleveland, Ohio
- Department of Pathology, Case Western Reserve University, Cleveland Ohio
| |
Collapse
|
13
|
Webster JA, Wuethrich A, Shanmugasundaram KB, Richards RS, Zelek WM, Shah AK, Gordon LG, Kendall BJ, Hartel G, Morgan BP, Trau M, Hill MM. Development of EndoScreen Chip, a Microfluidic Pre-Endoscopy Triage Test for Esophageal Adenocarcinoma. Cancers (Basel) 2021; 13:2865. [PMID: 34201241 PMCID: PMC8229863 DOI: 10.3390/cancers13122865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
The current endoscopy and biopsy diagnosis of esophageal adenocarcinoma (EAC) and its premalignant condition Barrett's esophagus (BE) is not cost-effective. To enable EAC screening and patient triaging for endoscopy, we developed a microfluidic lectin immunoassay, the EndoScreen Chip, which allows sensitive multiplex serum biomarker measurements. Here, we report the proof-of-concept deployment for the EAC biomarker Jacalin lectin binding complement C9 (JAC-C9), which we previously discovered and validated by mass spectrometry. A monoclonal C9 antibody (m26 3C9) was generated and validated in microplate ELISA, and then deployed for JAC-C9 measurement on EndoScreen Chip. Cohort evaluation (n = 46) confirmed the expected elevation of serum JAC-C9 in EAC, along with elevated total serum C9 level. Next, we asked if the small panel of serum biomarkers improves detection of EAC in this cohort when used in conjunction with patient risk factors (age, body mass index and heartburn history). Using logistic regression modeling, we found that serum C9 and JAC-C9 significantly improved EAC prediction from AUROC of 0.838 to 0.931, with JAC-C9 strongly predictive of EAC (vs. BE OR = 4.6, 95% CI: 1.6-15.6, p = 0.014; vs. Healthy OR = 4.1, 95% CI: 1.2-13.7, p = 0.024). This proof-of-concept study confirms the microfluidic EndoScreen Chip technology and supports the potential utility of blood biomarkers in improving triaging for diagnostic endoscopy. Future work will expand the number of markers on EndoScreen Chip from our list of validated EAC biomarkers.
Collapse
Affiliation(s)
- Julie A. Webster
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane City, QLD 4072, Australia; (A.W.); (K.B.S.); (M.T.)
| | - Karthik B. Shanmugasundaram
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane City, QLD 4072, Australia; (A.W.); (K.B.S.); (M.T.)
| | - Renee S. Richards
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - Wioleta M. Zelek
- Division of Infection and Immunity, Cardiff University, Heath Park, Cardiff CF10 3AX, UK; (W.M.Z.); (B.P.M.)
| | - Alok K. Shah
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - Louisa G. Gordon
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - Bradley J. Kendall
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
- Faculty of Medicine, The University of Queensland, Herston, Brisbane, QLD 4102, Australia
- Department of Gastroenterolgy and Hepatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Gunter Hartel
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
| | - B. Paul Morgan
- Division of Infection and Immunity, Cardiff University, Heath Park, Cardiff CF10 3AX, UK; (W.M.Z.); (B.P.M.)
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane City, QLD 4072, Australia; (A.W.); (K.B.S.); (M.T.)
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Michelle M. Hill
- QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (J.A.W.); (R.S.R.); (A.K.S.); (L.G.G.); (B.J.K.); (G.H.)
- Faculty of Medicine, The University of Queensland, Herston, Brisbane, QLD 4102, Australia
| |
Collapse
|
14
|
Bast RC, Srivastava S. The National Cancer Institute Early Detection Research Network: Two Decades of Progress. Cancer Epidemiol Biomarkers Prev 2020; 29:2396-2400. [PMID: 33262198 DOI: 10.1158/1055-9965.epi-20-1158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|