1
|
Graifer D, Malygin A, Shefer A, Tamkovich S. Ribosomal Proteins as Exosomal Cargo: Random Passengers or Crucial Players in Carcinogenesis? Adv Biol (Weinh) 2025; 9:e2400360. [PMID: 39895482 DOI: 10.1002/adbi.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/28/2024] [Indexed: 02/04/2025]
Abstract
Many ribosomal proteins (RPs) have functions beyond their canonical role as constituents of the ribosome. They often relate to human pathologies, primarily, to carcinogenesis, and the expression of specific RPs is considerably changed in malignant cells. On the other hand, extracellular vesicles (including exosomes), which provide intercellular communication by transporting specific molecular cargo from donor to recipient cells, often contain specific sets of RPs. Thus, one can assume that oncogenic properties of RPs can be transferred from one cell to another by exosomes. Such kind transfer has been already documented with RPS3 and gastric cancer cells. However, it remains largely unclear how widespread is the above effect and to which extent it contributes to the tumor progression and metastasis. To shed light on this issue, a comparative analysis of the sets of RPs found in exosomes and of the available data on oncogenic properties of these proteins is conducted.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Aleksei Shefer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Almutairy AF, Alhamed AS, Grant SG, Falso MJ, Day BW, Simmons CR, Latimer JJ. Cancer-specific alterations in nuclear matrix proteins determined by multi-omics analyses of ductal carcinoma in situ. Front Oncol 2024; 14:1406946. [PMID: 39165691 PMCID: PMC11333849 DOI: 10.3389/fonc.2024.1406946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Breast cancer (BC) is the most common cancer affecting women in the United States. Ductal carcinoma in situ (DCIS) is the earliest identifiable pre-invasive BC lesion. Estimates show that 14 to 50% of DCIS cases progress to invasive BC. Methods Our objective was to identify nuclear matrix proteins (NMP) with specifically altered expression in DCIS and later stages of BC compared to non-diseased breast reduction mammoplasty and a contralateral breast explant culture using mass spectrometry and RNA sequencing to accurately identify aggressive DCIS. Results Sixty NMPs were significantly differentially expressed between the DCIS and non-diseased breast epithelium in an isogenic contralateral pair of patient-derived extended explants. Ten of the sixty showed significant mRNA expression level differences that matched the protein expression. These 10 proteins were similarly expressed in non-diseased breast reduction cells. Three NMPs (RPL7A, RPL11, RPL31) were significantly upregulated in DCIS and all other BC stages compared to the matching contralateral breast culture and an unrelated non-diseased breast reduction culture. RNA sequencing analyses showed that these three genes were increasingly upregulated with BC progression. Finally, we identified three NMPs (AHNAK, CDC37 and DNAJB1) that were significantly downregulated in DCIS and all other BC stages compared to the isogenically matched contralateral culture and the non-diseased breast reduction culture using both proteomics and RNA sequencing techniques. Discussion These genes should form the basis of, or contribute to, a molecular diagnostic panel that could identify DCIS lesions likely to be indolent and therefore not requiring aggressive treatment.
Collapse
Affiliation(s)
- Ali F. Almutairy
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Abdullah S. Alhamed
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Pharmacology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Stephen G. Grant
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Public Health, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Miranda J. Falso
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Billy W. Day
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colton R. Simmons
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Jean J. Latimer
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- AutoNation Institute for Breast Cancer Research and Care, Nova Southeastern University, Fort Lauderdale, FL, United States
- Department of Obstetrics and Gynecology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Gao M, Liu T, Hu K, Chen S, Wang S, Gan D, Li Z, Lin X. Ribosomal Dysregulation in Metastatic Laryngeal Squamous Cell Carcinoma: Proteomic Insights and CX-5461's Therapeutic Promise. TOXICS 2024; 12:363. [PMID: 38787142 PMCID: PMC11126056 DOI: 10.3390/toxics12050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
One of the main barriers to the successful treatment of laryngeal squamous cell carcinoma (LSCC) is postoperative progression, primarily due to tumor cell metastasis. To systematically investigate the molecular characteristics and potential mechanisms underlying the metastasis in laryngeal cancer, we carried out a TMT-based proteomic analysis of both cancerous and adjacent non-cancerous tissues from 10 LSCC patients with lymph node metastasis (LNM) and 10 without. A total of 5545 proteins were quantified across all samples. We identified 57 proteins that were downregulated in LSCC with LNM, which were enriched in cell adhesion pathways, and 69 upregulated proteins predominantly enriched in protein production pathways. Importantly, our data revealed a strong correlation between increased ribosomal activity and the presence of LNM, as 18 ribosomal subunit proteins were found to be upregulated, with RPS10 and RPL24 being the most significantly overexpressed. The potential of ribosomal proteins, including RPS10 and RPL24, as biomarkers for LSCC with LNM was confirmed in external validation samples (six with LNM and six without LNM) using Western blotting and immunohistochemistry. Furthermore, we have confirmed that the RNA polymerase I inhibitor CX-5461, which impedes ribosome biogenesis in LSCC, also decreases the expression of RPS10, RPL24, and RPS26. In vitro experiments have revealed that CX-5461 moderately reduces cell viability, while it significantly inhibits the invasion and migration of LSCC cells. It can enhance the expression of the epithelial marker CDH1 and suppress the expression of the mesenchymal markers CDH2, VIM, and FN at a dose that does not affect cell viability. Our study broadens the scope of the proteomic data on laryngeal cancer and suggests that ribosome targeting could be a supplementary therapeutic strategy for metastatic LSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohuang Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.G.); (T.L.); (K.H.); (S.C.); (S.W.); (D.G.); (Z.L.)
| |
Collapse
|
4
|
Almutairy A, Alhamed A, Grant SG, Sarachine Falso MJ, Day BW, Simmons CR, Latimer JJ. Cancer-Specific Alterations in Nuclear Matrix Proteins Determined by Multi-omics Analyses of Ductal Carcinoma in Situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580215. [PMID: 38405693 PMCID: PMC10888842 DOI: 10.1101/2024.02.13.580215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Breast cancer (BC) is the most common cancer affecting women in the United States. Ductal carcinoma in situ (DCIS) is the earliest identifiable pre-invasive BC lesion. Estimates show that 14 to 50% of DCIS cases progress to invasive BC. Our objective was to identify nuclear matrix proteins (NMP) with specifically altered expression in DCIS and later stages of BC compared to non-diseased breast reduction mammoplasty and a contralateral breast explant using mass spectrometry and RNA sequencing to accurately identify aggressive DCIS. Sixty NMPs were significantly differentially expressed between the DCIS and non-diseased breast epithelium in an isogenic contralateral pair of patient-derived extended explants. Ten of the sixty showed significant mRNA expression level differences that matched the protein expression. These 10 proteins were similarly expressed in non-diseased breast reduction cells. Three NMPs (RPL7A, RPL11, RPL31) were significantly upregulated in DCIS and all other BC stages compared to the matching contralateral breast culture and an unrelated non-diseased breast reduction culture. RNA sequencing analyses showed that these three genes were upregulated increasingly with BC progression. Finally, we identified three NMPs (AHNAK, CDC37 and DNAJB1) that were significantly downregulated in DCIS and all other BC stages compared to the isogenically matched contralateral culture and the non-diseased breast reduction culture using both proteomics and RNA sequencing techniques.
Collapse
|
5
|
Abi Zamer B, Rah B, Jayakumar MN, Abumustafa W, Hamad M, Muhammad JS. DNA methylation-mediated epigenetic regulation of oncogenic RPS2 as a novel therapeutic target and biomarker in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 696:149453. [PMID: 38181486 DOI: 10.1016/j.bbrc.2023.149453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Ribosomal Protein S2 (RPS2) has emerged as a potential prognostic biomarker due to its involvement in key cellular processes and its altered expression pattern in certain types of cancer. However, its role in hepatocellular carcinoma (HCC) has yet to be investigated. Herein, we analyzed RPS2 mRNA expression and promoter methylation in HCC patient samples and HepG2 cells. Subsequently, loss-of-function experiments were conducted to determine the function of RPS2 in HCC cells in vitro. Our results revealed that RPS2 mRNA expression is significantly elevated, and its promoter is hypomethylated in HCC patient samples compared to controls. In addition, 5-Azacytidine treatment in HepG2 cells decreased RPS2 promoter methylation level and increased its mRNA expression. RPS2 knockdown in HepG2 cells suppressed cell proliferation and promoted apoptosis. Functional pathway analysis of genes positively and negatively associated with RPS2 expression in HCC showed enrichment in ribosomal biogenesis, translation machinery, cell cycle regulation, and DNA processing. Furthermore, utilizing drug-protein 3D docking, we found that doxorubicin, sorafenib, and 5-Fluorouracil, showed high affinity to the active sites of RPS2, and in vitro treatment with these drugs reduced RPS2 expression. For the first time, we report on DNA methylation-mediated epigenetic regulation of RPS2 and its oncogenic role in HCC. Our findings suggest that RPS2 plays a significant role in the development and progression of HCC, hence its potential prognostic and therapeutic utility. Moreover, as epigenetic changes happen early in cancer development, RPS2 may serve as a potential biomarker for tumor progression.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Bilal Rah
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
Sherwood DR, Kenny-Ganzert IW, Balachandar Thendral S. Translational regulation of cell invasion through extracellular matrix-an emerging role for ribosomes. F1000Res 2023; 12:1528. [PMID: 38628976 PMCID: PMC11019292 DOI: 10.12688/f1000research.143519.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 04/19/2024] Open
Abstract
Many developmental and physiological processes require cells to invade and migrate through extracellular matrix barriers. This specialized cellular behavior is also misregulated in many diseases, such as immune disorders and cancer. Cell invasive activity is driven by pro-invasive transcriptional networks that activate the expression of genes encoding numerous different proteins that expand and regulate the cytoskeleton, endomembrane system, cell adhesion, signaling pathways, and metabolic networks. While detailed mechanistic studies have uncovered crucial insights into pro-invasive transcriptional networks and the distinct cell biological attributes of invasive cells, less is known about how invasive cells modulate mRNA translation to meet the robust, dynamic, and unique protein production needs of cell invasion. In this review we outline known modes of translation regulation promoting cell invasion and focus on recent studies revealing elegant mechanisms that expand ribosome biogenesis within invasive cells to meet the increased protein production requirements to invade and migrate through extracellular matrix barriers.
Collapse
|
7
|
Wang G, Qin M, Zhang B, Yan Y, Yang F, Chen Q, Liu Y, Qiao F, Ni Y. Decreased expression of RPL15 and RPL18 exacerbated the calcification of valve interstitial cells during aortic valve calcification. Cell Biol Int 2023; 47:1749-1759. [PMID: 37431269 DOI: 10.1002/cbin.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Calcific aortic valve disease (CAVD) is the most common valvular heart disease, with an increasing prevalence due to an aging population. The pathobiology of CAVD is a multifaceted and actively regulated process, but the detailed mechanisms have not been elucidated. The present study aims to identify the differentially expressed genes (DEGs) in calcified aortic valve tissues, and to analyze the correlation between DEGs and clinical features in CAVD patients. The DEGs were screened by microarray in normal and CAVD groups (n = 2 for each group), and confirmed by quantitative real-time polymerase chain reaction in normal (n = 12) and calcified aortic valve tissues (n = 34). A total of 1048 DEGs were identified in calcified aortic valve tissues, including 227 upregulated mRNAs and 821 downregulated mRNAs. Based on multiple bioinformatic analyses, three 60S ribosomal subunit components (RPL15, RPL18, and RPL18A), and two 40S ribosomal subunit components (RPS15 and RPS21) were identified as the top 5 hub genes in the protein-protein interaction network of DEGs. The expression of RPL15 and RPL18 was also found significantly decreased in calcified aortic valve tissues (both p < .01), and negatively correlated with the osteogenic differentiation marker OPN in CAVD patients (both p < .01). Moreover, inhibition of RPL15 or RPL18 exacerbated the calcification of valve interstitial cells under osteogenic induction conditions. The present study proved that decreased expression of RPL15 and RPL18 was closely associated with aortic valve calcification, which provided valuable clues to find therapeutic targets for CAVD.
Collapse
Affiliation(s)
- Guokun Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ming Qin
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Boyao Zhang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Yan
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Cardiothoracic Surgery, No.903 Hospital of PLA, Hangzhou, Zhejiang, China
| | - Fan Yang
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Chen
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Critical Care Medicine, Naval Medical Center of PLA, Shanghai, China
| | - Fan Qiao
- Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yiming Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Wei W, Wu Y, Chen DD, Song Y, Xu G, Shi Q, Dong XP. Proteomics profiling for the global and acetylated proteins of papillary thyroid cancers. Proteome Sci 2023; 21:6. [PMID: 37101287 PMCID: PMC10131382 DOI: 10.1186/s12953-023-00207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/16/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common endocrine malignancy cancer among the malignancies of thyroid. Despite of wide usages of proteomics in PTC, the profile of acetylated proteins in PTC remains unsettled, which is helpful for understanding the carcinogenesis mechanism and identifying useful biomarkers for PTC. METHODS The surgically removed specimens of cancer tissues (Ca-T) and adjacent normal tissues (Ca-N) from 10 female patients pathological diagnosed as PTC (TNM stage III) were enrolled in the study. After preparing the pooled extracts of the whole proteins and the acetylated proteins from 10 cases, TMT labeling and LC/MS/MS methods were applied to the assays of global proteomics and acetylated proteomics separately. Bioinformatics analysis, including KEGG, gene ontology (GO) and hierarchical clustering were performed. Some differentially expressed proteins (DEPs) and differentially expressed acetylated proteins (DEAPs) were validated by individual Western blots. RESULTS Controlled with the normal tissues adjacent to the lesions, 147 out of 1923 identified proteins in tumor tissues were considered as DEPs in global proteomics, including 78 up-regulated and 69 down-regulated ones, while 57 out of 311 identified acetylated proteins in tumor tissues were DEAPs in acetylated proteomics, including 32 up-regulated and 25 down-regulated, respectively. The top 3 up- and down-regulated DEPs were fibronectin 1, KRT1B protein and chitinase-3-like protein 1, as well as keratin, type I cytoskeletal 16, A-gamma globin Osilo variant and Huntingtin interacting protein-1. The top 3 up- and down-regulated DEAPs were ribosomal protein L18a-like protein, alpha-1-acid glycoprotein 2 and eukaryotic peptide chain release factor GTP-binding subunit ERF3A, as well as trefoil factor 3, thyroglobulin and histone H2B. Functional GO annotation and KEGG pathway analysis based on the DEPs and DEAPs showed completely different changing pictures. Contrary to the top 10 up- and -down regulated DEPs, most of which were addressed in PTC and other types of carcinomas, changes of the majority DEAPs were not mentioned in the literatures. CONCLUSIONS Taken the profiling of the global and acetylated proteomics together will provide more broad view of protein alterations on the carcinogenesis and new direction for selecting biomarker for diagnosis of PTC.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Head and Neck Surgery Department, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuezhang Wu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Dong-Dong Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China
| | - Yuntao Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Head and Neck Surgery Department, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Guohui Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Head and Neck Surgery Department, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qi Shi
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Rd 155, Beijing, 102206, China.
| |
Collapse
|
9
|
Zhang Y, Cai Q, Luo Y, Zhang Y, Li H. Integrated top-down and bottom-up proteomics mass spectrometry for the characterization of endogenous ribosomal protein heterogeneity. J Pharm Anal 2023; 13:63-72. [PMID: 36820077 PMCID: PMC9937802 DOI: 10.1016/j.jpha.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are abundant, large RNA-protein complexes that are the sites of all protein synthesis in cells. Defects in ribosomal proteins (RPs), including proteoforms arising from genetic variations, alternative splicing of RNA transcripts, post-translational modifications and alterations of protein expression level, have been linked to a diverse range of diseases, including cancer and aging. Comprehensive characterization of ribosomal proteoforms is challenging but important for the discovery of potential disease biomarkers or protein targets. In the present work, using E. coli 70S RPs as an example, we first developed a top-down proteomics approach on a Waters Synapt G2 Si mass spectrometry (MS) system, and then applied it to the HeLa 80S ribosome. The results were complemented by a bottom-up approach. In total, 50 out of 55 RPs were identified using the top-down approach. Among these, more than 30 RPs were found to have their N-terminal methionine removed. Additional modifications such as methylation, acetylation, and hydroxylation were also observed, and the modification sites were identified by bottom-up MS. In a HeLa 80S ribosomal sample, we identified 98 ribosomal proteoforms, among which multiple truncated 80S ribosomal proteoforms were observed, the type of information which is often overlooked by bottom-up experiments. Although their relevance to diseases is not yet known, the integration of top-down and bottom-up proteomics approaches paves the way for the discovery of proteoform-specific disease biomarkers or targets.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qinghua Cai
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Zhang
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Corresponding author. School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Wu E, Fan X, Tang T, Li J, Wang J, Liu X, Zungar Z, Ren J, Wu C, Shen B. Biomarkers discovery for endometrial cancer: A graph convolutional sample network method. Comput Biol Med 2022; 150:106200. [PMID: 37859290 DOI: 10.1016/j.compbiomed.2022.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/20/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Endometrial carcinoma is the sixth most common cancer in women worldwide. Importantly, endometrial cancer is among the few types of cancers with patient mortality that is still increasing, which indicates that the improvement in its diagnosis and treatment is still urgent. Moreover, biomarker discovery is essential for precise classification and prognostic prediction of endometrial cancer. METHODS A novel graph convolutional sample network method was used to identify and validate biomarkers for the classification of endometrial cancer. The sample networks were first constructed for each sample, and the gene pairs with high frequencies were identified to construct a subtype-specific network. Putative biomarkers were then screened using the highest degrees in the subtype-specific network. Finally, simplified sample networks are constructed using the biomarkers for the graph convolutional network (GCN) training and prediction. RESULTS Putative biomarkers (23) were identified using the novel bioinformatics model. These biomarkers were then rationalised with functional analyses and were found to be correlated to disease survival with network entropy characterisation. These biomarkers will be helpful in future investigations of the molecular mechanisms and therapeutic targets of endometrial cancers. CONCLUSIONS A novel bioinformatics model combining sample network construction with GCN modelling is proposed and validated for biomarker discovery in endometrial cancer. The model can be generalized and applied to biomarker discovery in other complex diseases.
Collapse
Affiliation(s)
- Erman Wu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemeng Fan
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Computer Science and Information Technologies, Elviña Campus, University of A Coruña, A Coruña, Spain
| | - Jingjing Li
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyun Liu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zayatta Zungar
- School of Medicine, University of New England, Armidale, NSW, 2351, Australia
| | - Jiaojiao Ren
- School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu, China
| | - Cong Wu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022; 82:2344-2353. [PMID: 35303060 PMCID: PMC9256764 DOI: 10.1158/0008-5472.can-21-4087] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
Collapse
Affiliation(s)
- Amr R. Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama.,Corresponding Author: Rajeev S. Samant, The University of Alabama at Birmingham, WTI 320E, 1824 6th Avenue South, Birmingham, AL 35233. Phone: 205-975-6262; E-mail:
| |
Collapse
|
12
|
Azevedo ALKD, Gomig THB, Giner IS, Batista M, Marchini FK, Lima RS, de Andrade Urban C, Sebastião APM, Cavalli IJ, Ribeiro EMDSF. Comprehensive analysis of the large and small ribosomal proteins in breast cancer: Insights on proteomic and transcriptomic expression patterns, regulation, mutational landscape, and prognostic significance. Comput Biol Chem 2022; 100:107746. [DOI: 10.1016/j.compbiolchem.2022.107746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022]
|
13
|
Zheng HC, Xue H, Jin YZ, Jiang HM, Cui ZG. The Oncogenic Effects, Pathways, and Target Molecules of JC Polyoma Virus T Antigen in Cancer Cells. Front Oncol 2022; 12:744886. [PMID: 35350574 PMCID: PMC8958009 DOI: 10.3389/fonc.2022.744886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
JC polyoma virus (JCPyV) is a ubiquitous polyoma virus that infects the individual to cause progressive multifocal leukoencephalopathy and malignancies. Here, we found that T-antigen knockdown suppressed proliferation, glycolysis, mitochondrial respiration, migration, and invasion, and induced apoptosis and G2 arrest. The reverse was true for T-antigen overexpression, with overexpression of Akt, survivin, retinoblastoma protein, β-catenin, β-transducin repeat-containing protein (TRCP), and inhibitor of growth (ING)1, and the underexpression of mammalian target of rapamycin (mTOR), phosphorylated (p)-mTOR, p-p38, Cyclin D1, p21, vascular endothelial growth factor (VEGF), ING2, and ING4 in hepatocellular and pancreatic cancer cells and tissues. In lens tumor cells, T antigen transcriptionally targeted viral carcinogenesis, microRNAs in cancer, focal adhesion, p53, VEGF, phosphoinositide 3 kinase-Akt, and Forkhead box O signaling pathways, fructose and mannose metabolism, ribosome biosynthesis, and choline and pyrimidine metabolism. At a metabolomics level, it targeted protein digestion and absorption, aminoacryl-tRNA biosynthesis, biosynthesis of amino acids, and the AMPK signal pathway. At a proteomic level, it targeted ribosome biogenesis in eukaryotes, citrate cycle, carbon metabolism, protein digestion and absorption, aminoacryl-tRNA biosynthesis, extracellular-matrix-receptor interaction, and biosynthesis of amino acids. In lens tumor cells, T antigen might interact with various keratins, ribosomal proteins, apolipoproteins, G proteins, ubiquitin-related proteins, RPL19, β-catenin, β-TRCP, p53, and CCAAT-enhancer-binding proteins in lens tumor cells. T antigen induced a more aggressive phenotype in mouse and human cancer cells due to oncogene activation, inactivation of tumor suppressors, and disruption of metabolism, cell adhesion, and long noncoding RNA-microRNA-target axes.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hang Xue
- Department of Oncology and Experimental Center, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yu-Zi Jin
- Department of Pediatrics, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-Mao Jiang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| |
Collapse
|
14
|
Downregulation of Methionine Cycle Genes MAT1A and GNMT Enriches Protein-Associated Translation Process and Worsens Hepatocellular Carcinoma Prognosis. Int J Mol Sci 2022; 23:ijms23010481. [PMID: 35008908 PMCID: PMC8745498 DOI: 10.3390/ijms23010481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 01/27/2023] Open
Abstract
The major biological methyl donor, S-adenosylmethionine (adoMet) synthesis occurs mainly in the liver. Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are two key enzymes involved in the functional implications of that variation. We collected 42 RNA-seq data from paired hepatocellular carcinoma (HCC) and its adjacent normal liver tissue from the Cancer Genome Atlas (TCGA). There was no mutation found in MAT1A or GNMT RNA in the 42 HCC patients. The 11,799 genes were annotated in the RNA-Seq data, and their expression levels were used to investigate the phenotypes of low MAT1A and low GNMT by Gene Set Enrichment Analysis (GSEA). The REACTOME_TRANSLATION gene set was enriched and visualized in a heatmap along with corresponding differences in gene expression between low MAT1A versus high MAT1A and low GNMT versus high GNMT. We identified 43 genes of the REACTOME_TRANSLATION gene set that are powerful prognosis factors in HCC. The significantly predicted genes were referred into eukaryotic translation initiation (EIF3B, EIF3K), eukaryotic translation elongation (EEF1D), and ribosomal proteins (RPs). Cell models expressing various MAT1A and GNMT proved that simultaneous restoring the expression of MAT1A and GNMT decreased cell proliferation, invasion, as well as the REACTOME_TRANSLATION gene EEF1D, consistent with a better prognosis in human HCC. We demonstrated new findings that downregulation or defect in MAT1A and GNMT genes can enrich the protein-associated translation process that may account for poor HCC prognosis. This is the first study demonstrated that MAT1A and GNMT, the 2 key enzymes involved in methionine cycle, could attenuate the function of ribosome translation. We propose a potential novel mechanism by which the diminished GNMT and MAT1A expression may confer poor prognosis for HCC.
Collapse
|
15
|
Deregulation of ribosomal proteins in human cancers. Biosci Rep 2021; 41:230380. [PMID: 34873618 PMCID: PMC8685657 DOI: 10.1042/bsr20211577] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ribosome, the site for protein synthesis, is composed of ribosomal RNAs (rRNAs) and ribosomal proteins (RPs). The latter have been shown to have many ribosomal and extraribosomal functions. RPs are implicated in a variety of pathological processes, especially tumorigenesis and cell transformation. In this review, we will focus on the recent advances that shed light on the effects of RPs deregulation in different types of cancer and their roles in regulating the tumor cell fate.
Collapse
|
16
|
Rao B, Li J, Ren T, Yang J, Zhang G, Liu L, Wang H, Huang M, Ren Z, Yu Z. RPL19 Is a Prognostic Biomarker and Promotes Tumor Progression in Hepatocellular Carcinoma. Front Cell Dev Biol 2021; 9:686547. [PMID: 34350180 PMCID: PMC8327752 DOI: 10.3389/fcell.2021.686547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/30/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignancies, and the therapeutic outcome remains undesirable due to its recurrence and metastasis. Gene dysregulation plays a pivotal role in the occurrence and progression of cancer, and the molecular mechanisms are largely unknown. METHODS The differentially expressed genes of HCC screened from the GSE39791 dataset were used to conduct weighted gene co-expression network analysis. The selected hub genes were validated in The Cancer Genome Atlas (TCGA) database and 11 HCC datasets from the Gene Expression Omnibus (GEO) database. Then, a tissue microarray comprising 90 HCC specimens and 90 adjacent normal specimens was used to validate the hub genes. Moreover, the Hallmark, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to identify enriched pathways. Then, we conducted the immune infiltration analysis. RESULTS A total of 17 co-expression modules were obtained by weighted gene co-expression network analysis. The green, blue, and purple modules were the most relevant to HCC samples. Four hub genes, RPL19, RPL35A, RPL27A, and RPS12, were identified. Interestingly, we found that all four genes were highly expressed in HCC and that their high expression was related to a poor prognosis by analyzing the TCGA and GEO databases. Furthermore, we investigated RPL19 in HCC tissue microarrays and demonstrated that RPL19 was overexpressed in tumor tissues compared with non-tumor tissues (p = 0.016). Moreover, overexpression of RPL19 predicted a poor prognosis in hepatocellular carcinoma (p < 0.0007). Then, enrichment analysis revealed that cell cycle pathways were significantly enriched, and bile acid metabolism-related pathways were significantly down-regulated when RPL19 was highly expressed. Furthermore, immune infiltration analysis showed that immune response was suppressed. CONCLUSION Our study demonstrates that RPL19 may play an important role in promoting tumor progression and is correlated with a poor prognosis in HCC. RPL19 may serve as a promising biomarker and therapeutic target for the precise diagnosis and treatment of HCC in the future.
Collapse
Affiliation(s)
- Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Ren
- Department of Breast Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guizhen Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwen Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Maoxin Huang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Timmerman DM, Remmers TL, Hillenius S, Looijenga LHJ. Mechanisms of TP53 Pathway Inactivation in Embryonic and Somatic Cells-Relevance for Understanding (Germ Cell) Tumorigenesis. Int J Mol Sci 2021; 22:ijms22105377. [PMID: 34065345 PMCID: PMC8161298 DOI: 10.3390/ijms22105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 01/10/2023] Open
Abstract
The P53 pathway is the most important cellular pathway to maintain genomic and cellular integrity, both in embryonic and non-embryonic cells. Stress signals induce its activation, initiating autophagy or cell cycle arrest to enable DNA repair. The persistence of these signals causes either senescence or apoptosis. Over 50% of all solid tumors harbor mutations in TP53 that inactivate the pathway. The remaining cancers are suggested to harbor mutations in genes that regulate the P53 pathway such as its inhibitors Mouse Double Minute 2 and 4 (MDM2 and MDM4, respectively). Many reviews have already been dedicated to P53, MDM2, and MDM4, while this review additionally focuses on the other factors that can deregulate P53 signaling. We discuss that P14ARF (ARF) functions as a negative regulator of MDM2, explaining the frequent loss of ARF detected in cancers. The long non-coding RNA Antisense Non-coding RNA in the INK4 Locus (ANRIL) is encoded on the same locus as ARF, inhibiting ARF expression, thus contributing to the process of tumorigenesis. Mutations in tripartite motif (TRIM) proteins deregulate P53 signaling through their ubiquitin ligase activity. Several microRNAs (miRNAs) inactivate the P53 pathway through inhibition of translation. CCCTC-binding factor (CTCF) maintains an open chromatin structure at the TP53 locus, explaining its inactivation of CTCF during tumorigenesis. P21, a downstream effector of P53, has been found to be deregulated in different tumor types. This review provides a comprehensive overview of these factors that are known to deregulate the P53 pathway in both somatic and embryonic cells, as well as their malignant counterparts (i.e., somatic and germ cell tumors). It provides insights into which aspects still need to be unraveled to grasp their contribution to tumorigenesis, putatively leading to novel targets for effective cancer therapies.
Collapse
|
18
|
Reza AMMT, Yuan YG. microRNAs Mediated Regulation of the Ribosomal Proteins and its Consequences on the Global Translation of Proteins. Cells 2021; 10:110. [PMID: 33435549 PMCID: PMC7827472 DOI: 10.3390/cells10010110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Ribosomal proteins (RPs) are mostly derived from the energy-consuming enzyme families such as ATP-dependent RNA helicases, AAA-ATPases, GTPases and kinases, and are important structural components of the ribosome, which is a supramolecular ribonucleoprotein complex, composed of Ribosomal RNA (rRNA) and RPs, coordinates the translation and synthesis of proteins with the help of transfer RNA (tRNA) and other factors. Not all RPs are indispensable; in other words, the ribosome could be functional and could continue the translation of proteins instead of lacking in some of the RPs. However, the lack of many RPs could result in severe defects in the biogenesis of ribosomes, which could directly influence the overall translation processes and global expression of the proteins leading to the emergence of different diseases including cancer. While microRNAs (miRNAs) are small non-coding RNAs and one of the potent regulators of the post-transcriptional gene expression, miRNAs regulate gene expression by targeting the 3' untranslated region and/or coding region of the messenger RNAs (mRNAs), and by interacting with the 5' untranslated region, and eventually finetune the expression of approximately one-third of all mammalian genes. Herein, we highlighted the significance of miRNAs mediated regulation of RPs coding mRNAs in the global protein translation.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Yu-Guo Yuan
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Key Laboratory of Zoonosis/Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Cai Z, Wu Y, Zhang F, Wu H. A three-gene signature and clinical outcome in pediatric acute myeloid leukemia. Clin Transl Oncol 2020; 23:866-873. [PMID: 32862280 DOI: 10.1007/s12094-020-02480-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although the 5-year survival rates in pediatric acute myeloid leukemia (AML) have improved over the last decades, there is a high relapse rate for Pediatric AML patients. METHODS In the present study, we mainly combine PCA with the LASSO technique to identify prognostic markers for Pediatric AML patients coming from the NCI TARGET database. RESULTS Three key genes (EEF1A1, RPLP2, RPL19) associated with poor prognosis of pediatric AML has been screened by both PCA and LASSO Cox regression analysis. Simultaneously, we developed a risk score model to predict the prognosis of pediatric AML, according to risk scores, the patients were divided into high- and low-risk groups based on the median risk score. Kaplan-Meier survival analysis indicated that Pediatric AML patients with the high-risk group have a poorer survival rate than those with a low-risk group (p < 0.000). The receiver operating characteristic (ROC) analysis showed that the risk model has a good performance (AUC:0.669). Moreover, the clinicopathologic correlation showed that the expression levels of three genes were related to the central nervous system (CNS) disease and chloroma. GSEA identified that those pathways including oxidative phosphorylation, apoptosis and TGFB signaling pathway were differentially enriched. CONCLUSION Taken together, those studies suggested that a gene panel that consists of three genes (EEF1A1, RPLP2, RPL19) may act as a potential prognostic marker.
Collapse
Affiliation(s)
- Z Cai
- Department of Pediatrics, The First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Y Wu
- Department of Pathology, The First People's Hospital of Xiangtan City, No.100 Shuyuan Road, Yuetang District, Xiangtan, 421001, Hunan, China
| | - F Zhang
- Department of Pathology, The Rushan People's Hospital of Weihai City, Shandong, 264500, China
| | - H Wu
- Department of Pathology, The First People's Hospital of Xiangtan City, No.100 Shuyuan Road, Yuetang District, Xiangtan, 421001, Hunan, China.
| |
Collapse
|
20
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Landscape of transcriptome variations uncovering known and novel driver events in colorectal carcinoma. Sci Rep 2020; 10:432. [PMID: 31949199 PMCID: PMC6965099 DOI: 10.1038/s41598-019-57311-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
We focused on an integrated view of genomic changes in Colorectal cancer (CRC) and distant normal colon tissue (NTC) to test the effectiveness of expression profiling on identification of molecular targets. We performed transcriptome on 16 primary coupled CRC and NTC tissues. We identified pathways and networks related to pathophysiology of CRC and selected potential therapeutic targets. CRC cells have multiple ways to reprogram its transcriptome: a functional enrichment analysis in 285 genes, 25% mutated, showed that they control the major cellular processes known to promote tumorigenesis. Among the genes showing alternative splicing, cell cycle related genes were upregulated (CCND1, CDC25B, MCM2, MCM3), while genes involved in fatty acid metabolism (ACAAA2, ACADS, ACAT1, ACOX, CPT1A, HMGCS2) were downregulated. Overall 148 genes showed differential splicing identifying 17 new isoforms. Most of them are involved in the pathogenesis of CRC, although the functions of these variants remain unknown. We identified 2 in-frame fusion events, KRT19-KRT18 and EEF1A1-HSP90AB1, encoding for chemical proteins in two CRC patients. We draw a functional interactome map involving integrated multiple genomic features in CRC. Finally, we underline that two functional cell programs are prevalently deregulated and absolutely crucial to determinate and sustain CRC phenotype.
Collapse
|
22
|
Identification of key regulators in prostate cancer from gene expression datasets of patients. Sci Rep 2019; 9:16420. [PMID: 31712650 PMCID: PMC6848149 DOI: 10.1038/s41598-019-52896-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/15/2019] [Indexed: 12/20/2022] Open
Abstract
Identification of key regulators and regulatory pathways is an important step in the discovery of genes involved in cancer. Here, we propose a method to identify key regulators in prostate cancer (PCa) from a network constructed from gene expression datasets of PCa patients. Overexpressed genes were identified using BioXpress, having a mutational status according to COSMIC, followed by the construction of PCa Interactome network using the curated genes. The topological parameters of the network exhibited power law nature indicating hierarchical scale-free properties and five levels of organization. Highest degree hubs (k ≥ 65) were selected from the PCa network, traced, and 19 of them was identified as novel key regulators, as they participated at all network levels serving as backbone. Of the 19 hubs, some have been reported in literature to be associated with PCa and other cancers. Based on participation coefficient values most of these are connector or kinless hubs suggesting significant roles in modular linkage. The observation of non-monotonicity in the rich club formation suggested the importance of intermediate hubs in network integration, and they may play crucial roles in network stabilization. The network was self-organized as evident from fractal nature in topological parameters of it and lacked a central control mechanism.
Collapse
|
23
|
Pecoraro A, Carotenuto P, Russo G, Russo A. Ribosomal protein uL3 targets E2F1 and Cyclin D1 in cancer cell response to nucleolar stress. Sci Rep 2019; 9:15431. [PMID: 31659203 PMCID: PMC6817900 DOI: 10.1038/s41598-019-51723-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Several experimental strategies in the treatment of cancer include drug alteration of cell cycle regulatory pathways as a useful strategy. Extra-ribosomal functions of human ribosomal protein L3 (uL3) may affect DNA repair, cell cycle arrest and apoptosis. In the present study, we demonstrated that uL3 is required for the activation of G1/S transition genes. Luciferase assays established that uL3 negatively regulates the activity of E2F1 promoter. Induced ribosome-free uL3 reduces Cyclin D1 mRNA and protein levels. Using protein/protein immunoprecipitation methods, we demonstrated that uL3 physically interacts with PARP-1 affecting E2F1 transcriptional activity. Our findings led to the identification of a new pathway mediated by uL3 involving E2F1 and Cyclin D1 in the regulation of cell cycle progression.
Collapse
Affiliation(s)
- Annalisa Pecoraro
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Pietro Carotenuto
- The Institute of Cancer Research, Cancer Therapeutics Unit 15 Cotswold Road, Sutton, London, SM2 5NG, UK
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy.
| | - Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
24
|
Shen A, Chen Y, Liu L, Huang Y, Chen H, Qi F, Lin J, Shen Z, Wu X, Wu M, Li Q, Qiu L, Yu N, Sferra TJ, Peng J. EBF1-Mediated Upregulation of Ribosome Assembly Factor PNO1 Contributes to Cancer Progression by Negatively Regulating the p53 Signaling Pathway. Cancer Res 2019; 79:2257-2270. [PMID: 30862720 DOI: 10.1158/0008-5472.can-18-3238] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
The RNA-binding protein PNO1 is critical for ribosome biogenesis, but its potential role in cancer remains unknown. In this study, online data mining, cDNA, and tissue microarrays indicated that PNO1 expression was higher in colorectal cancer tissue than in noncancerous tissue, and its overexpression was associated with worse patient survival. Gain-of-function and loss-of-function studies demonstrated that PNO1 knockdown suppressed growth of colorectal cancer cells in vitro and in vivo, while PNO1 overexpression promoted colorectal cancer cell proliferation in vitro. In colorectal cancer cells expressing wild-type p53, PNO1 knockdown enhanced expression of p53 and its downstream gene p21, and reduced cell viability; these effects were prevented by p53 knockout and attenuated by the p53 inhibitor PFT-α. Moreover, PNO1 knockdown in HCT116 cells decreased levels of 18S rRNA, of 40S and 60S ribosomal subunits, and of the 80S ribosome. It also reduced global protein synthesis, increasing nuclear stress and inhibiting MDM2-mediated ubiquitination and p53 degradation. Overexpressing EBF1 suppressed PNO1 promoter activity and decreased PNO1 mRNA and protein, inhibiting cell proliferation and inducing cell apoptosis through the p53/p21 pathway. In colorectal cancer tissues, the expression of EBF1 correlated inversely with PNO1. Data mining of online breast and lung cancer databases showed increased PNO1 expression and association with poor patient survival; PNO1 knockdown reduced cell viability of cultured breast and lung cancer cells. Taken together, these findings indicate that PNO1 is overexpressed in colorectal cancer and correlates with poor patient survival, and that PNO1 exerts oncogenic effects, at least, in part, by altering ribosome biogenesis. SIGNIFICANCE: This study identifies the ribosome assembly factor PNO1 as a potential oncogene involved in tumor growth and progression of colorectal cancer.
Collapse
Affiliation(s)
- Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Liya Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yue Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Hongwei Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Fei Qi
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Zhiqing Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xiangyan Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Qiongyu Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Liman Qiu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Na Yu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Thomas J Sferra
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.
- Fujian Key Laboratory of Integrative Medicine in Geriatrics, Fujian University of Traditional Chinese Medicine, Fujian, China
| |
Collapse
|
25
|
Chico V, Salvador-Mira ME, Nombela I, Puente-Marin S, Ciordia S, Mena MC, Perez L, Coll J, Guzman F, Encinar JA, Mercado L, Ortega-Villaizan MDM. IFIT5 Participates in the Antiviral Mechanisms of Rainbow Trout Red Blood Cells. Front Immunol 2019; 10:613. [PMID: 31040842 PMCID: PMC6476978 DOI: 10.3389/fimmu.2019.00613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Viral hemorrhagic septicemia virus (VHSV) infection appears to be halted in rainbow trout nucleated red blood cells (RBCs). Diverse mechanisms are thought to be related to the antiviral immune response of rainbow trout RBCs to VHSV. However, the specific rainbow trout RBC proteins that interact directly with VHSV are still unknown. In an attempt to identify VHSV-RBC protein interactions, we characterized the immunoprecipitated (IP) proteome of RBCs exposed to VHSV using an antibody against the N protein of VHSV. The IP proteomic characterization identified 31 proteins by mass spectrometry analysis. Among them, we identified interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), a protein belonging to a family of proteins that are induced after the production of type I interferon. Importantly, IFIT5 has been implicated in the antiviral immune response. We confirmed the participation of IFIT5 in the rainbow trout RBC antiviral response by examining the expression profile of IFIT5 in RBCs after VHSV exposure at transcriptional and protein levels. We detected a correlation between the highest IFIT5 expression levels and the decline in VHSV replication at 6 h post-exposure. In addition, silencing ifit5 resulted in a significant increase in VHSV replication in RBCs. Moreover, an increase in VHSV replication was observed in RBCs when the IFIT5 RNA-binding pocket cavity was modulated by using a natural compound from the SuperNatural II database. We performed a proximity ligation assay and detected a significant increase in positive cells among VHSV-exposed RBCs compared to unexposed RBCs, indicating protein-protein colocalization between IFIT5 and the glycoprotein G of VHSV. In summary, these results suggest a possible role of IFIT5 in the antiviral response of RBCs against VHSV.
Collapse
Affiliation(s)
- Veronica Chico
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Maria Elizabhet Salvador-Mira
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Ivan Nombela
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Sara Puente-Marin
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - María Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Luis Perez
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional de Investigaciones y Tecnologías Agrarias y Alimentarias (INIA), Madrid, Spain
| | - Fanny Guzman
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Jose Antonio Encinar
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile
| | - Maria Del Mar Ortega-Villaizan
- Departamento de Bioquímica y Biología Molecular, Instituto de Biología Molecular y Celular (IBMC), Universidad Miguel Hernández (UMH), Elche, Spain.,Departamento de Bioquímica y Biología Molecular, Instituto de Investigación, Desarrollo e Innovación en Biotecnologîa Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), Elche, Spain
| |
Collapse
|
26
|
Verma S, Shukla S, Pandey M, MacLennan GT, Gupta S. Differentially Expressed Genes and Molecular Pathways in an Autochthonous Mouse Prostate Cancer Model. Front Genet 2019; 10:235. [PMID: 30972102 PMCID: PMC6445055 DOI: 10.3389/fgene.2019.00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer remains a major public health problem and the second leading cause of cancer-related deaths in men in the United States. The present study aims to understand the molecular pathway(s) of prostate cancer which is essential for early detection and treatment. Dorsolateral prostate from 20 week transgenic adenocarcinoma of the mouse prostate (TRAMP) mice, which spontaneously develops prostate cancer and recapitulates human disease and age-matched non-transgenic littermates were utilized for microarray analysis. Mouse genome network and pathway analyses were mapped to the human genome using the Ingenuity Pathway Analysis (IPA) database for annotation, visualization, and integrated discovery. In total, 136 differentially expressed genes, including 32 downregulated genes and 104 upregulated genes were identified in the dorsolateral prostate of TRAMP, compared to non-transgenic mice. A subset of differentially expressed genes were validated by qRT-PCR. Alignment with human genome database identified 18 different classes of proteins, among these, 36% were connected to the nucleic acid binding, including ribosomal proteins, which play important role in protein synthesis-the most enriched pathway in the development of prostate cancer. Furthermore, the results suggest deregulation of signaling molecules (9%) and enzyme modulators (8%) affect various pathways. An imbalance in other protein classes, including transporter proteins (7%), hydrolases (6%), oxidoreductases, and cytoskeleton proteins (5%), contribute to cancer progression. Our study evaluated the underlying pathways and its connection to human prostate cancer, which may further help assess the risk of disease development and progression and identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sanjeev Shukla
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Mitali Pandey
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Vancouver Prostate Center, Vancouver, BC, Canada
| | - Gregory T MacLennan
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, United States
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, United States
| |
Collapse
|
27
|
Dong Z, Jiang H, Liang S, Wang Y, Jiang W, Zhu C. Ribosomal Protein L15 is involved in Colon Carcinogenesis. Int J Med Sci 2019; 16:1132-1141. [PMID: 31523176 PMCID: PMC6743284 DOI: 10.7150/ijms.34386] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Ribosomal biogenesis is responsible for protein synthesis in all eukaryotic cells. Perturbation of ribosomal biogenesis processes can cause dysfunctions of protein synthesis and varieties of human diseases. In this study, we examine the role of RPL15, a large ribosomal subunit protein, in human colon carcinogenesis. Our results reveal that RPL15 is remarkably upregulated in human primary colon cancer tissues and cultured cell lines when compared with paired non-cancerous tissues and non-transformed epithelium cells. Elevated expression of RPL15 in colon cancer tissues is closely correlated with clinicopathological characteristics in patients. We determine the effects of RPL15 on nucleolar maintenance, ribosomal biogenesis and cell proliferation in human cells. We show that RPL15 is required for maintenance of nucleolar structure and formation of pre-60S subunits in the nucleoli. Depletion of RPL15 causes ribosomal stress, resulting in a G1-G1/S cell cycle arrest in non-transformed human epithelium cells, but apoptosis in colon cancer cells. Together, these results indicate that RPL15 is involved in human colon carcinogenesis and might be a potential clinical biomarker and/or target for colon cancer therapy.
Collapse
Affiliation(s)
- Zhixiong Dong
- Key Laboratory of Laboratory Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hongyu Jiang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shuangshuang Liang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,AstraZeneca Pharmaceutical Co Ltd, Xi'an, 710100, China
| | - Yajie Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wei Jiang
- Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.,Key Laboratory of Molecular and Cellular Systems Biology, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
28
|
Turiák L, Ozohanics O, Tóth G, Ács A, Révész Á, Vékey K, Telekes A, Drahos L. High sensitivity proteomics of prostate cancer tissue microarrays to discriminate between healthy and cancerous tissue. J Proteomics 2018; 197:82-91. [PMID: 30439472 DOI: 10.1016/j.jprot.2018.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/28/2018] [Accepted: 11/09/2018] [Indexed: 01/14/2023]
Abstract
Biopsies, in the form of tissue microarrays (TMAs) were studied to identify anomalies indicative of prostate cancer at the proteome level. TMAs offer a valuable source of well-characterized biological material. However, because of the small tissue sample size method development was essential to provide the sensitivity and reliability necessary for the analysis. Surface digestion of TMA cores was followed by peptide extraction and shotgun proteomics analysis. About 5 times better sensitivity was achieved by the optimized surface digestion compared to bulk digestion of the same TMA spot and it allowed the identification of over 500 proteins from individual prostate TMA cores. Label-free quantitation showed that biological variability among all samples was about 3 times larger than the technical reproducibility. We have identified 189 proteins which showed statistically significant changes (t-test p-value <.05) in abundance between healthy and cancerous tissue samples. The proteomic profile changed according to cancer grade, but did not show a correlation with cancer stage. Results of this pilot study were further evaluated using bioinformatics tools, identifying various protein pathways affected by prostate cancer progression indicating the usefulness of studying TMA cores to identify quantitative changes in tissue proteomics. SIGNIFICANCE: Detailed proteomics analysis of TMAs presents a good alternative for tissue analysis. Here we present a novel method, based on tissue surface digestion and nano-LC-MS measurements, which is capable of identifying and quantifying over 500 proteins from a 1.5 mm diameter tissue section. We compared healthy and cancerous prostate tissue samples, and tissues with various grades and stages of cancer. Tissue proteomics clearly distinguished healthy and cancerous samples, furthermore the results correlated well with cancer grade, but not with cancer stage. Over 100 proteins showed statistically significant abundance changes (t-test p-value <.05) between various groups. This was sufficient for a meaningful bioinformatics evaluation; showing e.g. increased abundance of proteins in cancer in the KEGG ribosome pathway, GO mRNA splicing via spliceosome, and chromatin assembly biological processes. The results highlight the feasibility of the developed method for future large-scale tissue proteomics studies using commercially available TMAs.
Collapse
Affiliation(s)
- Lilla Turiák
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Oliver Ozohanics
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gábor Tóth
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - András Ács
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary; Semmelweis University, Ph.D. School of Pharmaceutical Sciences, Üllői út 26, H-1085 Budapest, Hungary
| | - Ágnes Révész
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - Károly Vékey
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| | - András Telekes
- Div. Sect. of Geriatrics, 2nd Department of Internal Medicine, Semmelweis University, Halmi utca 20-22, H-1115 Budapest, Hungary; Dept. of Oncology, St Lazarus County Hospital, Füleki út 54-56, H-1117, Salgótarján, Hungary
| | - László Drahos
- MS Proteomics Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
29
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
30
|
Wang P, Gao L, Hu Y, Li F. Feature related multi-view nonnegative matrix factorization for identifying conserved functional modules in multiple biological networks. BMC Bioinformatics 2018; 19:394. [PMID: 30373534 PMCID: PMC6206826 DOI: 10.1186/s12859-018-2434-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Comprehensive analyzing multi-omics biological data in different conditions is important for understanding biological mechanism in system level. Multiple or multi-layer network model gives us a new insight into simultaneously analyzing these data, for instance, to identify conserved functional modules in multiple biological networks. However, because of the larger scale and more complicated structure of multiple networks than single network, how to accurate and efficient detect conserved functional biological modules remains a significant challenge. RESULTS Here, we propose an efficient method, named ConMod, to discover conserved functional modules in multiple biological networks. We introduce two features to characterize multiple networks, thus all networks are compressed into two feature matrices. The module detection is only performed in the feature matrices by using multi-view non-negative matrix factorization (NMF), which is independent of the number of input networks. Experimental results on both synthetic and real biological networks demonstrate that our method is promising in identifying conserved modules in multiple networks since it improves the accuracy and efficiency comparing with state-of-the-art methods. Furthermore, applying ConMod to co-expression networks of different cancers, we find cancer shared gene modules, the majority of which have significantly functional implications, such as ribosome biogenesis and immune response. In addition, analyzing on brain tissue-specific protein interaction networks, we detect conserved modules related to nervous system development, mRNA processing, etc. CONCLUSIONS: ConMod facilitates finding conserved modules in any number of networks with a low time and space complexity, thereby serve as a valuable tool for inference shared traits and biological functions of multiple biological system.
Collapse
Affiliation(s)
- Peizhuo Wang
- School of Computer Science and Technology, Xidian University, Xi’an, 710071 China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi’an, 710071 China
| | - Yuxuan Hu
- School of Computer Science and Technology, Xidian University, Xi’an, 710071 China
| | - Feng Li
- School of Computer Science and Technology, Xidian University, Xi’an, 710071 China
| |
Collapse
|
31
|
Identification of differentially expressed genes and pathways in mice exposed to mixed field neutron/photon radiation. BMC Genomics 2018; 19:504. [PMID: 29954325 PMCID: PMC6027792 DOI: 10.1186/s12864-018-4884-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Background Radiation exposure due to the detonation of an improvised nuclear device remains a major security concern. Radiation from such a device involves a combination of photons and neutrons. Although photons will make the greater contribution to the total dose, neutrons will certainly have an impact on the severity of the exposure as they have high relative biological effectiveness. Results We investigated the gene expression signatures in the blood of mice exposed to 3 Gy x-rays, 0.75 Gy of neutrons, or to mixed field photon/neutron with the neutron fraction contributing 5, 15%, or 25% of a total 3 Gy radiation dose. Gene ontology and pathway analysis revealed that genes involved in protein ubiquitination pathways were significantly overrepresented in all radiation doses and qualities. On the other hand, eukaryotic initiation factor 2 (EIF2) signaling pathway was identified as one of the top 10 ranked canonical pathways in neutron, but not pure x-ray, exposures. In addition, the related mTOR and regulation of EIF4/p70S6K pathways were also significantly underrepresented in the exposures with a neutron component, but not in x-ray radiation. The majority of the changed genes in these pathways belonged to the ribosome biogenesis and translation machinery and included several translation initiation factors (e.g. Eif2ak4, Eif3f), as well as 40S and 60S ribosomal subunits (e.g. Rsp19, Rpl19, Rpl27). Many of the differentially downregulated ribosomal genes (e.g. RPS19, RPS28) have been causally associated with human bone marrow failure syndromes and hematologic malignancies. We also observed downregulation of transfer RNA processes, in the neutron-only exposure (p < 0.005). Ingenuity Pathway Analysis (p < 0.05) of differentially expressed genes predicted significantly suppressed activity of the upstream regulators c-Myc and Mycn, transcription factors known to control ribosome biogenesis. Conclusions We describe the gene expression profile of mouse blood following exposure to mixed field neutron/photon irradiation. We have discovered that pathways related to protein translation are significantly underrepresented in the exposures containing a neutron component. Our results highlight the significance of neutron exposures that even the smallest percentage can have profound biological effects that will affect medical management and treatment decisions in case of a radiological emergency. Electronic supplementary material The online version of this article (10.1186/s12864-018-4884-6) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Abstract
The ribosome has long been considered as a consistent molecular factory, with a rather passive role in the translation process. Recent findings have shifted this obsolete view, revealing a remarkably complex and multifaceted machinery whose role is to orchestrate spatiotemporal control of gene expression. Ribosome specialization discovery has raised the interesting possibility of the existence of its malignant counterpart, an 'oncogenic' ribosome, which may promote tumor progression. Here we weigh the arguments supporting the existence of an 'oncogenic' ribosome and evaluate its role in cancer evolution. In particular, we provide an analysis and perspective on how the ribosome may play a critical role in the acquisition and maintenance of cancer stem cell phenotype.
Collapse
|
33
|
Vlachos A. Acquired ribosomopathies in leukemia and solid tumors. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:716-719. [PMID: 29222326 PMCID: PMC6142526 DOI: 10.1182/asheducation-2017.1.716] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A mutation in the gene encoding the small subunit-associated ribosomal protein RPS19, leading to RPS19 haploinsufficiency, is one of the ribosomal protein gene defects responsible for the rare inherited bone marrow failure syndrome Diamond Blackfan anemia (DBA). Additional inherited and acquired defects in ribosomal proteins (RPs) continue to be identified and are the basis for a new class of diseases called the ribosomopathies. Acquired RPS14 haploinsufficiency has been found to be causative of the bone marrow failure found in 5q- myelodysplastic syndromes. Both under- and overexpression of RPs have also been implicated in several malignancies. This review will describe the somatic ribosomopathies that have been found to be associated with a variety of solid tumors as well as leukemia and will review cancers in which over- or underexpression of these proteins seem to be associated with outcome.
Collapse
Affiliation(s)
- Adrianna Vlachos
- Feinstein Institute for Medical Research, Cohen Children's Medical Center, Division of Hematology/Oncology and Stem Cell Transplantation, Zucker School of Medicine, Hofstra/Northwell, Manhasset, NY
| |
Collapse
|
34
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
35
|
The uS8, uS4, eS31, and uL14 Ribosomal Protein Genes Are Dysregulated in Nasopharyngeal Carcinoma Cell Lines. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4876954. [PMID: 28791303 PMCID: PMC5534291 DOI: 10.1155/2017/4876954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022]
Abstract
The association of ribosomal proteins with carcinogenesis of nasopharyngeal carcinoma (NPC) has been established in a limited subset of ribosomal protein genes. To date, three ribosomal protein genes, eL27 (L27), eL41 (L41), and eL43 (L37a), have been found to be differentially expressed in cell lines derived from NPC tumors. This raises the possibility of more ribosomal protein genes that could be associated with NPC. In this study, we investigated the expression profiles of eight ribosomal protein genes, uS8 (S8), uS4 (S9), eS31 (S27a), eL6 (L6), eL18 (L18), uL14 (L23), eL24 (L24), and eL30 (L30), in six NPC-derived cell lines (HONE-1, SUNE1, HK1, TW01, TW04, and C666-1). Their expression levels were compared with that of a nonmalignant nasopharyngeal epithelial cell line (NP69) using quantitative real-time PCR (RT-qPCR) assay. Of the eight genes studied, the expressions of four ribosomal protein genes uS8 (S8), uS4 (S9), eS31 (S27a), and uL14 (L23) were found to be significantly downregulated in NPC cell lines relative to NP69. Our findings provide novel empirical evidence of these four ribosomal protein genes as NPC-associated genetic factors and reinforce the relevance of ribosomal proteins in the carcinogenesis of nasopharyngeal cancer.
Collapse
|
36
|
Russo A, Saide A, Cagliani R, Cantile M, Botti G, Russo G. rpL3 promotes the apoptosis of p53 mutated lung cancer cells by down-regulating CBS and NFκB upon 5-FU treatment. Sci Rep 2016; 6:38369. [PMID: 27924828 PMCID: PMC5141482 DOI: 10.1038/srep38369] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/08/2016] [Indexed: 02/06/2023] Open
Abstract
5-FU is a chemotherapy drug commonly used for the treatment of human cancers; however drug resistance represents a major challenge for its clinical application. In the present study, we reporte that rpL3 induced by 5-FU treatment in Calu-6 cells represses CBS transcription and reduces CBS protein stability leading to a decrease of CBS protein levels. rpL3 also regulates negatively the activation of NFκB by preventing NFκB nuclear translocation through IκB-α up-regulation. Furthermore, we demonstrate that rpL3 significantly enhances the apoptosis of 5-FU treated Calu-6 cells promoting the overexpression of the pro-apoptotic proteins Bax and the inhibition of the anti-apoptotic protein Bcl-2. We finally demonstrate that rpL3 potentiates 5-FU efficacy inhibiting cell migration and invasion. Our results suggest that combination of rpL3 and 5-FU is a promising strategy for chemotherapy of lung cancers lacking functional p53 that are resistant to 5-FU.
Collapse
Affiliation(s)
- Annapina Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Assunta Saide
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberta Cagliani
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Cantile
- Department of Pathology, Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS via Mariano Semmola, Napoli 80131, Italy
| | - Gerardo Botti
- Department of Pathology, Istituto Nazionale Tumori "Fondazione Pascale"-IRCCS via Mariano Semmola, Napoli 80131, Italy
| | - Giulia Russo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
37
|
Deisenroth C, Franklin DA, Zhang Y. The Evolution of the Ribosomal Protein-MDM2-p53 Pathway. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026138. [PMID: 27908926 DOI: 10.1101/cshperspect.a026138] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The progression of our understanding of ribosomal proteins as static building blocks of the ribosome to highly integrated sensors of p53 surveillance and function has achieved a tremendous rate of growth over the past several decades. As the workhorse of the cell, ribosomes are responsible for translating the genetic code into the functional units that drive cell growth and proliferation. The seminal identification of ribosomal protein binding to MDM2, the negative regulator of p53, has evolved into a paradigm for ribosomal protein-MDM2-p53 signaling that extends into processes as diverse as energy metabolism to proliferation. The central core of signaling occurs when perturbations to rRNA synthesis, processing, and assembly modulate the rate of ribosome biogenesis, signaling a nucleolar stress response to p53. This has led to identification of a number of disease pathologies related to ribosomal protein dysfunction that are manifested as developmental disorders or cancer. Advancing research into the basic mechanics of ribosomal protein-MDM2-p53 signaling is paving the way for novel translational research into biomarker identification and therapeutic strategies for ribosome-related diseases.
Collapse
Affiliation(s)
- Chad Deisenroth
- The Hamner Institutes for Health Sciences, Institute for Chemical Safety Sciences, Research Triangle Park, North Carolina 27709
| | - Derek A Franklin
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
38
|
Guimaraes JC, Zavolan M. Patterns of ribosomal protein expression specify normal and malignant human cells. Genome Biol 2016; 17:236. [PMID: 27884178 PMCID: PMC5123215 DOI: 10.1186/s13059-016-1104-z] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023] Open
Abstract
Background Ribosomes are highly conserved molecular machines whose core composition has traditionally been regarded as invariant. However, recent studies have reported intriguing differences in the expression of some ribosomal proteins (RPs) across tissues and highly specific effects on the translation of individual mRNAs. Results To determine whether RPs are more generally linked to cell identity, we analyze the heterogeneity of RP expression in a large set of human tissues, primary cells, and tumors. We find that about a quarter of human RPs exhibit tissue-specific expression and that primary hematopoietic cells display the most complex patterns of RP expression, likely shaped by context-restricted transcriptional regulators. Strikingly, we uncover patterns of dysregulated expression of individual RPs across cancer types that arise through copy number variations and are predictive for disease progression. Conclusions Our study reveals an unanticipated plasticity of RP expression across normal and malignant human cell types and provides a foundation for future characterization of cellular behaviors that are orchestrated by specific RPs. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1104-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
39
|
Drosophila Enhancer of Rudimentary Homolog, ERH, Is a Binding Partner of RPS3, RPL19, and DDIT4, Suggesting a Mechanism for the Nuclear Localization of ERH. Mol Biol Int 2016; 2016:8371819. [PMID: 27830090 PMCID: PMC5088337 DOI: 10.1155/2016/8371819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/25/2016] [Indexed: 11/18/2022] Open
Abstract
The protein enhancer of rudimentary homolog, ERH, is a small, highly conserved protein that has been found in animals, plants, and protists. Genetic and biochemical interactions have implicated ERH in the regulation of pyrimidine biosynthesis, DNA replication, transcription, mRNA splicing, cellular proliferation, tumorigenesis, and the Notch signaling pathway. In vertebrates and insects, ERH is nuclearly localized; however, an examination of the ERH amino-acid sequence does not reveal any nuclear localization signals. In this paper we show that the first 24 amino acids contain sequences necessary and sufficient for nuclear localization. Through yeast two-hybrid screens, three new binding partners of ERH, RPS3, RPL19, and DDIT4, were identified. RPS3 was isolated from both human and Drosophila screens. These interactions suggest functions of ERH in cell growth, cancer, and DNA repair. The ERH sequences necessary for the interactions between ERH and RPS3 and RPL19 are mapped onto the same 24-amino-acid region in ERH which are necessary for nuclear localization, suggesting that ERH is localizing to the nucleus through binding to one of its DNA-binding partners, such as RPS3 or RPL19.
Collapse
|
40
|
Wang ZQ, Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC, Sebastianelli A, Guillemette C, Gobeil S, Macdonald E, Vanderhyden B, Bachvarov D. BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Oncotarget 2016; 6:31522-43. [PMID: 26372729 PMCID: PMC4741622 DOI: 10.18632/oncotarget.5159] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/28/2015] [Indexed: 12/17/2022] Open
Abstract
Previously, we have identified the branched chain amino-acid transaminase 1 (BCAT1) gene as notably hypomethylated in low-malignant potential (LMP) and high-grade (HG) serous epithelial ovarian tumors, compared to normal ovarian tissues. Here we show that BCAT1 is strongly overexpressed in both LMP and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Knockdown of the BCAT1 expression in epithelial ovarian cancer (EOC) cells led to sharp decrease of cell proliferation, migration and invasion and inhibited cell cycle progression. BCAT1 silencing was associated with the suppression of numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, and the induction of some tumor suppressor genes (TSGs). Moreover, BCAT1 suppression resulted in downregulation of numerous genes implicated in lipid production and protein synthesis, suggesting its important role in controlling EOC metabolism. Further metabolomic analyses were indicative for significant depletion of most amino acids and different phospho- and sphingolipids following BCAT1 knockdown. Finally, BCAT1 suppression led to significantly prolonged survival time in xenograft model of advanced peritoneal EOC. Taken together, our findings provide new insights about the functional role of BCAT1 in ovarian carcinogenesis and identify this transaminase as a novel EOC biomarker and putative EOC therapeutic target.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| | - Adnen Faddaoui
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| | | | - Marie Plante
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Jean Gregoire
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Marie-Claude Renaud
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Alexandra Sebastianelli
- Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada.,Department of Obstetrics and Gynecology, Laval University, Québec PQ, Canada
| | - Chantal Guillemette
- Centre de recherche du CHU de Québec, CHUL, Québec PQ, Canada.,Faculty of Pharmacy, Laval University, Québec PQ, Canada
| | - Stéphane Gobeil
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, CHUL, Québec PQ, Canada
| | - Elizabeth Macdonald
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dimcho Bachvarov
- Department of Molecular Medicine, Laval University, Québec PQ, Canada.,Centre de recherche du CHU de Québec, L'Hôtel-Dieu de Québec, Québec PQ, Canada
| |
Collapse
|
41
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
42
|
Goudarzi KM, Lindström MS. Role of ribosomal protein mutations in tumor development (Review). Int J Oncol 2016; 48:1313-24. [PMID: 26892688 PMCID: PMC4777597 DOI: 10.3892/ijo.2016.3387] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.
Collapse
Affiliation(s)
- Kaveh M Goudarzi
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Center Karolinska, CCK R8:05, Karolinska University Hospital in Solna, Stockholm, Sweden
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells. Gene 2016; 576:421-8. [DOI: 10.1016/j.gene.2015.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 01/18/2023]
|
44
|
Yong WH, Shabihkhani M, Telesca D, Yang S, Tso JL, Menjivar JC, Wei B, Lucey GM, Mareninov S, Chen Z, Liau LM, Lai A, Nelson SF, Cloughesy TF, Tso CL. Ribosomal Proteins RPS11 and RPS20, Two Stress-Response Markers of Glioblastoma Stem Cells, Are Novel Predictors of Poor Prognosis in Glioblastoma Patients. PLoS One 2015; 10:e0141334. [PMID: 26506620 PMCID: PMC4624638 DOI: 10.1371/journal.pone.0141334] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/06/2015] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma stem cells (GSC) co-exhibiting a tumor-initiating capacity and a radio-chemoresistant phenotype, are a compelling cell model for explaining tumor recurrence. We have previously characterized patient-derived, treatment-resistant GSC clones (TRGC) that survived radiochemotherapy. Compared to glucose-dependent, treatment-sensitive GSC clones (TSGC), TRGC exhibited reduced glucose dependence that favor the fatty acid oxidation pathway as their energy source. Using comparative genome-wide transcriptome analysis, a series of defense signatures associated with TRGC survival were identified and verified by siRNA-based gene knockdown experiments that led to loss of cell integrity. In this study, we investigate the prognostic value of defense signatures in glioblastoma (GBM) patients using gene expression analysis with Probeset Analyzer (131 GBM) and The Cancer Genome Atlas (TCGA) data, and protein expression with a tissue microarray (50 GBM), yielding the first TRGC-derived prognostic biomarkers for GBM patients. Ribosomal protein S11 (RPS11), RPS20, individually and together, consistently predicted poor survival of newly diagnosed primary GBM tumors when overexpressed at the RNA or protein level [RPS11: Hazard Ratio (HR) = 11.5, p<0.001; RPS20: HR = 4.5, p = 0.03; RPS11+RPS20: HR = 17.99, p = 0.001]. The prognostic significance of RPS11 and RPS20 was further supported by whole tissue section RPS11 immunostaining (27 GBM; HR = 4.05, p = 0.01) and TCGA gene expression data (578 primary GBM; RPS11: HR = 1.19, p = 0.06; RPS20: HR = 1.25, p = 0.02; RPS11+RPS20: HR = 1.43, p = 0.01). Moreover, tumors that exhibited unmethylated O-6-methylguanine-DNA methyltransferase (MGMT) or wild-type isocitrate dehydrogenase 1 (IDH1) were associated with higher RPS11 expression levels [corr (IDH1, RPS11) = 0.64, p = 0.03); [corr (MGMT, RPS11) = 0.52, p = 0.04]. These data indicate that increased expression of RPS11 and RPS20 predicts shorter patient survival. The study also suggests that TRGC are clinically relevant cells that represent resistant tumorigenic clones from patient tumors and that their properties, at least in part, are reflected in poor-prognosis GBM. The screening of TRGC signatures may represent a novel alternative strategy for identifying new prognostic biomarkers.
Collapse
Affiliation(s)
- William H. Yong
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Maryam Shabihkhani
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Donatello Telesca
- Department of Biostatistics, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Shuai Yang
- Department of Neurosurgery, General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jonathan L. Tso
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jimmy C. Menjivar
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bowen Wei
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gregory M. Lucey
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Sergey Mareninov
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zugen Chen
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Linda M. Liau
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Albert Lai
- Department of Neurology/Neuro-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Stanley F. Nelson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Timothy F. Cloughesy
- Department of Neurology/Neuro-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Cho-Lea Tso
- Department of Surgery/Surgical-Oncology, University of California Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Jangravi Z, Tabar MS, Mirzaei M, Parsamatin P, Vakilian H, Alikhani M, Shabani M, Haynes PA, Goodchild AK, Gourabi H, Baharvand H, Salekdeh GH. Two Splice Variants of Y Chromosome-Located Lysine-Specific Demethylase 5D Have Distinct Function in Prostate Cancer Cell Line (DU-145). J Proteome Res 2015. [PMID: 26215926 DOI: 10.1021/acs.jproteome.5b00333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major objectives of the Human Y Chromosome Proteome Project is to characterize sets of proteins encoded from the human Y chromosome. Lysine (K)-specific demethylase 5D (KDM5D) is located on the AZFb region of the Y chromosome and encodes a JmjC-domain-containing protein. KDM5D, the least well-documented member of the KDM5 family, is capable of demethylating di- and trimethyl H3K4. In this study, we detected two novel splice variants of KDM5D with lengths of 2650bp and 2400bp that correspond to the 100 and 80 kDa proteins in the human prostate cancer cell line, DU-145. The knockdown of two variants using the short interfering RNA (siRNA) approach increased the growth rate of prostate cancer cells and reduced cell apoptosis. To explore the proteome pattern of the cells after KDM5D downregulation, we applied a shotgun label-free quantitative proteomics approach. Of 820 proteins present in all four replicates of two treatments, the abundance of 209 proteins changed significantly in response to KDM5D suppression. Of these, there were 102 proteins observed to be less abundant and 107 more abundant in KDM5D knockdown cells compared with control cells. The results revealed that KDM5D knockdown altered the abundance of proteins involved in RNA processing, protein synthesis, apoptosis, the cell cycle, and growth and proliferation. In conjunction, these results provided new insights into the function of KDM5D and its splice variants. The proteomics data are available at PRIDE with ProteomeXchange identifier PXD000416.
Collapse
Affiliation(s)
- Zohreh Jangravi
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran.,Biochemistry Department, Iran University of Medical Sciences , Tehran, Iran
| | - Mehdi Sharif Tabar
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Mehdi Mirzaei
- The Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Pouria Parsamatin
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Haghighat Vakilian
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Mehdi Alikhani
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Mohammad Shabani
- Biochemistry Department, Iran University of Medical Sciences , Tehran, Iran
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Ann K Goodchild
- The Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR , Tehran, Iran.,Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran , Karaj, Iran
| |
Collapse
|
46
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
47
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
48
|
Hong M, Kim H, Kim I. Ribosomal protein L19 overexpression activates the unfolded protein response and sensitizes MCF7 breast cancer cells to endoplasmic reticulum stress-induced cell death. Biochem Biophys Res Commun 2014; 450:673-8. [PMID: 24950402 DOI: 10.1016/j.bbrc.2014.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 06/07/2014] [Indexed: 02/02/2023]
Abstract
Although first identified for their roles in protein synthesis, certain ribosomal proteins exert pleiotropic physiological functions in the cell. Ribosomal protein L19 is overexpressed in breast cancer cells by amplification and copy number variation. In this study, we examined the novel pro-apoptotic role of ribosomal protein L19 in the breast cancer cell line MCF7. Overexpression of RPL19 sensitized MCF7 cells to endoplasmic reticulum stress-induced cell death. RPL19 overexpression itself was not cytotoxic; however, cell death induction was enhanced when RPL19 overexpressing cells were incubated with endoplasmic reticulum stress-inducing agents, and this sensitizing effect was specific to MCF7 cells. Examination of the cell signaling pathways that mediate the unfolded protein response (UPR) revealed that overexpression of RPL19 induced pre-activation of the UPR, including phosphorylation of pERK-like ER kinase (PERK), phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α), and activation of p38 MAPK-associated stress signaling. Our findings suggest that upregulation of RPL19 induces ER stress, resulting in increased sensitivity to ER stress and enhanced cell death in MCF7 breast cancer cells.
Collapse
Affiliation(s)
- Mina Hong
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea
| | - HyungRyong Kim
- Department of Dental Pharmacology, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Republic of Korea.
| | - Inki Kim
- ASAN Institute for Life Sciences, ASAN Medical Center, Seoul, Republic of Korea; Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Huang X, Zeng Y, Xing X, Zeng J, Gao Y, Cai Z, Xu B, Liu X, Huang A, Liu J. Quantitative proteomics analysis of early recurrence/metastasis of huge hepatocellular carcinoma following radical resection. Proteome Sci 2014; 12:22. [PMID: 24839399 PMCID: PMC4023177 DOI: 10.1186/1477-5956-12-22] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 04/17/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hepatic resection is the preferred treatment for huge hepatocellular carcinoma (>10 cm in diameter; H-HCC). However, the patients with H-HCC suffer from poor prognosis due to the early recurrence/metastasis. The underlying mechanism of H-HCC's early recurrence/metastasis is currently not well understood. RESULTS Here, we describe an Isobaric Tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics approach to analyze the early recurrence/metastasis related proteins of H-HCC after radical resection through multidimensional chromatography coupled with tandem mass spectrometry (2DLC-MS/MS). The different protein expression profiles between the early recurrence/metastasis within 6 months(R/M≤6months) and late recurrence/metastasis within 6-12 months after surgery (R/M6-12months) were confirmed and might reveal different underlying molecular mechanisms. We identified 44 and 49 significantly differentially expressed proteins in the R/M≤6months group and the R/M6-12months group compared to the group who had no recurrence within 2 years post surgery (the NR/M group), respectively. Moreover, among those proteins, S100A12 and AMACR were down regulated in the R/M≤6months group but up-regulated in the R/M6-12months group; and this regulation was further confirmed in mRNA and protein level by Q-PCR, Western-Blot and Immunohistochemistry (IHC). CONCLUSIONS This current study presents the first proteomic profile of the early recurrence/metastasis of H-HCC. The results suggest that S100A12 and AMACR might be potential prognostic markers for predicting the early recurrence/metastasis of H-HCC after hepatectomy.
Collapse
Affiliation(s)
- Xinhui Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
| | - Yongyi Zeng
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, People’s Republic of China
| | - Xiaohua Xing
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
| | - Jinhua Zeng
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, People’s Republic of China
| | - Yunzhen Gao
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
| | - Zhixiong Cai
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
| | - Bo Xu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, People’s Republic of China
| | - Xiaolong Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
| | - Aimin Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- Department of Pathology, School of Basic Medical Science, Fujian Medical University, 350004 Fuzhou, People’s Republic of China
| | - Jingfeng Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- The Liver Center of Fujian Province, Fujian Medical University, 350025 Fuzhou, People’s Republic of China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, 350005 Fuzhou, People’s Republic of China
| |
Collapse
|
50
|
Wang Z, Hou J, Lu L, Qi Z, Sun J, Gao W, Meng J, Wang Y, Sun H, Gu H, Xin Y, Guo X, Yang G. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One 2013; 8:e79117. [PMID: 24244431 PMCID: PMC3823983 DOI: 10.1371/journal.pone.0079117] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Hou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lili Lu
- Life and Environment Science College, Shanghai Normal University, Shanghai, China
| | - Zihao Qi
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianmin Sun
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Gao
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huizhen Sun
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Gu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuhu Xin
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| |
Collapse
|