1
|
Activated T cell therapy targeting glioblastoma cancer stem cells. Sci Rep 2023; 13:196. [PMID: 36604465 PMCID: PMC9814949 DOI: 10.1038/s41598-022-27184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Naïve T cells become effector T cells following stimulation by antigen-loaded dendritic cells (DCs) and sequential cytokine activation. We aimed to develop procedures to efficiently activate T cells with tumor-associated antigens (TAAs) to glioblastoma (GBM) stem cells. To remove antigen presentation outside of the immunosuppressive tumor milieu, three different glioma stem cell (GSC) specific antigen sources to load DCs were compared in their ability to stimulate lymphocytes. An activated T cell (ATC) protocol including cytokine activation and expansion in culture to target GSCs was generated and optimized for a planned phase I clinical trial. We compared three different antigen-loading methods on DCs to effectively activate T cells, which were GBM patient-derived GSC-lysate, acid-eluate of GSCs and synthetic peptides derived from proteins expressed in GSCs. DCs derived from HLA-A2 positive blood sample were loaded with TAAs. Autologous T cells were activated by co-culturing with loaded DCs. Efficiency and cytotoxicity of ATCs were evaluated by targeting TAA-pulsed DCs or T2 cells, GSCs, or autologous PHA-blasts. Characteristics of ATCs were evaluated by Flow Cytometry and ELISpot assay, which showed increased number of ATCs secreting IFN-γ targeting GSCs as compared with non-activated T cells and unloaded target cells. Neither GSC-lysate nor acid-eluate loading showed enhancement in response of ATCs but the synthetic peptide pool showed significantly increased IFN-γ secretion and increased cytotoxicity towards target cells. These results demonstrate that ATCs activated using a TAA synthetic peptide pool efficiently enhance cytotoxicity specifically to target cells including GSC.
Collapse
|
2
|
Alarcon NO, Jaramillo M, Mansour HM, Sun B. Therapeutic Cancer Vaccines—Antigen Discovery and Adjuvant Delivery Platforms. Pharmaceutics 2022; 14:pharmaceutics14071448. [PMID: 35890342 PMCID: PMC9325128 DOI: 10.3390/pharmaceutics14071448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
For decades, vaccines have played a significant role in protecting public and personal health against infectious diseases and proved their great potential in battling cancers as well. This review focused on the current progress of therapeutic subunit vaccines for cancer immunotherapy. Antigens and adjuvants are key components of vaccine formulations. We summarized several classes of tumor antigens and bioinformatic approaches of identification of tumor neoantigens. Pattern recognition receptor (PRR)-targeting adjuvants and their targeted delivery platforms have been extensively discussed. In addition, we emphasized the interplay between multiple adjuvants and their combined delivery for cancer immunotherapy.
Collapse
Affiliation(s)
- Neftali Ortega Alarcon
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Maddy Jaramillo
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Bo Sun
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (N.O.A.); (M.J.); (H.M.M.)
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Correspondence: ; Tel.: +1-520-621-6420
| |
Collapse
|
3
|
Guevara M, Jilesen Z, Stojdl D, Persano S. Codelivery of mRNA with α-Galactosylceramide Using a New Lipopolyplex Formulation Induces a Strong Antitumor Response upon Intravenous Administration. ACS OMEGA 2019; 4:13015-13026. [PMID: 31460428 PMCID: PMC6705043 DOI: 10.1021/acsomega.9b00489] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/23/2019] [Indexed: 05/22/2023]
Abstract
Recently, the use of mRNA-based vaccines for cancer immunotherapy has gained growing attention. Several studies have shown that mRNA delivered in a vectorized format can generate a robust and efficient immune response. In this work, a new lipopolyplex vector (multi-LP), incorporating the immune adjuvant α-galactosylceramide (α-GalCer) and a multivalent cationic lipid, was proposed for the in vivo delivery of mRNA into antigen-presenting cells. We demonstrate that dendritic cells (DCs) can be targeted in vivo by intravenous administration of a α-GalCer-/mRNA-loaded multi-LP vector, without the need for its functionalization with cell-specific antibodies or ligands. The multi-LP nanoparticles loaded with a reporter mRNA efficiently led to high expression of the enhanced green fluorescence protein in DCs both in vitro and in vivo, exhibiting an intrinsic selectivity for DCs. Finally, the TRP2-mRNA/α-GalCer-based multi-LP vaccine induced a significant therapeutic effect against a highly malignant B16-F10 melanoma tumor. This study provides the first evidence that a combination of antigen-mRNA and α-GalCer can be used as an effective antitumor vaccine, inducing strong innate and adaptive immune responses.
Collapse
Affiliation(s)
- Maria
L. Guevara
- Children’s
Hospital of Eastern Ontario (CHEO) Research Institute, Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Zachary Jilesen
- Children’s
Hospital of Eastern Ontario (CHEO) Research Institute, Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - David Stojdl
- Children’s
Hospital of Eastern Ontario (CHEO) Research Institute, Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1N 6N5, Canada
- E-mail: (D.S.)
| | - Stefano Persano
- Children’s
Hospital of Eastern Ontario (CHEO) Research Institute, Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1N 6N5, Canada
- Istituto
Italiano di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
- E-mail: (S.P.)
| |
Collapse
|
4
|
Sundarasetty BS, Chan L, Darling D, Giunti G, Farzaneh F, Schenck F, Naundorf S, Kuehlcke K, Ruggiero E, Schmidt M, von Kalle C, Rothe M, Hoon DSB, Gerasch L, Figueiredo C, Koehl U, Blasczyk R, Gutzmer R, Stripecke R. Lentivirus-induced 'Smart' dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene Ther 2015; 22:707-20. [PMID: 25965393 PMCID: PMC4561294 DOI: 10.1038/gt.2015.43] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Monocyte-derived conventional dendritic cells (ConvDCs) loaded with melanoma antigens showed modest responses in clinical trials. Efficacy studies were hampered by difficulties in ConvDC manufacturing and low potency. Overcoming these issues, we demonstrated higher potency of lentiviral vector (LV)-programmed DCs. Monocytes were directly induced to self-differentiate into DCs (SmartDC-TRP2) upon transduction with a tricistronic LV encoding for cytokines (granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4)) and a melanoma antigen (tyrosinase-related protein 2 (TRP2)). Here, SmartDC-TRP2 generated with monocytes from five advanced melanoma patients were tested in autologous DC:T cell stimulation assays, validating the activation of functional TRP2-specific cytotoxic T lymphocytes (CTLs) for all patients. We described methods compliant to good manufacturing practices (GMP) to produce LV and SmartDC-TRP2. Feasibility of monocyte transduction in a bag system and cryopreservation following a 24-h standard operating procedure were achieved. After thawing, 50% of the initial monocyte input was recovered and SmartDC-TRP2 self-differentiated in vitro, showing uniform expression of DC markers, detectable LV copies and a polyclonal LV integration pattern not biased to oncogenic loci. GMP-grade SmartDC-TRP2 expanded TRP2-specific autologous CTLs in vitro. These results demonstrated a simpler GMP-compliant method of manufacturing an effective individualized DC vaccine. Such DC vaccine, when in combination with checkpoint inhibition therapies, might provide higher specificity against melanoma.
Collapse
Affiliation(s)
- B S Sundarasetty
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - L Chan
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - D Darling
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - G Giunti
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - F Farzaneh
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - F Schenck
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - S Naundorf
- EUFETS GmbH, Idar-Oberstein, Heidelberg, Germany
| | - K Kuehlcke
- EUFETS GmbH, Idar-Oberstein, Heidelberg, Germany
| | - E Ruggiero
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - M Schmidt
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - C von Kalle
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - M Rothe
- Department of Experimental Hematology, Hannover, Germany
| | - D S B Hoon
- John Wayne Cancer Institute, Santa Monica, CA, USA
| | - L Gerasch
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - C Figueiredo
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - U Koehl
- Institute for Cell Therapeutics and GMP core facility IFB-Tx, Hannover Medical School, Hannover, Germany
| | - R Blasczyk
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - R Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - R Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Dor-On E, Solomon B. Targeting glioblastoma via intranasal administration of Ff bacteriophages. Front Microbiol 2015; 6:530. [PMID: 26074908 PMCID: PMC4445050 DOI: 10.3389/fmicb.2015.00530] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/14/2015] [Indexed: 01/29/2023] Open
Abstract
Bacteriophages (phages) are ubiquitous viruses that control the growth and diversity of bacteria. Although they have no tropism to mammalian cells, accumulated evidence suggests that phages are not neutral to the mammalian macro-host and can promote immunomodulatory and anti-tumorigenic activities. Here we demonstrate that Ff phages that do not display any proteins or peptides could inhibit the growth of subcutaneous glioblastoma tumors in mice and that this activity is mediated in part by lipopolysaccharide molecules attached to their virion. Using the intranasal route, a non-invasive approach to deliver therapeutics directly to the CNS, we further show that phages rapidly accumulate in the brains of mice and could attenuate progression of orthotopic glioblastoma. Taken together, this study provides new insight into phages non-bacterial activities and demonstrates the feasibility of delivering Ff phages intranasally to treat brain malignancies.
Collapse
Affiliation(s)
- Eyal Dor-On
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University Tel-Aviv, Israel
| | - Beka Solomon
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
6
|
Gardyan A, Osen W, Zörnig I, Podola L, Agarwal M, Aulmann S, Ruggiero E, Schmidt M, Halama N, Leuchs B, von Kalle C, Beckhove P, Schneeweiss A, Jäger D, Eichmüller SB. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice. Int J Cancer 2014; 136:2588-97. [PMID: 25387692 DOI: 10.1002/ijc.29322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer.
Collapse
Affiliation(s)
- Adriane Gardyan
- Department of Translational Immunology, German Cancer Research Center Heidelberg (DKFZ), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Roehnisch T, Then C, Nagel W, Blumenthal C, Braciak T, Donzeau M, Böhm T, Flaig M, Bourquin C, Oduncu FS. Phage idiotype vaccination: first phase I/II clinical trial in patients with multiple myeloma. J Transl Med 2014; 12:119. [PMID: 24885819 PMCID: PMC4113220 DOI: 10.1186/1479-5876-12-119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/29/2014] [Indexed: 11/24/2022] Open
Abstract
Background Multiple myeloma is characterized by clonal expansion of B cells producing monoclonal immunoglobulins or fragments thereof, which can be detected in the serum and/or urine and are ideal target antigens for patient-specific immunotherapies. Methods Using phage particles as immunological carriers, we employed a novel chemically linked idiotype vaccine in a clinical phase I/II trial including 15 patients with advanced multiple myeloma. Vaccines composed of purified paraproteins linked to phage were manufactured successfully for each patient. Patients received six intradermal immunizations with phage idiotype vaccines in three different dose groups. Results Phage idiotype was well tolerated by all study participants. A subset of patients (80% in the middle dose group) displayed a clinical response indicated by decrease or stabilization of paraprotein levels. Patients exhibiting a clinical response to phage vaccines also raised idiotype-specific immunoglobulins. Induction of a cellular immune response was demonstrated by a cytotoxicity assay and delayed type hypersensitivity tests. Conclusion We present a simple, time- and cost-efficient phage idiotype vaccination strategy, which represents a safe and feasible patient-specific therapy for patients with advanced multiple myeloma and produced promising anti-tumor activity in a subset of patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fuat S Oduncu
- Division of Hematology and Oncology, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany.
| |
Collapse
|
8
|
Pincha M, Sundarasetty BS, Salguero G, Gutzmer R, Garritsen H, Macke L, Schneider A, Lenz D, Figueiredo C, Blasczyk R, Ruggiero E, Schmidt M, von Kalle C, Puff C, Modlich U, von der Leyen H, Wicke DC, Ganser A, Stripecke R. Identity, potency, in vivo viability, and scaling up production of lentiviral vector-induced dendritic cells for melanoma immunotherapy. Hum Gene Ther Methods 2013; 23:38-55. [PMID: 22428979 DOI: 10.1089/hgtb.2011.170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
SmartDCs (Self-differentiated Myeloid-derived Antigen-presenting-cells Reactive against Tumors) consist of highly viable dendritic cells (DCs) induced to differentiate with lentiviral vectors (LVs) after an overnight ex vivo transduction. Tricistronic vectors co-expressing cytokines (granulocyte-macrophage-colony stimulating factor [GM-CSF], interleukin [IL]-4) and a melanoma antigen (tyrosine related protein 2 [TRP2]) were used to transduce mouse bone marrow cells or human monocytes. Sixteen hours after transduction, the cells were dispensed in aliquots and cryopreserved for identity, potency, and safety analyses. Thawed SmartDCs readily differentiated into highly viable cells with a DC immunophenotype. Prime/boost subcutaneous administration of 1×10(6) thawed murine SmartDCs into C57BL/6 mice resulted into TRP2-specific CD8(+) T-cell responses and protection against lethal melanoma challenge. Human SmartDC-TRP2 generated with monocytes obtained from melanoma patients secreted endogenous cytokines associated with DC activation and stimulated TRP2-specific autologous T-cell expansion in vitro. Thawed human SmartDCs injected subcutaneously in NOD.Rag1(-/-).IL2rγ(-/-) mice maintained DC characteristics and viability for 1 month in vivo and did not cause any signs of pathology. For development of good manufacturing practices, CD14(+) monocytes selected by magnetic-activated cell separation were transduced in a closed bag system (multiplicity of infection of 5), washed, and cryopreserved. Fifty percent of the monocytes used for transduction were recovered for cryopreservation. Thawed SmartDCs produced in two independent runs expressed the endogenous cytokines GM-CSF and IL-4, and the resulting homogeneous SmartDCs that self-differentiated in vitro contained approximately 1.5-3.0 copies of integrated LVs per cell. Thus, this method facilitates logistics, standardization, and high recovery for the generation of viable genetically reprogrammed DCs for clinical applications.
Collapse
Affiliation(s)
- Mudita Pincha
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, 30625, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Osen W, Soltek S, Song M, Leuchs B, Steitz J, Tüting T, Eichmüller SB, Nguyen XD, Schadendorf D, Paschen A. Screening of human tumor antigens for CD4 T cell epitopes by combination of HLA-transgenic mice, recombinant adenovirus and antigen peptide libraries. PLoS One 2010; 5:e14137. [PMID: 21152437 PMCID: PMC2994730 DOI: 10.1371/journal.pone.0014137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 11/07/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND As tumor antigen-specific CD4+ T cells can mediate strong therapeutic anti-tumor responses in melanoma patients we set out to establish a comprehensive screening strategy for the identification of tumor-specific CD4+ T cell epitopes suitable for detection, isolation and expansion of tumor-reactive T cells from patients. METHODS AND FINDINGS To scan the human melanoma differentiation antigens TRP-1 and TRP-2 for HLA-DRB1*0301-restricted CD4+ T cell epitopes we applied the following methodology: Splenocytes of HLA-DRB1*0301-transgenic mice immunized with recombinant adenovirus encoding TRP-1 (Ad5.TRP-1) or TRP-2 (Ad5.TRP-2) were tested for their T cell reactivity against combinatorial TRP-1- and TRP-2-specific peptide libraries. CD4+ T cell epitopes thus identified were validated in the human system by stimulation of peripheral blood mononuclear cells (PBMC) from healthy donors and melanoma patients. Using this strategy we observed that recombinant Ad5 induced strong CD4+ T cell responses against the heterologous tumor antigens. In Ad5.TRP-2-immunized mice CD4+ T cell reactivity was detected against the known HLA-DRB1*0301-restricted TRP-2(60-74) epitope and against the new epitope TRP-2(149-163). Importantly, human T cells specifically recognizing target cells loaded with the TRP-2(149-163)-containing library peptide or infected with Ad5.TRP-2 were obtained from healthy individuals, and short term in vitro stimulation of PBMC revealed the presence of epitope-reactive CD4+ T cells in melanoma patients. Similarly, immunization of mice with Ad5.TRP-1 induced CD4+ T cell responses against TRP-1-derived peptides that turned out to be recognized also by human T cells, resulting in the identification of TRP-1(284-298) as a new HLA-DRB1*0301-restricted CD4+ T cell epitope. CONCLUSIONS Our screening approach identified new HLA-DRB1*0301-restricted CD4+ T cell epitopes derived from melanoma antigens. This strategy is generally applicable to target antigens of other tumor entities and to different HLA class II molecules even without prior characterization of their peptide binding motives.
Collapse
Affiliation(s)
- Wolfram Osen
- Clinical Cooperation for Unit Dermato-Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Sabine Soltek
- Clinical Cooperation for Unit Dermato-Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Mingxia Song
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Barbara Leuchs
- Infection and Cancer Program, German Cancer Research Center, Heidelberg, Germany
| | - Julia Steitz
- Institute of Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Aachen, Germany
| | - Thomas Tüting
- Department of Dermatology, University of Bonn, Bonn, Germany
| | - Stefan B. Eichmüller
- Clinical Cooperation for Unit Dermato-Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Xuan-Duc Nguyen
- Institute for Immunology and Transfusion Medicine, Mannheim, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
10
|
Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, Garrido F, Garcia-Lora A. HLA and melanoma: multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother 2009; 58:1507-15. [PMID: 19340423 PMCID: PMC11030131 DOI: 10.1007/s00262-009-0701-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/14/2009] [Indexed: 10/20/2022]
Abstract
Altered HLA class I and class II cell surface expression has been reported in many types of malignancy and represents one of the major mechanism by which tumour cells escape from T lymphocytes. In this report, we review the results obtained from the study of constitutive and IFN-gamma-induced expression of HLA class I and II molecules in 91 human melanoma cell lines from the European Searchable Tumour Cell Line Database, and compare them with published data on HLA expression in other types of cancer. Various types of alterations in HLA class I cell surface expression were found in a high percentage (67%) of the studied cell lines. These alterations range from total to selective HLA class I loss and are associated with beta2-microglobulin gene mutations, transcriptional downregulation of HLA class I genes and antigen processing machinery components, or with the loss of heterozygosity in chromosome 6. The most frequently observed phenotype is selective downregulation of HLA-B locus, reversible after treatment with IFN-gamma. The expression of constitutive- or IFN-gamma induced-surface expression of at least one HLA class II locus is positive in 71.5% of the analysed cell lines. Four different HLA class II expression phenotypes were defined, and a positive correlation between the expression of class I and II molecules is discussed. More detailed information on the HLA expression patterns and others immunological characteristics of these melanoma cell lines can be found on the following website http://www.ebi.ac.uk/ipd/estdab .
Collapse
Affiliation(s)
- Rosa Mendez
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Natalia Aptsiauri
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Ana Del Campo
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Isabel Maleno
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Teresa Cabrera
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Federico Garrido
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica, Biologia Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Angel Garcia-Lora
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Avd. Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
11
|
Abstract
The effectiveness of T-cell-mediated immunotherapy of cancer depends on both an optimal immunostimulatory context of the therapy and the proper selection with respect to quality and quantity of the targeted tumor-associated antigens (TAA), and, more precisely, the T-cell epitopes contained in these tumor proteins. Our progressing insight in human leukocyte antigen (HLA) class I and class II antigen processing and presentation mechanisms has improved the prediction by reverse immunology of novel cytotoxic T lymphocyte and T-helper cell epitopes within known antigens. Computer algorithms that in silico predict HLA class I and class II binding, proteasome cleavage patterns and transporter associated with antigen processing translocation are now available to expedite epitope identification. The advent of genomics allows a high-throughput screening for tumor-specific transcripts and mutations, with that identifying novel shared and unique TAA. The increasing power of mass spectrometry and proteomics will lead to the direct identification from the tumor cell surface of numerous novel tumor-specific HLA class I and class II presented ligands. Together, the expanded repertoire of tumor-specific T-cell epitopes will enable more precise immunomonitoring and the development of effective epitope-defined adoptive T-cell transfer and multi-epitope-based vaccination strategies targeting epitopes derived from a wider diversity of TAA presented in a broader array of HLA molecules.
Collapse
Affiliation(s)
- J H Kessler
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
12
|
Rodríguez T, Méndez R, Del Campo A, Aptsiauri N, Martín J, Orozco G, Pawelec G, Schadendorf D, Ruiz-Cabello F, Garrido F. Patterns of constitutive and IFN-gamma inducible expression of HLA class II molecules in human melanoma cell lines. Immunogenetics 2006; 59:123-33. [PMID: 17180681 DOI: 10.1007/s00251-006-0171-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
Major histocompatibility complex (MHC) class II proteins (HLA-DR, HLA-DP and HLA-DQ) play a fundamental role in the regulation of the immune response. The level of expression of human leukocyte antigen (HLA) class II antigens is regulated by interferon-gamma (IFN-gamma) and depends on the status of class II trans-activator protein (CIITA), a co-activator of the MHC class II gene promoter. In this study, we measured levels of constitutive and IFN-gamma-induced expression of MHC class II molecules, analysed the expression of CIITA and investigated the association between MHC class II transactivator polymorphism and expression of different MHC class II molecules in a large panel of melanoma cell lines obtained from the European Searchable Tumour Cell Line Database. Many cell lines showed no constitutive expression of HLA-DP, HLA-DQ and HLA-DR and no IFN-gamma-induced increase in HLA class II surface expression. However, in some cases, IFN-gamma treatment led to enhanced surface expression of HLA-DP and HLA-DR. HLA-DQ was less frequently expressed under basal conditions and was less frequently induced by IFN-gamma. In these melanoma cell lines, constitutive surface expression of HLA-DR and HLA-DP was higher than that of HLA-DQ. In addition, high constitutive level of cell surface expression of HLA-DR was correlated with lower inducibility of this expression by IFN-gamma. Finally, substitution A-->G in the 5' flanking region of CIITA promoter type III was associated with higher expression of constitutive HLA-DR (p<0.005). This study yielded a panel of melanoma cell lines with different patterns of constitutive and IFN-gamma-induced expression of HLA class II that can be used in future studies of the mechanisms of regulation of HLA class II expression.
Collapse
Affiliation(s)
- T Rodríguez
- Departamento de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Avda. Fuerzas Armadas 2, 18014, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sommerfeldt N, Schütz F, Sohn C, Förster J, Schirrmacher V, Beckhove P. The Shaping of a Polyvalent and Highly Individual T-Cell Repertoire in the Bone Marrow of Breast Cancer Patients. Cancer Res 2006; 66:8258-65. [PMID: 16912206 DOI: 10.1158/0008-5472.can-05-4201] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
We analyzed the T-cell repertoires from the bone marrow of 39 primary operated breast cancer patients and 11 healthy female donors for the presence and frequencies of spontaneously induced effector/memory T lymphocytes with peptide-HLA-A2-restricted reactivity against 10 breast tumor-associated antigens (TAA) and 3 normal breast tissue–associated antigens by short-term IFN-γ enzyme-linked immunospot (ELISpot) analysis. Sixty-seven percent of the patients recognized TAAs with a mean frequency of 144 TAA reactive cells per 106 T cells. These patients recognized simultaneously an average of 47% of the tested TAAs. The T-cell repertoire was highly polyvalent and exhibited pronounced interindividual differences in the pattern of TAAs recognized by each patient. Strong differences of reactivity were noticed between TAAs, ranging from 100% recognition of prostate-specific antigenp141-149 to only 25% recognition of MUC1p12-20 or Her-2/neup369-377. In comparison with TAAs, reactivity to normal breast tissue–associated antigens was lower with respect to the proportions of responding patients (30%) and recognized antigens (27%), with a mean frequency of only 85/106 T cells. Healthy individuals also contained TAA-reactive T cells but this repertoire was more restricted and the frequencies were in the same range as T cells reacting to normal breast tissue–associated antigens. Our data show a highly individual T-cell repertoire for recognition of TAAs in breast cancer patients. This has potential relevance for T-cell immune diagnostics, for tumor vaccine design, and for predicting immune responsiveness. (Cancer Res 2006; 66(16): 8258-65)
Collapse
Affiliation(s)
- Nora Sommerfeldt
- Department of Cellular Immunology, The German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Paschen A, Song M, Schenk S, Janda J, Nguyen XD, Osen W, Schadendorf D, Geginat G. Identification of a cross-reactive HLA-DRB1*0301-restricted CD4 T cell response directed against cholesterol-binding cytolysins from two different pathogens. Microbes Infect 2006; 8:2034-43. [PMID: 16798043 DOI: 10.1016/j.micinf.2006.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 11/24/2022]
Abstract
Cholesterol-binding cytolysins constitute an evolutionarily conserved family of pore-forming proteins expressed by different gram-positive pathogens. Listeriolysin O, one well-characterized member of the cytolysin family, is also known to induce specific CD4 and CD8 T cell responses upon infection of mice with Listeria monocytogenes. Here we describe an HLA-DRB1*0301-restricted listeriolysin O-derived T cell epitope that is conserved among several members of the cytolysin family. An HLA-DRB1*0301-restricted CD4+ T cell line, established from spleen lymphocytes of L. monocytogenes-infected HLA-DRB1*0301-transgenic mice, cross-reacted with a homologous peptide from perfringolysin O, a cytolysin expressed by Clostridium perfringens. Ex vivo analysis of infected mice revealed an even broader cross-reaction of T cells with homologous peptides derived from perfringolysin O, streptolysin O, and cereolysin O. Interestingly, a cross-reactive memory CD4+ T cell response against the homologous peptides derived from listeriolysin O and perfringolysin O could also be detected in the blood from healthy HLA-DRB1*0301+ human donors. Remarkably, this response was even present in donors who did not exhibit a memory T cell reactivity against a second, non-conserved HLA-DRB1*0301-restricted LLO-derived CD4 T cell epitope, suggesting that cytolysin-producing bacteria other than L. monocytogenes can stimulate a cross-reactive cytolysin-specific immunity.
Collapse
Affiliation(s)
- Annette Paschen
- Skin Cancer Unit of the German Cancer Research Center (DKFZ), Faculty for Clinical Medicine Mannheim of the University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|