1
|
Khadela A, Shah Y, Mistry P, Bodiwala K, CB A. Immunomodulatory Therapy in Head and Neck Squamous Cell Carcinoma: Recent Advances and Clinical Prospects. Technol Cancer Res Treat 2023; 22:15330338221150559. [PMID: 36683526 PMCID: PMC9893386 DOI: 10.1177/15330338221150559] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The immune system plays a significant role in the development, invasion, progression, and metastasis of head and neck cancer. Over the last decade, the emergence of immunotherapy has irreversibly altered the paradigm of cancer treatment. The current treatment modalities for head and neck squamous cell carcinoma (HNSCC) include surgery, radiotherapy, and adjuvant or neoadjuvant chemotherapy which has failed to provide satisfactory clinical outcomes. To encounter this, there is a need for a novel or targeted therapy such as immunological targets along with conventional treatment strategy for optimal therapeutic outcomes. The immune system can contribute to promoting metastasis, angiogenesis, and growth by exploiting the tumor's influence on the microenvironment. Immunological targets have been found effective in recent clinical studies and have shown promising results. This review outlines the important immunological targets and the medications acting on them that have already been explored, are currently under clinical trials and are further being targeted.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Yesha Shah
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Priya Mistry
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Kunjan Bodiwala
- Department of Pharmaceutical chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, Gujarat, India
| | - Avinash CB
- Medical Oncologist, ClearMedi Radiant Hospital, Mysore, India
| |
Collapse
|
2
|
Norouzian M, Mehdipour F, Ashraf MJ, Khademi B, Ghaderi A. Regulatory and effector T cell subsets in tumor-draining lymph nodes of patients with squamous cell carcinoma of head and neck. BMC Immunol 2022; 23:56. [PMCID: PMC9664675 DOI: 10.1186/s12865-022-00530-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
A crucial role for the immune system has been proposed in the establishment and progression of head and neck squamous cell carcinoma (HNSCC). In this study, we investigated the cytokine and regulatory profiles of T cells in tumor draining lymph nodes (TDLNs) of patients with HNSCC.
Results
The frequencies of CD4+TNF-α+ and CD4+TNF-αhi negatively were associated with poor prognostic factors such as LN involvement (P = 0.015 and P = 0.019, respectively), stage of the disease (P = 0.032 and P = 0.010, respectively) and tumor size (P = 0.026 and P = 0.032, respectively). Frequencies of CD8+IFN-γ+ and CD8+IFN-γ+ TNF-α+ T cells showed negative relationship with tumor grade (P = 0.035 and P = 0.043, respectively). While, the frequencies of CD4+IL-4+, CD8+IL-10+, CD8+IL-4+T cells were higher in advanced stages of the disease (P = 0.042, P = 0.041 and P = 0.030, respectively) and CD4+IFN-γ+TNF-α−, CD8+IL-4+ and CD8+IFN-γ+TNF-α− T cells were higher in patients with larger tumor size (P = 0.026 and P = 0.032, respectively). Negative associations were found between the frequencies of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3+CD127low/− Treg cells and cancer stage (P = 0.015 and P = 0.059).
Conclusion
This study shed more lights on the changes in immune profile of T cells in TDLNs of HNSCC. Larger tumor size and/or LN involvement were associated with lower frequencies of CD4+TNF-α+, CD8+IFN-γ+ and CD8+IFN-γ+TNF-α+ but higher frequency of CD4+IL-4+ T cells. Moreover, Foxp3+Tregs correlated with good prognostic indicators.
Collapse
|
3
|
Ghasemi K, Ghasemi K. MSX-122: Is an effective small molecule CXCR4 antagonist in cancer therapy? Int Immunopharmacol 2022; 108:108863. [PMID: 35623288 DOI: 10.1016/j.intimp.2022.108863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
Chemokines, a subgroup of cytokines along with their receptors, are involved in various biologic processes and regulation of a wide range of immune responses in different physiologic and pathologic states such as tissue repair, infection, and inflammation. C-X-C motif chemokine receptor 4 (CXCR4), a G-protein-coupled receptor (GPCR), has one identified natural ligand termed stromal-derived factor-1(SDF-1 or CXCL12). Evidence demonstrated that the ligation of SDF-1 to CXCR4 initiates several intracellular signaling pathways, regulating cell proliferation, survival, chemotaxis, migration, angiogenesis, adhesion, as well as bone marrow (BM)-resident cells homing and mobilization. Additionally, CXCR4 is expressed by tumor cells in blood malignancies and solid tumors. Therefore, CXCR4 is considered a potential therapeutic target in cancer therapy, and CXCR4 antagonists, including AMD3100, MSX-122, BPRCX807, WZ811, Motixafortide, TN14003, AMD3465, and AMD1170, have been employed in experimental and clinical studies to enhance cancer therapy. MSX-122 is a specific small-molecule antagonist of CXCR4/CXCL12 and the only orally available non-peptide CXCR4 antagonist with promising anti-cancer properties. Studies have shown that MSX-122 is particularly important in treating metastatic cancers and has great therapeutic potential. Accordingly, this review summarized the characteristics of MSX-122 and its effects on the CXCL12/CXCR4 axis as well as cancer therapy.
Collapse
Affiliation(s)
- Kimia Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy, Fertility and Infertility Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kosar Ghasemi
- Department of Pharmacology and Toxicology, School of Pharmacy, Cellular and Molecular Research Center, Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Diagnostic Value of MRI Combined with CXCR4 Expression Level in Lymph Node Metastasis Head and Neck Squamous Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4073918. [PMID: 35309836 PMCID: PMC8924604 DOI: 10.1155/2022/4073918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022]
Abstract
Objective To explore the diagnostic value of magnetic resonance imaging (MRI) combined with CXCR4 expression levels in lymph node metastasis of the head and neck squamous cell carcinoma (HNSCC). Methods 289 patients with HNSCC were divided into lymph node metastasis group (LNM group, n = 171) and non-LNM group (n = 118) according to the pathological examination results. MRI was used to scan the patient's lesions and cervical lymph nodes, and ADC was measured by MRI diffusion weighting imaging. The expression of CXCR4 in tumor tissues was detected by qRT-PCR. Logistic regression was used to analyze the risk factors of HNSCC lymph node metastasis. ROC curve was used to analyze the diagnostic effects of MRI, CXCR4, and MRI combined with CXCR4 on HNSCC lymph node metastasis. Results Compared with the non-LNM group, patients in the LNM group had a lower degree of pathological differentiation, and the positive rate of TNM staging and vascular invasion was higher. The signal intensity of T1WI and T2WI were low intensity and high intensity, respectively, and the ADC value was significantly reduced. At the same time, the expression level of CXCR4 in the tumor tissues of the LNM group was also significantly increased. In addition, compared with MRI and CXCR4 used alone, MRI combined with CXCR4 has a higher predictive value. Conclusion MRI has a good effect in demonstrating lymph node metastasis. CXCR4 is significantly upregulated in lymph node metastasis tumor tissue. The combination of the two can be used for clinical diagnosis of HNSCC lymph node metastasis.
Collapse
|
5
|
von Locquenghien M, Rozalén C, Celià-Terrassa T. Interferons in cancer immunoediting: sculpting metastasis and immunotherapy response. J Clin Invest 2021; 131:143296. [PMID: 33393507 PMCID: PMC7773346 DOI: 10.1172/jci143296] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines critical for regulation of epithelial cell functions and for immune system regulation. In cancer, IFNs contribute to tumor-intrinsic and -extrinsic mechanisms that determine the quality of antitumor immunity and response to immunotherapy. In this Review, we focus on the different types of tumor IFN sensitivity that determine dynamic tumor-immune interactions and their coevolution during cancer progression and metastasis. We extend the discussion to new evidence supporting immunotherapy-mediated immunoediting and the dual opposing roles of IFNs that lead to immune checkpoint blockade response or resistance. Understanding the intricate dynamic responses to IFN will lead to novel immunotherapeutic strategies to circumvent protumorigenic effects of IFN while exploiting IFN-mediated antitumor immunity.
Collapse
|
6
|
Water-Pipe Smoking Exposure Deregulates a Set of Genes Associated with Human Head and Neck Cancer Development and Prognosis. TOXICS 2020; 8:toxics8030073. [PMID: 32961854 PMCID: PMC7560251 DOI: 10.3390/toxics8030073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Water-pipe smoking (WPS) is becoming the most popular form of tobacco use among the youth, especially in the Middle East, replacing cigarettes rapidly and becoming a major risk of tobacco addiction worldwide. Smoke from WPS contains similar toxins as those present in cigarette smoke and is linked directly with different types of cancers including lung and head and neck (HN) carcinomas. However, the underlying molecular pathways and/or target genes responsible for the carcinogenic process are still unknown. In this study, human normal oral epithelial (HNOE) cells, NanoString PanCancer Pathways panel of 770 gene transcripts and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were applied to discover differentially expressed genes (DEG) modulated by WPS. In silico analysis was performed to analyze the impact of these genes in HN cancer patient’s biology and outcome. We found that WPS can induce the epithelial–mesenchymal transition (EMT: hallmark of cancer progression) of HNOE cells. More significantly, our analysis of NanoString revealed 23 genes deregulated under the effect of WPS, responsible for the modulation of cell cycle, proliferation, migration/invasion, apoptosis, signal transduction, and inflammatory response. Further analysis was performed using qRT-PCR of HNOE WPS-exposed and unexposed cells supported the reliability of our NanoString data. Moreover, we demonstrate those DEG to be upregulated in cancer compared with normal tissue. Using the Kaplan–Meier analysis, we observed a significant association between WPS-deregulated genes and relapse-free survival/overall survival in HN cancer patients. Our findings imply that WPS can modulate EMT as well as a set of genes that are directly involved in human HN carcinogenesis, thereby affecting HN cancer patients’ survival.
Collapse
|
7
|
Toyoma S, Suzuki S, Kawasaki Y, Yamada T. SDF-1/CXCR4 induces cell invasion through CD147 in squamous cell carcinoma of the hypopharynx. Oncol Lett 2020; 20:1817-1823. [PMID: 32724425 PMCID: PMC7377101 DOI: 10.3892/ol.2020.11744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/08/2020] [Indexed: 12/01/2022] Open
Abstract
Hypopharyngeal squamous cell carcinoma (SCC) has a poor prognosis due to local invasion and metastasis. The chemokine receptor CXC chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor 1 (SDF-1), play roles in tumor progression through unclear mechanisms. For the present study, we used a hypopharyngeal SCC cell line, FaDu, expressing CXCR4. We found that SDF-1 promotes migration and invasion of the FaDu cells. In addition, AMD3100, a specific antagonist of CXCR4, inhibited the binding of SDF-1 to CXCR4, resulting in a significant decrease in the FaDu cell migration induced by SDF-1. Stimulation of CXCR4 with SDF-1 induced an increase in the expression of CD147, a cell membrane protein; and this CD147 upregulation was abrogated by AMD3100. CD147 function-blocking antibodies also abolished the SDF-1-induced FaDu invasiveness. Our results suggested that SDF-1/CXCR4 mediate hypopharyngeal SCC cell migration and that CD147 is involved in the SDF-1/CXCR4-related tumor progression.
Collapse
Affiliation(s)
- Satoshi Toyoma
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Shinsuke Suzuki
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Yohei Kawasaki
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| | - Takechiyo Yamada
- Department of Otorhinolaryngology and Head and Neck Surgery, Akita University Graduate School of Medicine, Akita 010-8543, Japan
| |
Collapse
|
8
|
Lee MY, Allen CT. Mechanisms of resistance to T cell-based immunotherapy in head and neck cancer. Head Neck 2020; 42:2722-2733. [PMID: 32275098 DOI: 10.1002/hed.26158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Most current approved or investigational immunotherapeutic approaches for head and neck squamous cell carcinoma are aimed at activating T cells. The majority of patients receiving such immunotherapy do not demonstrate durable tumor remission. METHODS Original articles covering tumor heterogeneity, immunoediting, immune escape, and local tumor immunosuppression were reviewed. RESULTS In the face of immune pressure, subclones susceptible to T cell killing are eliminated, leaving behind resistant tumor clones in a process known as immunoediting. Such subclones of tumor cells that are resistant to T cell killing may remain sensitive to natural killer (NK) cell detection and elimination, suggesting that patients harboring such tumors may benefit from combination of T and NK cell-based immunotherapy. Even in the setting of optimal immunotherapy, the immunosuppressive tumor microenvironment may arrogate effector immune responses through a number of distinct mechanisms. CONCLUSIONS Highly effective immunotherapy will likely require multimodality approaches targeting independent mechanisms of immune activation.
Collapse
Affiliation(s)
- Maxwell Y Lee
- Translational Tumor Immunology Program, National Institute on Deafness and Other Commination Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Clint T Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Commination Disorders, National Institutes of Health, Bethesda, Maryland, USA.,Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Martin-Hijano L, Sainz B. The Interactions Between Cancer Stem Cells and the Innate Interferon Signaling Pathway. Front Immunol 2020; 11:526. [PMID: 32296435 PMCID: PMC7136464 DOI: 10.3389/fimmu.2020.00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/09/2020] [Indexed: 12/12/2022] Open
Abstract
Interferons (IFNs) form a family of cytokines with pleiotropic effects that modulate the immune response against multiple challenges like viral infections, autoimmune diseases, and cancer. While numerous anti-tumor activities have been described for IFNs, IFNs have also been associated with tumor growth and progression. The effect of IFNs on apoptosis, angiogenesis, tumor cell immunogenicity, and modulation of immune cells have been largely studied; however, less is known about their specific effects on cancer stem cells (CSCs). CSCs constitute a subpopulation of tumor cells endowed with stem-like properties including self-renewal, chemoresistance, tumorigenic capacity, and quiescence. This rare and unique subpopulation of cells is believed to be responsible for tumor maintenance, metastatic spread, and relapse. Thus, this review aims to summarize and discuss the current knowledge of the anti- and pro-CSCs effects of IFNs and also to highlight the need for further research on the interplay between IFNs and CSCs. Importantly, understanding this interplay will surely help to exploit the anti-tumor effects of IFNs, specifically those that target CSCs.
Collapse
Affiliation(s)
- Laura Martin-Hijano
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Chronic Diseases and Cancer—Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Bruno Sainz
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Department of Cancer Biology, Instituto de Investigaciones Biomédicas “Alberto Sols” (IIBM), CSIC-UAM, Madrid, Spain
- Cancer Stem Cell and Tumor Microenvironment Group, Chronic Diseases and Cancer—Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
10
|
Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy. Immunol Lett 2019; 217:91-115. [PMID: 31747563 DOI: 10.1016/j.imlet.2019.11.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
Abstract
Chemokines are small molecules called "chemotactic cytokines" and regulate many processes like leukocyte trafficking, homing of immune cells, maturation, cytoskeletal rearrangement, physiology, migration during development, and host immune responses. These proteins bind to their corresponding 7-membrane G-protein-coupled receptors. Chemokines and their receptors are anti-inflammatory factors in autoimmune conditions, so consider as potential targets for neutralization in such diseases. They also express by cancer cells and function as angiogenic factors, and/or survival/growth factors that enhance tumor angiogenesis and development. Among chemokines, the CXCL12/CXCR4 axis has significantly been studied in numerous cancers and autoimmune diseases. CXCL12 is a homeostatic chemokine, which is acts as an anti-inflammatory chemokine during autoimmune inflammatory responses. In cancer cells, CXCL12 acts as an angiogenic, proliferative agent and regulates tumor cell apoptosis as well. CXCR4 has a role in leukocyte chemotaxis in inflammatory situations in numerous autoimmune diseases, as well as the high levels of CXCR4, observed in different types of human cancers. These findings suggest CXCL12/CXCR4 as a potential therapeutic target for therapy of autoimmune diseases and open a new approach to targeted-therapy of cancers by neutralizing CXCL12 and CXCR4. In this paper, we reviewed the current understanding of the role of the CXCL12/CXCR4 axis in disease pathology and cancer biology, and discuss its therapeutic implications in cancer and diseases.
Collapse
|
11
|
Xiao J, Lai H, Wei S, Ye Z, Gong F, Chen L. lncRNA HOTAIR promotes gastric cancer proliferation and metastasis via targeting miR-126 to active CXCR4 and RhoA signaling pathway. Cancer Med 2019; 8:6768-6779. [PMID: 31517442 PMCID: PMC6825996 DOI: 10.1002/cam4.1302] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 12/30/2022] Open
Abstract
HOTAIR, a well-known long noncoding RNAs (lncRNA), has been recognized to contribute to the tumor metastasis in several tumors. But its role in gastric cancer remains elusive. Here, we reported an increase in HOTAIR promoted proliferation and metastasis of gastric cancer cell lines. The HOTAIR and miR-126 level was determined in 15 paired primary gastric cancer tissues and their adjacent noncancerous gastric tissues. Over-expression or downregulation HOTAIR was conducted in AGS or BGC-823 cells to investigate the impact of HOTAIR in proliferation and metastasis. Then dual luciferase reporter assay was utilized to study the interaction between CXCR4 and miR-126. Cells transfected with shHOTAIR or miR-126 mimic were subjected to western blot to investigate the role of SDF-1/CXCR4 signaling in HOTAIR mediated proliferation and metastasis. HOTAIR was highly expressed in gastric cancer tissues and several gastric cancer cell lines. Overexpressed HOTAIR facilitated proliferation and metastasis in vitro while HOTAIR knockdown inhibit proliferation and metastasis. A negative correlation was observed between miR-126 and HOTAIR. And, we also confirmed the decrease in miR-126 in clinic specimen. Furthermore, HOTAIR and miR-126 negatively regulated each other and then increase or decrease CXCR4 expression and downstream pathway, respectively. CXCR4 was confirmed as a direct target of miR-126. Our study demonstrated that high HOTAIR expression promote proliferation and metastasis in gastric cancer via miR-126/CXCR4 axis and downstream signaling pathways.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Gastrointestinal SurgeryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| | - Hao Lai
- Department of Gastrointestinal SurgeryGuangxi Cancer HospitalGuangxi Medical University Cancer HospitalNanning530001China
| | - Sheng‐Hong Wei
- Department of Gastrointestinal SurgeryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| | - Zai‐Sheng Ye
- Department of Gastrointestinal SurgeryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| | - Fu‐Sheng Gong
- Department of Molecular immune laboratoryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| | - Lu‐Chuan Chen
- Department of Gastrointestinal SurgeryFujian Cancer HospitalFujian Medical University Cancer HospitalFuzhou350001China
| |
Collapse
|
12
|
Liang Y, Feng G, Zhong S, Gao X, Tong Y, Cui W, Huang G, Zhang Z, Zhou X. An Inflammation-Immunity Classifier of 11 Chemokines for Prediction of Overall Survival in Head and Neck Squamous Cell Carcinoma. Med Sci Monit 2019; 25:4485-4494. [PMID: 31203306 PMCID: PMC6592142 DOI: 10.12659/msm.915248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chemokines are important in inflammation, immunity, tumor progression, and metastasis. The purpose of this research was to find an integrated-RNA signature of chemokine family genes to predict the survival prognosis in head and neck squamous carcinoma (HNSC) patients. MATERIAL AND METHODS Relevant data of 504 HNSC patients were extracted from The Cancer Genome Atlas (TCGA) database. Through analyzing RNA sequencing data, the univariate Cox model was used to identify chemokine family genes associated with survival and then to develop a multiple-RNA signature in the training set. The prediction value of this multiple-RNA signature was further verified in the validation and entire sets. The receiver operating characteristic curves were used to assess the predictive value of this multiple-RNA signature. RESULTS Eleven chemokines were included in this prognostic signature. Based on this 11-chemokine signature, we further categorized patients as high or low risk. Compared with low-risk patients, high-risk patients had shorter overall survival (OS) time in the training set [hazard ratio (HR)=3.497, 95% confidence interval (CI)=2.142-5.711, p<0.001], validation set (HR=3.575, 95% CI=1.988-6.390, p<0.001), and entire set (HR=3.416, 95% CI=2.363-4.939, p<0.001). This 11-chemokine signature was an independent prognostic factor for OS in these datasets (p<0.05). The AUC values for predicting overall survival within 48 months in the training, validation, and entire sets were 0.71, 0.69, and 0.69, respectively. CONCLUSIONS This 11-chemokine signature could serve as a reliable prognostic tool for HNSC patients and might be useful to guide individualized treatment or even gene target therapy for high-risk patients.
Collapse
Affiliation(s)
- Yushan Liang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guofei Feng
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Suhua Zhong
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoyu Gao
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yan Tong
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Wanmeng Cui
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guangwu Huang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhe Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
13
|
Bussu F, Graziani C, Gallus R, Cittadini A, Galli J, DE Corso E, DI Cintio G, Corbi M, Almadori G, Boninsegna A, Paludetti G, Sgambato A. IFN-γ and other serum cytokines in head and neck squamous cell carcinomas. ACTA ACUST UNITED AC 2019; 38:94-102. [PMID: 29967556 DOI: 10.14639/0392-100x-1530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 06/08/2017] [Indexed: 01/04/2023]
Abstract
SUMMARY Altered immune responses have been reported in head and neck cancer, and some of these responses have been associated with poor clinical outcomes. A multiple-array technology platform was used to simultaneously evaluate the levels of 25 cytokines. Pre-treatment serum levels were evaluated in 31 HNSCC patients and 6 healthy controls. The levels of 8 cytokines, specifically IL-1ra, IL-2, IL-5, IL-6, IL-8, IL-17, IFN-γ and IP-10, were significantly higher in patients than in controls. Among cancer patients we observed lower levels of IFN-γ and IL-7 in cases with nodal metastases compared to those with cN0 disease. We observed increases in the levels of some serum cytokines in HNSCC patients, as well as reductions in selected cytokines associated with regional progression. These findings provide an intriguing perspective on the development and validation of novel markers for follow-up evaluations and predictions of regional spreading in HNSCC patients.
Collapse
Affiliation(s)
- F Bussu
- Department of Otolaryngology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy; ENT Division, Azienda Ospedaliero Universitaria di Sassari, Italy
| | - C Graziani
- Department of Otolaryngology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy; Department of General Pathology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - R Gallus
- Department of Otolaryngology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - A Cittadini
- Department of General Pathology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - J Galli
- Department of Otolaryngology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - E DE Corso
- Department of Otolaryngology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - G DI Cintio
- Department of Otolaryngology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - M Corbi
- Department of General Pathology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - G Almadori
- Department of Otolaryngology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - A Boninsegna
- Department of General Pathology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - G Paludetti
- Department of Otolaryngology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| | - A Sgambato
- Department of General Pathology, Università Cattolica del S. Cuore, Policlinico Agostino Gemelli, Rome, Italy
| |
Collapse
|
14
|
Eckert F, Schilbach K, Klumpp L, Bardoscia L, Sezgin EC, Schwab M, Zips D, Huber SM. Potential Role of CXCR4 Targeting in the Context of Radiotherapy and Immunotherapy of Cancer. Front Immunol 2018; 9:3018. [PMID: 30622535 PMCID: PMC6308162 DOI: 10.3389/fimmu.2018.03018] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022] Open
Abstract
Cancer immunotherapy has been established as standard of care in different tumor entities. After the first reports on synergistic effects with radiotherapy and the induction of abscopal effects-tumor shrinkage outside the irradiated volume attributed to immunological effects of radiotherapy-several treatment combinations have been evaluated. Different immunotherapy strategies (e.g., immune checkpoint inhibition, vaccination, cytokine based therapies) have been combined with local tumor irradiation in preclinical models. Clinical trials are ongoing in different cancer entities with a broad range of immunotherapeutics and radiation schedules. SDF-1 (CXCL12)/CXCR4 signaling has been described to play a major role in tumor biology, especially in hypoxia adaptation, metastasis and migration. Local tumor irradiation is a known inducer of SDF-1 expression and release. CXCR4 also plays a major role in immunological processes. CXCR4 antagonists have been approved for the use of hematopoietic stem cell mobilization from the bone marrow. In addition, several groups reported an influence of the SDF-1/CXCR4 axis on intratumoral immune cell subsets and anti-tumor immune response. The aim of this review is to merge the knowledge on the role of SDF-1/CXCR4 in tumor biology, radiotherapy and immunotherapy of cancer and in combinatorial approaches.
Collapse
Affiliation(s)
- Franziska Eckert
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Karin Schilbach
- Department of General Pediatrics/Pediatric Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Lilia Bardoscia
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany.,Department of Radiation Oncology, University of Brescia, Brescia, Italy
| | - Efe Cumhur Sezgin
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology, Pharmacy and Biochemistry, University Hospital and University Tuebingen, Tuebingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Dong Z, Zhang L, Xu W, Zhang G. EGFR may participate in immune evasion through regulation of B7‑H5 expression in non‑small cell lung carcinoma. Mol Med Rep 2018; 18:3769-3779. [PMID: 30106102 PMCID: PMC6131583 DOI: 10.3892/mmr.2018.9361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/09/2018] [Indexed: 01/02/2023] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide; it has been ranked the most lethal type of cancer. Non‑small cell lung carcinoma (NSCLC) comprises >80% of all types of lung cancer. Although certain achievements have been made in the treatment of NSCLC, including the targeted gene drug epidermal growth factor receptor‑tyrosine kinase inhibitor (EGFR‑TKI), the five‑year survival rate of patients has not significantly increased. A previous study demonstrated that B7‑H5, a novel co‑stimulatory molecule in the B7 molecule family, was negatively correlated with EGFR in pancreatic cancer. Thus, in the present study, we aimed to investigate whether EGFR participates in immune evasion, probably through regulation of B7‑H5 expression. NCI‑H1299 NSCLCL cells were divided into control, mock, small interfering‑EGFR and EGFR‑TKI groups. The cell viability and apoptosis rate were analysed by a Cell Counting Kit‑8 assay and flow cytometry. The transforming growth factor (TGF)‑β and interleukin (IL)‑10 content was measured using an ELISA. The expression levels of EGFR, B7‑H5, Survivin, apoptosis regulator Bax, apoptosis regulator Bcl‑2 (Bcl‑2), TGF‑β, vascular endothelial growth factor (VEGF), IL‑10 and cyclooxygenase (COX)‑2 were assessed via quantitative PCR and western blotting. The activation of the tyrosine‑protein kinase JAK2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signalling pathway was detected using western blotting. The results demonstrated a notable negative correlation between EGFR and B7‑H5 expression levels in cancer tissues and cell lines. Inhibition of EGFR expression via gene silencing and EGFR inhibition markedly decreased cell viability and increased the apoptosis of NCI‑H1299 cells, by upregulating survivin and Bcl‑2 expression. The protein expression levels of TGF‑β, VEGF, IL‑10 and COX‑2 were additionally decreased, with weak activation of the JAK2/STAT3 signalling pathway. EGFR may be involved in immune evasion, possibly through regulation of B7‑H5 expression in NSCLC.
Collapse
Affiliation(s)
- Zhaohui Dong
- Intensive Care Unit, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Lanying Zhang
- Intensive Care Unit, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Wei Xu
- Intensive Care Unit, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Gensheng Zhang
- Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
16
|
Lavaee F, Zare S, Mojtahedi Z, Malekzadeh M, Khademi B, Ghaderi A. Serum CXCL12, but not CXCR4, Is Associated with Head and Neck Squamous Cell Carcinomas. Asian Pac J Cancer Prev 2018; 19:901-904. [PMID: 29693336 PMCID: PMC6031803 DOI: 10.22034/apjcp.2018.19.4.901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/12/2018] [Indexed: 11/27/2022] Open
Abstract
Background: Squamous cell carcinoma (SCC) is the most frequent malignancy of the head and neck (HN) region. We here evaluated associations of stromal cell derived factor-1 (SDF-1or CXCL12) and its receptor, CXCR4, with HNSCCs. Materials and Methods: Sixty newly diagnosed HNSCC patients were enrolled in the patient group, and 28 healthy individuals in the control group. Plasma levels of CXCL12 and CXCR4 were measured using ELISA kits. Results: There was a significant difference in mean CXCL12, but not CXCR4, plasma levels between the patient and control groups (P=0.0001). No significant associations were found between mean plasma levels of either CXCL12 or CXCR4 with age, gender, tumor site, tumor size, lymph-node involvement or tumor stage. Conclusion: For the first time, our findings demonstrate a significant association between serum CXCL12 but not CXCR4 levels and HNSCCs.
Collapse
Affiliation(s)
- Fatemeh Lavaee
- Oral and Dental Disease Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | | | | | | | | |
Collapse
|
17
|
Doescher J, Jeske S, Weissinger SE, Brunner C, Laban S, Bölke E, Hoffmann TK, Whiteside TL, Schuler PJ. Polyfunctionality of CD4+ T lymphocytes is increased after chemoradiotherapy of head and neck squamous cell carcinoma. Strahlenther Onkol 2018; 194:392-402. [DOI: 10.1007/s00066-018-1289-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
|
18
|
Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JM. Chemokines in homeostasis and diseases. Cell Mol Immunol 2018; 15:324-334. [PMID: 29375126 PMCID: PMC6052829 DOI: 10.1038/cmi.2017.134] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
For the past twenty years, chemokines have emerged as a family of critical mediators of cell migration during immune surveillance, development, inflammation and cancer progression. Chemokines bind to seven transmembrane G protein-coupled receptors (GPCRs) that are expressed by a wide variety of cell types and cause conformational changes in trimeric G proteins that trigger the intracellular signaling pathways necessary for cell movement and activation. Although chemokines have evolved to benefit the host, inappropriate regulation or utilization of these small proteins may contribute to or even cause diseases. Therefore, understanding the role of chemokines and their GPCRs in the complex physiological and diseased microenvironment is important for the identification of novel therapeutic targets. This review introduces the functional array and signals of multiple chemokine GPCRs in guiding leukocyte trafficking as well as their roles in homeostasis, inflammation, immune responses and cancer.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, P. R. China
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., 21702, Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Okayama, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA.
| |
Collapse
|
19
|
Zainal NS, Gan CP, Lau BF, Yee PS, Tiong KH, Abdul Rahman ZA, Patel V, Cheong SC. Zerumbone targets the CXCR4-RhoA and PI3K-mTOR signaling axis to reduce motility and proliferation of oral cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 39:33-41. [PMID: 29433681 DOI: 10.1016/j.phymed.2017.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/02/2017] [Accepted: 12/07/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND The CXCR4-RhoA and PI3K-mTOR signaling pathways play crucial roles in the dissemination and tumorigenesis of oral squamous cell carcinoma (OSCC). Activation of these pathways have made them promising molecular targets in the treatment of OSCC. Zerumbone, a bioactive monocyclic sesquiterpene isolated from the rhizomes of tropical ginger, Zingiber zerumbet (L.) Roscoe ex Sm. has displayed promising anticancer properties with the ability to modulate multiple molecular targets involved in carcinogenesis. While the anticancer activities of zerumbone have been well explored across different types of cancer, the molecular mechanism of action of zerumbone in OSCC remains largely unknown. PURPOSE Here, we investigated whether OSCC cells were sensitive towards zerumbone treatment and further determined the molecular pathways involved in the mechanism of action. METHODS Cytotoxicity, anti-proliferative, anti-migratory and anti-invasive effects of zerumbone were tested on a panel of OSCC cell lines. The mechanism of action of zerumbone was investigated by analysing the effects on the CXCR4-RhoA and PI3K-mTOR pathways by western blotting. RESULTS Our panel of OSCC cells was broadly sensitive towards zerumbone with IC50 values of less than 5 µM whereas normal keratinocyte cells were less responsive with IC50 values of more than 25 µM. Representative OSCC cells revealed that zerumbone inhibited OSCC proliferation and induced cell cycle arrest and apoptosis. In addition, zerumbone treatment inhibited migration and invasion of OSCC cells, with concurrent suppression of endogenous CXCR4 protein expression in a time and dose-dependent manner. RhoA-pull down assay showed reduction in the expression of RhoA-GTP, suggesting the inactivation of RhoA by zerumbone. In association with this, zerumbone also inhibited the PI3K-mTOR pathway through the inactivation of Akt and S6 proteins. CONCLUSION We provide evidence that zerumbone could inhibit the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways leading to the reduced cell viability of OSCC cells. Our results suggest that zerumbone is a promising phytoagent for development of new therapeutics for OSCC treatment.
Collapse
Affiliation(s)
- Nur Syafinaz Zainal
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500 Subang Jaya, Selangor, Malaysia
| | - Chai Phei Gan
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500 Subang Jaya, Selangor, Malaysia
| | - Beng Fye Lau
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pei San Yee
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500 Subang Jaya, Selangor, Malaysia
| | - Kai Hung Tiong
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500 Subang Jaya, Selangor, Malaysia; Oral Cancer Research and Co-ordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Zainal Ariff Abdul Rahman
- Oral Cancer Research and Co-ordinating Centre (OCRCC), Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia; Dept of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Vyomesh Patel
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500 Subang Jaya, Selangor, Malaysia
| | - Sok Ching Cheong
- Cancer Research Malaysia, No. 1, Jalan SS12/1A, 47500 Subang Jaya, Selangor, Malaysia; Dept of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
20
|
De-Colle C, Menegakis A, Mönnich D, Welz S, Boeke S, Sipos B, Fend F, Mauz PS, Tinhofer I, Budach V, Abu Jawad J, Stuschke M, Balermpas P, Rödel C, Grosu AL, Abdollahi A, Debus J, Belka C, Ganswindt U, Pigorsch S, Combs SE, Lohaus F, Linge A, Krause M, Baumann M, Zips D. SDF-1/CXCR4 expression is an independent negative prognostic biomarker in patients with head and neck cancer after primary radiochemotherapy. Radiother Oncol 2017; 126:125-131. [PMID: 29061496 DOI: 10.1016/j.radonc.2017.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Preclinical and clinical data suggest that the chemokine pathway governed by SDF-1 and CXCR4 contributes to a resistant phenotype. This retrospective biomarker study aims to explore the specific prognostic value of SDF-1 and CXCR4 expression in locally advanced head and neck squamous cell carcinomas (HNSCC) treated with primary radiochemotherapy (RT-CT). MATERIAL AND METHODS Biopsies from 141 HNSCC tumours of the oral cavity, oropharynx and hypopharynx were evaluated for SDF-1 and CXCR4 expression by immunofluorescence. SDF-1 and CXCR4 expression was correlated with clinico-pathological characteristics and outcome after RT-CT. RESULTS Patients with tumours exhibiting overexpression of intracellular SDF-1 and CXCR4 have a higher risk for loco-regional relapse and a worse overall survival after RT-CT (multivariate analysis, hazard ratio 2.33, CI [1.18-4.62], p = 0.02 and hazard ratio 2.02, CI [1.13-3.59], p = 0.02, respectively). Similar results were observed when only the subgroup of HPV DNA negative patients were analysed (hazard ratio 2.23 and 2.16, p = 0.02 and p = 0.01, respectively). CONCLUSIONS Our data support the importance of SDF-1 and CXCR4 expression for loco-regional control and overall survival in HNSCC after primary radiochemotherapy. Prospective multivariate validation and further studies into CXCR4 inhibition to overcome radiation resistance are warranted.
Collapse
Affiliation(s)
- Chiara De-Colle
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany.
| | - Apostolos Menegakis
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - David Mönnich
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Tübingen, Germany
| | - Stefan Welz
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Simon Boeke
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Bence Sipos
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Falko Fend
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany
| | - Inge Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Berlin, Germany; Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Volker Budach
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Berlin, Germany; Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Jehad Abu Jawad
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Essen, Germany; Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Essen, Germany; Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Frankfurt, Germany; Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Claus Rödel
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Frankfurt, Germany; Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Anca-Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Freiburg, Germany; Department of Radiation Oncology, University of Freiburg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany; National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Translational Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany; National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany; Clinical Cooperation Unit Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Munich, Germany; Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ute Ganswindt
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Munich, Germany; Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Steffi Pigorsch
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Munich, Germany; Department of Radiation Oncology, Technische Universität München, Germany.; Institute for Innovative radiation therapy in Helmholtz-Zentrum München, Germany
| | - Stephanie E Combs
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Munich, Germany; Department of Radiation Oncology, Technische Universität München, Germany.; Institute for Innovative radiation therapy in Helmholtz-Zentrum München, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Mechthild Krause
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; National Center for Tumor Diseases (NCT), partner site Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Germany; German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Tübingen, Germany
| |
Collapse
|
21
|
Niinuma T, Kai M, Kitajima H, Yamamoto E, Harada T, Maruyama R, Nobuoka T, Nishida T, Kanda T, Hasegawa T, Tokino T, Sugai T, Shinomura Y, Nakase H, Suzuki H. Downregulation of miR-186 is associated with metastatic recurrence of gastrointestinal stromal tumors. Oncol Lett 2017; 14:5703-5710. [PMID: 29113198 PMCID: PMC5661378 DOI: 10.3892/ol.2017.6911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/03/2017] [Indexed: 01/14/2023] Open
Abstract
Although dysregulation of microRNAs (miRNAs/miRs) is a common feature of human malignancies, its involvement in gastrointestinal stromal tumors (GISTs) is not fully understood. The present study aimed to identify the miRNAs that perform a role in GIST metastasis. miRNA expression profiles from a series of 32 primary GISTs were analyzed using microarrays, and miR-186 was observed to be downregulated in tumors exhibiting metastatic recurrence. Reverse transcription-quantitative polymerase chain reaction analysis of an independent cohort of 100 primary GISTs revealed that low miR-186 expression is associated with metastatic recurrence and a poor prognosis. Inhibition of miR-186 in GIST-T1 cells promoted cell migration. Gene expression microarray analysis demonstrated that miR-186 inhibition upregulated a set of genes implicated in cancer metastasis, including insulin-like growth factor-binding protein 3, AKT serine/threonine kinase 2, hepatocyte growth factor receptor, CXC chemokine receptor 4 and epidermal growth factor-containing fibulin-like extracellular matrix protein 1. These results suggest that the downregulation of miR-186 is involved in the metastatic recurrence of GISTs, and that miR-186 levels could potentially be a predictive biomarker for clinical outcome.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.,Department of Gastroenterology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Reo Maruyama
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takayuki Nobuoka
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Toshirou Nishida
- Department of Surgery, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tatsuo Kanda
- Department of Surgery, Sanjo General Hospital, Sanjo 955-0055, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takashi Tokino
- Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University School of Medicine, Morioka 020-8505, Japan
| | | | - Hiroshi Nakase
- Department of Gastroenterology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
22
|
De-Colle C, Mönnich D, Welz S, Boeke S, Sipos B, Fend F, Mauz PS, Tinhofer I, Budach V, Jawad JA, Stuschke M, Balermpas P, Rödel C, Grosu AL, Abdollahi A, Debus J, Bayer C, Belka C, Pigorsch S, Combs SE, Lohaus F, Linge A, Krause M, Baumann M, Zips D, Menegakis A. SDF-1/CXCR4 expression in head and neck cancer and outcome after postoperative radiochemotherapy. Clin Transl Radiat Oncol 2017; 5:28-36. [PMID: 29594214 PMCID: PMC5833920 DOI: 10.1016/j.ctro.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/06/2017] [Accepted: 06/10/2017] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Outcome after postoperative radiochemotherapy (RT-CT) for patients with advanced head and neck squamous cell carcinomas (HNSCC) remains unsatisfactory, especially among those with HPV negative tumours. Therefore, new biomarkers are needed to further define subgroups for individualised therapeutic approaches. Preclinical and first clinical observations showed that the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12) play an important role in tumour cell proliferation, survival, cancer progression, metastasis and treatment resistance. However, the data on the prognostic value of SDF-1/CXCR4 expression for HNSCC are conflicting. The aim of our hypothesis-generating study was to retrospectively explore the prognostic potential of SDF-1/CXCR4 in a well-defined cohort of HNSCC patients collected within the multicenter biomarker study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). MATERIAL AND METHODS Patients with stage III and IVA HNSCC of the oral cavity, oropharynx and hypopharynx were treated with resection and adjuvant radiotherapy (RT) with ≥60 Gy and concurrent cisplatin-based chemotherapy (CT). Tissue micro-arrays (TMAs) from a total of 221 patients were generated from surgical specimens, 201 evaluated for the SDF-1 and CXCR4 expression by immunofluorescence and correlated with clinico-pathological and outcome data. RESULTS In univariate and multivariate analyses intracellular SDF-1 expression was associated with lower loco-regional control (LRC) in the entire patient group as well as in the HPV16 DNA negative subgroup. CXCR4 expression showed a trend for lower LRC in the univariate analysis which was not confirmed in the multivariate analysis. Neither for SDF-1 nor CXCR4 expression associations with distant metastasis free or overall survival were found. CONCLUSIONS Our exploratory data support the hypothesis that overexpression of intracellular SDF-1 is an independent negative prognostic biomarker for LRC after postoperative RT-CT in high-risk HNSCC. Prospective validation is warranted and further exploration of SDF-1/CXCR4 as a potential therapeutic target to overcome treatment resistance in HNSCC appears promising.
Collapse
Affiliation(s)
- Chiara De-Colle
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - David Mönnich
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Tübingen, Germany
| | - Stefan Welz
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Simon Boeke
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bence Sipos
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Falko Fend
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Inge Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Volker Budach
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Jehad Abu Jawad
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Claus Rödel
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Anca-Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Freiburg, Germany
- Department of Radiation Oncology, University of Freiburg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Translational Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Clinical Cooperation Unit Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Christine Bayer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Steffi Pigorsch
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Institute for Innovative Radiation Therapy in Helmholtz-Zentrum München, Germany
| | - Stephanie E. Combs
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Institute for Innovative Radiation Therapy in Helmholtz-Zentrum München, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Mechthild Krause
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Tübingen, Germany
| | - Apostolos Menegakis
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
23
|
Al-Jokhadar M, Al-Mandily A, Zaid K, Azar Maalouf E. CCR7 and CXCR4 Expression in Primary Head and Neck Squamous Cell Carcinomas and Nodal Metastases – a Clinical and Immunohistochemical Study. Asian Pac J Cancer Prev 2017; 18:1093-1104. [PMID: 28547946 PMCID: PMC5494221 DOI: 10.22034/apjcp.2017.18.4.1093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Squamous cell carcinomas (SCCs) are common head and neck malignancies demonstrating lymph node LN involvement. Recently chemokine receptor overxpression has been reported in many cancers. Of particular interest, CCR7 appears to be a strong mediator of LN metastases, while CXCR4 may mediate distant metastases. Any relations between their expression in primary HNSCCs and metastatic lymph nodes need to be clarified. Aims: To investigate CCR7 andCXCR4 expression in primary HNSCCs of all tumor sizes, clinical stages and histological grades, as well as involved lymph nodes, then make comparisons, also with control normal oral epithelium. Materials and Methods: The sample consisted of 60 formalin-fixed, paraffin-embedded specimens of primary HNSCCs, 77 others of metastasi-positive lymph nodes, and 10 of control normal oral epithelial tissues. Sections were conventionally stained with H&E and immunohistochemically with monoclonal anti-CCR7 and monoclonal anti-CXCR4 antibodies. Positive cells were counted under microscopic assessment in four fields (X40) per case. Results: There was no variation among primary HNSCC tumors staining positive for CCR7 and CXCR4 with tumor size of for CCR7 with lymph node involvement. However, a difference was noted between primary HNSCC tumors stained by CXCR4 with a single as compared to more numerous node involvement. CXCR4 appear to vary with the clinical stagebut no links were noted with histological grades. Staining for primary HNSCC tumors and metastatic lymph nodes correlated.
Collapse
Affiliation(s)
- Maya Al-Jokhadar
- Department of Oral Histology and Pathology, Faculty of Dentistry, Damascus University, Damascus, Syria.
| | | | | | | |
Collapse
|
24
|
Utispan K, Koontongkaew S. Fibroblasts and macrophages: Key players in the head and neck cancer microenvironment. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Expression of the CXCL12/CXCR4 chemokine axis predicts regional control in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2016; 273:4525-4533. [PMID: 27328961 DOI: 10.1007/s00405-016-4144-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/11/2016] [Indexed: 01/15/2023]
Abstract
Expression of the CXCL12/CXCR4 chemokine axis has been related with the appearance of metastatic recurrence survival, including regional and distant recurrence, in patients with head and neck squamous cell carcinoma (HNSCC). RT-PCR was used to determine mRNA expression levels of CXCL12 and CXCR4 in biopsy tumor samples in 111 patients with HNSCC. Five-year regional recurrence-free survival for patients with low CXCR4 expression (n = 39, 31.5 %) was 97.4 %, for patients with high CXCR4/high CXCL12 expression (n = 22, 19.8 %) it was 94.7 %, and for patients with high CXCR4/low CXCL12 expression (n = 50, 45.0 %) it was 63.3 %. We found significant differences in the regional recurrence-free survival according to CXCR4/CXCL12 expression values (P = 0.001). HNSCC patients with high CXCR4 and low CXCL12 expression values had a significantly higher risk of regional recurrence and could benefit from a more intense treatment of lymph node areas in the neck.
Collapse
|
26
|
Mao Y, Li W, Chen K, Xie Y, Liu Q, Yao M, Duan W, Zhou X, Liang R, Tao M. B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget 2016; 6:3452-61. [PMID: 25609202 PMCID: PMC4413666 DOI: 10.18632/oncotarget.3097] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 12/25/2014] [Indexed: 12/20/2022] Open
Abstract
B7-H1 and B7-H3, two members of the B7 family that are thought to regulate T-cell activation, are expressed in human non-small cell lung cancer (NSCLC). However, their prognostic significance is poorly understood. In the present study we reported that B7-H1 and B7-H3 were expressed in 96/128 (72.7%) and 89/128 (69.5%) samples, respectively. B7-H1 and B7-H3 expression and the number of infiltrating T-cell intracellular antigen-1+ and interferon-γ+ cells in NSCLC tissues were significantly higher than those in the adjacent tissues (p<0.01). High B7-H1 or B7-H3 expression was associated with lymph node metastasis and TNM stage (p<0.05, respectively). Sex, TNM stage, B7-H1, B7-H3, and T-cell intracellular antigen-1 expression remained significant prognostic factors after adjusting for other prognostic factors in a multivariate Cox proportional hazards regression model. In vitro studies revealed that knockdown of B7-H3 on tumor cells enhanced T-cell growth and interferon-γ secretion when stimulated by anti-CD3 and anti-CD28 monoclonal antibodies. Interferon-γ reduced CXCR4 expression on cancer cells and inhibited the CXCL12-induced cell migration. B7-H1 and B7-H3 are independent predictors of poorer survival in patients with NSCLC. Interference of the signal pathways of these negative regulatory molecules might be a new strategy for treating NSCLC.
Collapse
Affiliation(s)
- Yixiang Mao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Xie
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Yao
- Department of Pathology, Punan Hospital, Shanghai, China
| | - Weiming Duan
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiumin Zhou
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rongrui Liang
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Institute of Clinical Immunology, Suzhou, China
| |
Collapse
|
27
|
Wang W, Liu D, Yang L, Li Y, Xu H, Wang F, Zhao J, Zhang L. CXCR4 overexpression correlates with poor prognosis in myasthenia gravis–associated thymoma. Hum Pathol 2016; 49:49-53. [DOI: 10.1016/j.humpath.2015.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
|
28
|
CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget 2016; 6:5022-40. [PMID: 25669980 PMCID: PMC4467131 DOI: 10.18632/oncotarget.3217] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 12/28/2014] [Indexed: 01/11/2023] Open
Abstract
C-X-C chemokine receptor 4 (CXCR4) is frequently over-expressed in various types of cancer; many agents against CXCR4 are in clinical development currently despite variable data for the prognostic impact of CXCR4 expression. Here eighty-five studies with a total of 11,032 subjects were included to explore the association between CXCR4 and progression-free survival (PFS) or overall survival (OS) in subjects with cancer. Pooled analysis shows that CXCR4 over-expression is significantly associated with poorer PFS (HR 2.04; 95% CI, 1.72-2.42) and OS (HR=1.94; 95% CI, 1.71-2.20) irrespective of cancer types. Subgroup analysis indicates significant association between CXCR4 and shorter PFS in hematological malignancy, breast cancer, colorectal cancer, esophageal cancer, renal cancer, gynecologic cancer, pancreatic cancer and liver cancer; the prognostic effects remained consistent across age, risk of bias, levels of adjustment, median follow-up period, geographical area, detection methods, publication year and size of studies. CXCR4 over-expression predicts unfavorable OS in hematological malignancy, breast cancer, colorectal cancer, esophageal cancer, head and neck cancer, renal cancer, lung cancer, gynecologic cancer, liver cancer, prostate cancer and gallbladder cancer; these effects were independence of age, levels of adjustment, publication year, detection methods and follow-up period. In conclusion, CXCR4 over-expression is associated with poor prognosis in cancer.
Collapse
|
29
|
Rave-Fränk M, Tehrany N, Kitz J, Leu M, Weber HE, Burfeind P, Schliephake H, Canis M, Beissbarth T, Reichardt HM, Wolff HA. Prognostic value of CXCL12 and CXCR4 in inoperable head and neck squamous cell carcinoma. Strahlenther Onkol 2015; 192:47-54. [PMID: 26374452 DOI: 10.1007/s00066-015-0892-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The chemokine CXCL12 and its receptor CXCR4 can affect tumor growth, recurrence, and metastasis. We tested the hypothesis that the CXCL12 and CXCR4 expression influences the prognosis of patients with inoperable head and neck cancer treated with definite radiotherapy or chemoradiotherapy. METHODS Formalin-fixed paraffin-embedded pretreatment tumor tissue from 233 patients with known HPV/p16(INK4A) status was analyzed. CXCL12 and CXCR4 expressions were correlated with pretreatment parameters and survival data by univariate and multivariate Cox regression. RESULTS CXCL12 was expressed in 43.3 % and CXCR4 in 66.1 % of the samples and both were correlated with HPV/p16(INK4A) positivity. A high CXCL12 expression was associated with increased overall survival (p = 0.036), while a high CXCR4 expression was associated with decreased metastasis-free survival (p = 0.034). CONCLUSION A high CXCR4 expression could be regarded as a negative prognostic factor in head and neck cancer because it may foster metastatic spread. This may recommend CXCR4 as therapeutic target for combating head and neck cancer metastasis.
Collapse
Affiliation(s)
- Margret Rave-Fränk
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Narges Tehrany
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Julia Kitz
- Department of Pathology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Martin Leu
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Hanne Elisabeth Weber
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Peter Burfeind
- Department of Human Genetics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Henning Schliephake
- Department of Oral and Maxillofacial Surgery, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Tim Beissbarth
- Institute of Medical Statistics, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Holger Michael Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Hendrik Andreas Wolff
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
30
|
CXCL12 and CXCR4, but not CXCR7, are primarily expressed by the stroma in head and neck squamous cell carcinoma. Pathology 2015; 47:45-50. [PMID: 25474514 DOI: 10.1097/pat.0000000000000191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The CXCL12/CXCR4 axis is involved in numerous models of metastatic dissemination, including head and neck squamous cell carcinoma (HNSCC). We assessed the relative expressions of CXCL12, CXCR4 and CXCR7 in the stroma and the tumour of HNSCC, and evaluated the methylation status of the CXCL12 promoter.Snap-frozen, HPV negative HNSCC samples were micro-dissected to isolate the tumoural and stromal compartments. The expression levels of CXCL12, CXCR4 and CXCR7 were assessed by qRT-PCR, and the methylation level of the CXCL12 promoter was evaluated by pyrosequencing.In total, 23 matched tumour/stroma samples were analysed. Higher expressions of CXCR4 and CXCL12 were observed in the stroma (p = 0.012 and p < 0.0001, respectively). No significant difference in expression was observed for CXCR7. A high methylation level (>40%) of the CXCL12 promoter was observed in only a few tumoural samples (5/23) and was associated with a lower expression of the gene (p = 0.03).Stromal cells, rather than the tumour itself, are mainly responsible for the expression of both CXCL12 and CXCR4 expression in HNSCC. CXCR7 expression did not differ between the two compartments and was not related to CXCL12 or CXCR4 expression. Finally, the methylation of the CXCL12 promoter could only explain the low intra-tumoural expression of this gene in 20% of cases.
Collapse
|
31
|
Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol 2015; 6:12. [PMID: 25688243 PMCID: PMC4311683 DOI: 10.3389/fimmu.2015.00012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022] Open
Abstract
The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.
Collapse
Affiliation(s)
- Maria Vela
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Mariana Aris
- Centro de Investigaciones Oncológicas, Fundación Cáncer, Buenos Aires, Argentina
| | - Mercedes Llorente
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| | - Jose A. Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB/CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
- Protein Tools Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB/CSIC), Madrid, Spain
| |
Collapse
|
32
|
Ohmura G, Tsujikawa T, Yaguchi T, Kawamura N, Mikami S, Sugiyama J, Nakamura K, Kobayashi A, Iwata T, Nakano H, Shimada T, Hisa Y, Kawakami Y. Aberrant Myosin 1b Expression Promotes Cell Migration and Lymph Node Metastasis of HNSCC. Mol Cancer Res 2014; 13:721-31. [PMID: 25421751 DOI: 10.1158/1541-7786.mcr-14-0410] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED Lymph node metastasis is the major clinicopathologic feature associated with poor prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Here, web-based bioinformatics meta-analysis was performed to elucidate the molecular mechanism of lymph node metastasis of human HNSCC. Preferential upregulation of Myosin 1b (MYO1B) transcript in HNSCC datasets was identified. Myo1b mRNA was highly expressed in human HNSCC cells and patient tissue specimens compared with their normal counterparts as shown by quantitative PCR (qPCR) analyses. Immunohistochemistry (IHC)-detected Myo1b expression was significantly correlated with lymph node metastases in patients with oral cancer of the tongue. HNSCC with high expression of Myo1b and chemokine receptor 4 (CCR4), another metastasis-associated molecule, was strongly associated with lymph node metastasis. RNA interference (RNAi) of Myo1b in HNSCC cells, SAS and HSC4, significantly inhibited migratory and invasive abilities through decreased large protrusion formation of cell membranes. Finally, Myo1b knockdown in SAS cells significantly inhibited in vivo cervical lymph node metastases in a cervical lymph node metastatic mouse model system. IMPLICATIONS Myo1b is functionally involved in lymph node metastasis of human HNSCC through enhanced cancer cell motility and is an attractive target for new diagnostic and therapeutic strategies for patients with HNSCC.
Collapse
Affiliation(s)
- Gaku Ohmura
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan. Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto City, Kyoto, Japan
| | - Takahiro Tsujikawa
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan. Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto City, Kyoto, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Naoshi Kawamura
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Shuji Mikami
- Division of Diagnostic Pathology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Juri Sugiyama
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Kenta Nakamura
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Asuka Kobayashi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Takashi Iwata
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hiroshi Nakano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto City, Kyoto, Japan
| | - Taketoshi Shimada
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto City, Kyoto, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto City, Kyoto, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
33
|
Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS. Chemokines in tumor progression and metastasis. Oncotarget 2014; 4:2171-85. [PMID: 24259307 PMCID: PMC3926818 DOI: 10.18632/oncotarget.1426] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines play a vital role in tumor progression and metastasis. Chemokines are involved in the growth of many cancers including breast cancer, ovarian cancer, pancreatic cancer, melanoma, lung cancer, gastric cancer, acute lymphoblastic leukemia, colon cancer, non-small lung cancer, non-hodgkin's lymphoma, etc. The expression of chemokines and their receptors is altered in many malignancies and leads to aberrant chemokine receptor signaling. This review focuses on the role of chemokines in key processes that facilitate tumor progression including proliferation, senescence, angiogenesis, epithelial mesenchymal transition, immune evasion and metastasis.
Collapse
Affiliation(s)
- Purvaba J Sarvaiya
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
34
|
Perineural growth in head and neck squamous cell carcinoma: a review. Oral Oncol 2014; 51:16-23. [PMID: 25456006 DOI: 10.1016/j.oraloncology.2014.10.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
Perineural growth is a unique route of tumor metastasis that is associated with poor prognosis in several solid malignancies. It is diagnosed by the presence of tumor cells inside the neural space seen on histological or imaging evaluations. Little is known about molecular mechanisms involved in the growth and spread of tumor cells in neural spaces. The poor prognosis associated with perineural growth and lack of targeted approaches necessitates the study of molecular factors involved in communication between tumor and neural cells. Perineural growth rates, shown to be as high as 63% in head and neck squamous cell carcinoma (HNSCC), correlate with increased local recurrence and decreased disease-free survival. Here we describe the literature on perineural growth in HNSCC. In addition, we discuss factors implicated in perineural growth of cancer. These factors include brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 and -4, glial cell-line derived neurotrophic factor (GDNF), the neural cell adhesion molecule (NCAM), substance P (SP), and chemokines. We also explore the literature on membrane receptors, including the Trk family and the low-affinity nerve growth factor receptor. This review highlights areas for further study of the mechanisms of perineural invasion which may facilitate the identification of therapeutic targets in HNSCC.
Collapse
|
35
|
Jung Y, Wang J, Lee E, McGee S, Berry JE, Yumoto K, Dai J, Keller ET, Shiozawa Y, Taichman RS. Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Mol Cancer Res 2014; 13:197-207. [PMID: 25139998 DOI: 10.1158/1541-7786.mcr-14-0118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Annexin 2 (ANXA2) plays a critical role in hematopoietic stem cell (HSC) localization to the marrow niche. In part, ANXA2 supports HSCs by serving as an anchor for stromal-derived factor-1 (CXCL12/SDF-1). Recently, it was demonstrated that prostate cancer cells, like HSCs, use ANXA2 to establish metastases in marrow. The present study determined the capacity of ANXA2 expression by bone marrow stromal cells (BMSC) to facilitate tumor recruitment and growth through ANXA2-CXCL12 interactions. Significantly more CXCL12 was expressed by BMSC(Anxa2) (+/+) than by BMSC(Anxa2) (-/-) resulting in more prostate cancer cells migrating and binding to BMSC(Anxa2) (+/+) than BMSC(Anxa2) (-/-), and these activities were reduced when CXCL12 interactions were blocked. To further confirm that BMSC signaling through ANXA2-CXCL12 plays a critical role in tumor growth, immunocompromised SCID mice were subcutaneously implanted with human prostate cancer cells mixed with BMSC(Anxa2) (+/+) or BMSC(Anxa2) (-/-). Significantly larger tumors grew in the mice when the tumors were established with BMSC(Anxa2) (+/+) compared with the tumors established with BMSC(Anxa2) (-/-). In addition, fewer prostate cancer cells underwent apoptosis when cocultured with BMSC(Anxa2) (+/+) compared with BMSC(Anxa2) (-/-), and similar results were obtained in tumors grown in vivo. Finally, significantly more vascular structures were observed in the tumors established with the BMSC(Anxa2) (+/+) compared with the tumors established with BMSC(Anxa2) (-/-). Thus, ANXA2-CXCL12 interactions play a crucial role in the recruitment, growth, and survival of prostate cancer cells in the marrow. IMPLICATIONS The tumor microenvironment interaction between ANXA2-CXCL12 is critical for metastatic phenotypes and may impact chemotherapeutic potential.
Collapse
Affiliation(s)
- Younghun Jung
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Jingcheng Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Eunsohl Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Samantha McGee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Janice E Berry
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Kenji Yumoto
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Jinlu Dai
- Department of Urology and Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Evan T Keller
- Department of Urology and Pathology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Yusuke Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan.
| |
Collapse
|
36
|
Tan XY, Chang S, Liu W, Tang HH. Silencing of CXCR4 inhibits tumor cell proliferation and neural invasion in human hilar cholangiocarcinoma. Gut Liver 2013; 8:196-204. [PMID: 24672662 PMCID: PMC3964271 DOI: 10.5009/gnl.2014.8.2.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/24/2013] [Accepted: 04/16/2013] [Indexed: 12/25/2022] Open
Abstract
Background/Aims To evaluate the expression of CXC motif chemokine receptor 4 (CXCR4) in the tissues of patients with hilar cholangiocarcinoma (hilar-CCA) and to investigate the cell proliferation and frequency of neural invasion (NI) influenced by RNAi-mediated CXCR4 silencing. Methods An immunohistochemical technique was used to detect the expression of CXCR4 in 41 clinical tissues, including hilar-CCA, cholangitis, and normal bile duct tissues. The effects of small interference RNA (siRNA)-mediated CXCR4 silencing were detected in the hilar-CCA cell line QBC939. Cell proliferation was determined by MTT. Expression of CXCR4 was monitored by quantitative real time polymerase chain reaction and Western blot analysis. The NI ability of hilar-CCA cells was evaluated using a perineural cell and hilar-CCA cell coculture migration assay. Results The expression of CXCR4 was significantly induced in clinical hilar-CCA tissue. There was a positive correlation between the expression of CXCR4 and lymph node metastasis/NI in hilar-CCA patients (p<0.05). Silencing of CXCR4 in tumor cell lines by siRNA led to significantly decreased NI (p<0.05) and slightly decreased cell proliferation. Conclusions CXCR4 is likely correlated with clinical recurrence of hilar-CCA. CXCR4 is involved in the invasion and proliferation of human hilar-CCA cell line QBC939, indicating that CXCR4 could be a promising therapeutic target for hilar-CCA.
Collapse
Affiliation(s)
- Xin-Yu Tan
- Department of Emergency, Xiangya Hospital, Central-South University, Changsha, China
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital, Central-South University, Changsha, China
| | - Wei Liu
- Department of Intensive Care Unit, Xiangya Hospital, Central-South University, Changsha, China
| | - Hui-Huan Tang
- Department of General Surgery, Xiangya Hospital, Central-South University, Changsha, China
| |
Collapse
|
37
|
Albert S, Riveiro ME, Halimi C, Hourseau M, Couvelard A, Serova M, Barry B, Raymond E, Faivre S. Focus on the role of the CXCL12/CXCR4 chemokine axis in head and neck squamous cell carcinoma. Head Neck 2013; 35:1819-28. [PMID: 23468253 DOI: 10.1002/hed.23217] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2012] [Indexed: 12/28/2022] Open
Abstract
The human chemokine system includes approximately 48 chemokines and 19 chemokine receptors. The CXCL12/CXCR4 system is one of the most frequently studied that is also found overexpressed in a large variety of tumors. The CXCL12/CXCR4 axis has been increasingly identified as an important target in cancer growth, metastasis, relapse, and resistance to therapy. In this review, we highlight current knowledge of the molecular mechanisms involving chemokines CXCL12/CXCR4 and their consequences in head and neck squamous cell carcinoma (HNSCC). Overexpression of CXCL12/CXCR4 in HNSCC appears to activate cellular functions, including motility, invasion, and metastatic processes. Current findings suggest that CXCR4 and epithelial-mesenchymal transition markers are associated with tumor aggressiveness and a poor prognosis, and may be suitable biomarkers for head and neck tumors with high metastatic potential. Furthermore, knowledge of the role of CXCR4 in HNSCC could influence the development of new targeted therapies for treatment, aimed at improving the prognosis of this disease.
Collapse
Affiliation(s)
- Sébastien Albert
- INSERM U728, RayLab, and Departments of Medical Oncology, Beaujon University Hospital (AP-HP, Paris 7 Diderot), Clichy, France; Department of Head and Neck Surgery, Bichat University Hospital, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tsujikawa T, Yaguchi T, Ohmura G, Ohta S, Kobayashi A, Kawamura N, Fujita T, Nakano H, Shimada T, Takahashi T, Nakao R, Yanagisawa A, Hisa Y, Kawakami Y. Autocrine and paracrine loops between cancer cells and macrophages promote lymph node metastasis via CCR4/CCL22 in head and neck squamous cell carcinoma. Int J Cancer 2012. [PMID: 23180648 DOI: 10.1002/ijc.27966] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lymph node metastasis is a poor prognostic factor for patients with head and neck squamous cell carcinoma (HNSCC). However, its molecular mechanism has not yet been fully understood. In our study, we investigated the expression of CCR4 and its ligand CCL22 in the HNSCC tumor microenvironment and found that the CCR4/CCL22 axis was involved in lymph node metastasis of HNSCC. CCR4 was expressed in 20 of 31 (64.5%) human tongue cancer tissues, and its expression was significantly correlated with lymph node metastasis (p < 0.01) and lymphatic invasion (p < 0.05). CCR4 was expressed in three of five human HNSCC cell lines tested. CCR4(+) HNSCC cells, but not CCR4(-) cells, showed enhanced migration toward CCL22, indicating that functional CCR4 was expressed in HNSCC cell lines. CCL22 was also expressed in cancer cells (48.4% of tongue cancer tissues) or CD206(+) M2-like macrophages infiltrated in tumors and draining lymph nodes. CCL22 produced by cancer cells or CD206(high) M2-like macrophages increased the cell motility of CCR4(+) HNSCC cells in vitro in an autocrine or paracrine manner. In the mouse SCCVII in vivo model, CCR4(+) cancer cells, but not CCR4(-) cells, metastasized to lymph nodes which contained CCL22 producing M2-like macrophages. These results demonstrate that lymph node metastasis of CCR4(+) HNSCC is promoted by CCL22 in an autocrine or M2-like macrophage-dependent paracrine manner. Therefore, the CCR4/CCL22 axis may be an attractive target for the development of diagnostic and therapeutic strategies for patients with HNSCC.
Collapse
Affiliation(s)
- Takahiro Tsujikawa
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Plectin promotes migration and invasion of cancer cells and is a novel prognostic marker for head and neck squamous cell carcinoma. J Proteomics 2012; 75:1803-15. [DOI: 10.1016/j.jprot.2011.12.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 01/15/2023]
|
40
|
Mitsui H, Shibata K, Suzuki S, Umezu T, Mizuno M, Kajiyama H, Kikkawa F. Functional interaction between peritoneal mesothelial cells and stem cells of ovarian yolk sac tumor (SC-OYST) in peritoneal dissemination. Gynecol Oncol 2012; 124:303-10. [DOI: 10.1016/j.ygyno.2011.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/27/2022]
|
41
|
Induction of metastatic cancer stem cells from the NK/LAK-resistant floating, but not adherent, subset of the UP-LN1 carcinoma cell line by IFN-γ. J Transl Med 2011; 91:1502-13. [PMID: 21691263 DOI: 10.1038/labinvest.2011.91] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
As an advanced status of cancer stem cells (CSCs), metastatic CSCs (mCSCs) have been proposed to be the essential seeds that initiate tumor metastasis. However, the biology of mCSCs is poorly understood. In this study, we used a lymph node (LN) metastatic CEA-producing carcinoma cell line, UP-LN1, characterized by the persistent appearance of adherent (A) and floating (F) cells in culture, to determine the distribution of CSCs and mechanisms for the induction of mCSCs. F and A cells displayed distinct phenotypes, CD44(high)/CD24(low) and CD44(low)/CD24(high), respectively. The CSC-rich nature of F cells was typified by stronger expression of multiple drug resistance genes and a 7.8-fold higher frequency of tumor-initiating cells in NOD/SCID mice when compared with A cells. F cells showed a greater depression in HLA class I expression and an extreme resistance to NK/LAK-mediated cytolysis. Moreover, the NK/LAK-resistant F cells were highly susceptible to IFN-γ-mediated induction of surface CXCR4, with concomitant downregulation of cytoplasmic CXCL12 expression, whereas these two parameters remained essentially unchanged in NK/LAK-sensitive A cells. Following the induction of surface CXCR4, enhanced migratory/invasive potential of F cells was demonstrated by in vitro assays. Confocal immunofluorescence microscopy showed the two distinct phenotypes of F and A cells could be correspondingly identified in monodispersed and compact tumor cell areas within the patient's LN tumor lesion. In response to IFN-γ or activated NK/LAK cells, the CXCR4(+) mCSCs could be only induced from the CSCs, which were harbored in the highly tumorigenic CD44(high)/CD24(low) F subset. Our results revealed the complexity and heterogeneity of the CSC of this cell line/tumor and the differential immunomodulatory roles of F and A cells. A better understanding of the interactions among different classes of CSCs and their niches may assist us in eradicating the CSCs/mCSCs through targeted immunotherapy, chemotherapy, or both.
Collapse
|
42
|
Abstract
It has been 10 years since the role of a chemokine receptor, CXCR4, in breast cancer metastasis was first documented. Since then, the field of chemokines and cancer has grown significantly, so it is timely to review the progress, analyse the studies to date and identify future challenges facing this field. Metastasis is the major factor that limits survival in most patients with cancer. Therefore, understanding the molecular mechanisms that control the metastatic behaviour of tumour cells is pivotal for treating cancer successfully. Substantial experimental and clinical evidence supports the conclusion that molecular mechanisms control organ-specific metastasis. One of the most important mechanisms operating in metastasis involves homeostatic chemokines and their receptors. Here, we review this field and propose a model of 'cellular highways' to explain the effects of homeostatic chemokines on cancer cells and how they influence metastasis.
Collapse
|
43
|
Clatot F, Picquenot JM, Choussy O, Gouérant S, Moldovan C, Schultheis D, Cornic M, François A, Blot E, Laberge-Le-Couteulx S. Intratumoural level of SDF-1 correlates with survival in head and neck squamous cell carcinoma. Oral Oncol 2011; 47:1062-8. [PMID: 21840752 DOI: 10.1016/j.oraloncology.2011.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/13/2011] [Accepted: 07/20/2011] [Indexed: 12/13/2022]
Abstract
The SDF-1/CXCR4 pathway has been suggested to play a role in the metastatic dissemination of various tumours. We assessed the prognostic impact of SDF-1 and CXCR4 expression in head and neck squamous cell carcinoma (HNSCC). Seventy-one HNSCC samples collected at the time of initial diagnosis were retrospectively analysed. SDF-1 and CXCR4 expression levels were measured using real-time RT-PCR and correlated to survival. After a median follow-up of 45 months, 25 patients (35%) died of cancer (group D), and 46 patients (65%) were alive or dead without evidence of HSNCC evolution (group A). The median level of CXCR4 expression was 0.33 and 0.29 in groups A and D, respectively (P=0.93), showing no correlation with recurrence or survival. By contrast, the median level of SDF-1 expression was significantly different in the A and D groups (2.41 vs 1.16, respectively, P=0.018). Using the median level as a cut-off, patients with low SDF-1 had poorer metastasis-free (P=0.026), disease-free (P=0.006) and overall specific survival rates (P=0.002). The prognostic value of SDF-1 was confirmed by a multivariate analysis. In this series of 71 HNSCC patients, the SDF-1 expression level correlated significantly with metastatic evolution and overall survival.
Collapse
Affiliation(s)
- Florian Clatot
- Department of Medical Oncology, Centre Henri Becquerel, 1 rue d'Amiens, 76038 Rouen cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
CXCR4 in Cancer and Its Regulation by PPARgamma. PPAR Res 2011; 2008:769413. [PMID: 18779872 PMCID: PMC2528256 DOI: 10.1155/2008/769413] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 06/25/2008] [Accepted: 07/10/2008] [Indexed: 12/20/2022] Open
Abstract
Chemokines are peptide mediators involved in normal development,
hematopoietic and immune regulation, wound healing, and
inflammation. Among the chemokines is CXCL12, which binds
principally to its receptor CXCR4 and regulates leukocyte
precursor homing to bone marrow and other sites. This role of
CXCL12/CXCR4 is “commandeered” by cancer cells to facilitate the
spread of CXCR4-bearing tumor cells to tissues with high CXCL12
concentrations. High CXCR4 expression by cancer cells predisposes
to aggressive spread and metastasis and ultimately to poor patient
outcomes. As well as being useful as a marker for disease
progression, CXCR4 is a potential target for anticancer therapies.
It is possible to interfere directly with the CXCL12:CXCR4 axis
using peptide or small-molecular-weight antagonists. A further
opportunity is offered by promoting strategies that downregulate
CXCR4 pathways: CXCR4 expression in the tumor microenvironment is
modulated by factors such as hypoxia, nucleosides, and
eicosanoids. Another promising approach is through targeting PPAR
to suppress CXCR4 expression. Endogenous PPARγ such as 15-deoxy-Δ12,14-PGJ2 and synthetic agonists such as the
thiazolidinediones both cause downregulation of CXCR4 mRNA and
receptor. Adjuvant therapy using PPARγ agonists may, by
stimulating PPARγ-dependent downregulation of CXCR4 on cancer cells, slow the rate of metastasis and impact beneficially on
disease progression.
Collapse
|
45
|
Zhao BC, Wang ZJ, Mao WZ, Ma HC, Han JG, Zhao B, Xu HM. CXCR4/SDF-1 axis is involved in lymph node metastasis of gastric carcinoma. World J Gastroenterol 2011; 17:2389-2396. [PMID: 21633638 PMCID: PMC3103791 DOI: 10.3748/wjg.v17.i19.2389] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/13/2010] [Accepted: 11/20/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of CXC chemokine receptor-4 (CXCR4) and stromal cell-derived factor-1 (SDF-1) in lymph node metastasis of gastric carcinoma. METHODS In 40 cases of gastric cancer, expression of CXCR4 mRNA in cancer and normal mucous membrane and SDF-1 mRNA in lymph nodes around the stomach was detected using quantitative polymerase chain reaction (PCR) (TaqMan) and immunohistochemistry assay. SGC-7901 and MGC80-3 cancer cells were used to investigate the effect of SDF-1 on cell proliferation and migration. RESULTS Quantitative reverse transcription PCR and immunohistochemistry revealed that the expression level of CXCR4 in gastric cancer was significantly higher than that in normal mucous membrane (1.6244 ± 1.3801 vs 1.0715 ± 0.5243, P < 0.05). The expression level of CXCR4 mRNA in gastric cancer with lymph node metastasis was also significantly higher than that without lymph node metastasis (0.823 ± 0.551 vs 0.392 ± 0.338, P < 0.05). CXCR4 expression was significantly related to poorly differentiated, high tumor stage and lymph node metastasis. Significant differences in the expression level of SDF-1 mRNA were found between lymph nodes in metastatic gastric cancer and normal nodes (0.5432 ± 0.4907 vs 0.2640 ± 0.2601, P < 0.05). The positive expression of SDF-1 mRNA in lymph nodes of metastatic gastric cancer was consistent with the positive expression of CXCR4 mRNA in gastric cancer (r = 0.776, P < 0.01). Additionally, human gastric cancer cell lines expressed CXCR4 and showed vigorous proliferation and migratory responses to SDF-1. AMD3100 (a specific CXCR4 antagonist) was also found to effectively reduce the migration of gastric cancer cells. CONCLUSION The CXCR4/SDF-1 axis is involved in the lymph node metastasis of gastric cancer. CXCR4 is considered as a potential therapeutic target in the treatment of gastric cancer.
Collapse
|
46
|
Würth R, Barbieri F, Bajetto A, Pattarozzi A, Gatti M, Porcile C, Zona G, Ravetti JL, Spaziante R, Florio T. Expression of CXCR7 chemokine receptor in human meningioma cells and in intratumoral microvasculature. J Neuroimmunol 2011; 234:115-23. [DOI: 10.1016/j.jneuroim.2011.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 12/29/2022]
|
47
|
Ueda M, Shimada T, Goto Y, Tei K, Nakai S, Hisa Y, Kannagi R. Expression of CC-chemokine receptor 7 (CCR7) and CXC-chemokine receptor 4 (CXCR4) in head and neck squamous cell carcinoma. Auris Nasus Larynx 2010; 37:488-95. [DOI: 10.1016/j.anl.2009.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/25/2009] [Accepted: 11/29/2009] [Indexed: 12/21/2022]
|
48
|
Huang M, Li Y, Zhang H, Nan F. Breast cancer stromal fibroblasts promote the generation of CD44+CD24- cells through SDF-1/CXCR4 interaction. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:80. [PMID: 20569497 PMCID: PMC2911413 DOI: 10.1186/1756-9966-29-80] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 06/22/2010] [Indexed: 12/21/2022]
Abstract
Background Breast cancer stem cells (BCSCs) have been recently identified in breast carcinoma as CD44+CD24- cells, which exclusively retain tumorigenic activity and display stem cell-like properties. Using a mammosphere culture technique, MCF7 mammosphere cells are found to enrich breast cancer stem-like cells expressing CD44+CD24-. The stromal cells are mainly constituted by fibroblasts within a breast carcinoma, yet little is known of the contributions of the stromal cells to BCSCs. Methods Carcinoma-associated fibroblasts (CAFs) and normal fibroblasts (NFs) were isolated and identified by immunohistochemistry. MCF7 mammosphere cells were co-cultured with different stromal fibroblasts by a transwell cocultured system. Flow cytometry was used to measure CD44 and CD24 expression status on MCF7. ELISA (enzyme-linked immunosorbent assay) was performed to investigate the production of stromal cell-derived factor 1 (SDF-1) in mammosphere cultures subject to various treatments. Mammosphere cells were injected with CAFs and NFs to examine the efficiency of tumorigenity in NOD/SCID mice. Results CAFs derived from breast cancer patients were found to be positive for α-smooth muscle actin (α-SMA), exhibiting the traits of myofibroblasts. In addition, CAFs played a central role in promoting the proliferation of CD44+CD24- cells through their ability to secrete SDF-1, which may be mediated to SDF-1/CXCR4 signaling. Moreover, the tumorigenicity of mammosphere cells with CAFs significantly increased as compared to that of mammosphere cells alone or with NFs. Conclusion We for the first time investigated the effects of stromal fibroblasts on CD44+CD24- cells and our findings indicated that breast CAFs contribute to CD44+CD24- cell proliferation through the secretion of SDF-1, and which may be important target for therapeutic approaches.
Collapse
Affiliation(s)
- Mingzhu Huang
- Department of Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | | | | | | |
Collapse
|
49
|
The role of stromal-derived factor-1--CXCR7 axis in development and cancer. Eur J Pharmacol 2009; 625:31-40. [PMID: 19835865 DOI: 10.1016/j.ejphar.2009.04.071] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/24/2009] [Accepted: 04/29/2009] [Indexed: 01/07/2023]
Abstract
Cancer metastasis is a major clinical problem that contributes to unsuccessful therapy. Augmenting evidence indicates that metastasizing cancer cells employ several mechanisms that are involved in developmental trafficking of normal stem cells. Stromal-derived factor-1 (SDF-1) is an important alpha-chemokine that binds to the G-protein-coupled seven-transmembrane span CXCR4. The SDF-1-CXCR4 axis regulates trafficking of normal and malignant cells. SDF-1 is an important chemoattractant for a variety of cells including hematopoietic stem/progenitor cells. For many years, it was believed that CXCR4 was the only receptor for SDF-1. However, several reports recently provided evidence that SDF-1 also binds to another seven-transmembrane span receptor called CXCR7, sharing this receptor with another chemokine family member called Interferon-inducible T-cell chemoattractant (I-TAC). Thus, with CXCR7 identified as a new receptor for SDF-1, the role of the SDF-1-CXCR4 axis in regulating several biological processes becomes more complex. Based on the available literature, this review addresses the biological significance of SDF-1's interaction with CXCR7, which may act as a kind of decoy or signaling receptor depending on cell type. Augmenting evidence suggests that CXCR7 is involved in several aspects of tumorogenesis and could become an important target for new anti-metastatic and anti-cancer drugs.
Collapse
|
50
|
Uchida D, Onoue T, Begum NM, Kuribayashi N, Tomizuka Y, Tamatani T, Nagai H, Miyamoto Y. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells. Mol Cancer 2009; 8:62. [PMID: 19671192 PMCID: PMC2738650 DOI: 10.1186/1476-4598-8-62] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 08/12/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC). Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. RESULTS The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl)-1-piperazinyl]-2-(1H)-quinolinone) in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2), as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. CONCLUSION These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Oral Surgery, Division of Integrated Sciences of Translational Research, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|