1
|
Somatic genomic imbalances in 'tumour-free' surgical margins of oral cancer. Int J Oral Maxillofac Surg 2023:S0901-5027(22)00521-5. [PMID: 36639343 DOI: 10.1016/j.ijom.2022.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
Up to 30% of oral squamous cell carcinoma (OSCC) patients develop local recurrence and distant metastasis. The molecular status of histologically cancer-free tumour margins could be a critical factor in predicting tumour behaviour. The aim of this study was to detect somatic genomic imbalances in OSCC with emphasis on the surgical margins. DNA was isolated from tumour tissues, margin tissues, and blood samples (used as control) obtained from 11 OSCC patients, and genome-wide array comparative genomic hybridization was performed. Imbalances were present in both tumours and margins, although, as expected, they were more prevalent in tumours (duplications, P = 0.0002; deletions, P = 0.0001). Duplications were more frequent than deletions in both tumours and margins, but without statistical significance. Fifteen imbalances in tumour tissues were recurrent and all of them were duplications. Four of these were found both in tumours and margins and involved chromosomes 1q, 8p, Xp, Yp, and Yq. Four imbalances were recurrent in margin tissue and all of them were duplications (autosomes 8 and 17 and both sex chromosomes). Histologically 'cancer-free' margins hide genomic alterations consistent with unexplained OSCC recurrences. Establishing the molecular status of the margins could improve outcome prediction.
Collapse
|
2
|
Downregulation of ATM and BRCA1 Predicts Poor Outcome in Head and Neck Cancer: Implications for ATM-Targeted Therapy. J Pers Med 2021; 11:jpm11050389. [PMID: 34068585 PMCID: PMC8151497 DOI: 10.3390/jpm11050389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/04/2022] Open
Abstract
ATM and BRCA1 are DNA repair genes that play a central role in homologous recombination repair. Alterations of ATM and BRCA1 gene expression are found in cancers, some of which are correlated with treatment response and patient outcome. However, the role of ATM and BRCA1 gene expression in head and neck cancer (HNC) is not well characterized. Here, we examined the prognostic role of ATM and BRCA1 expression in two HNC cohorts with and without betel quid (BQ) exposure. The results showed that the expression of ATM and BRCA1 was downregulated in BQ-associated HNC, as the BQ ingredient arecoline could suppress the expression of both genes. Low expression of either ATM or BRCA1 was correlated with poor overall survival (OS) and was an independent prognostic factor in multivariate analysis (ATM HR: 1.895, p = 0.041; BRCA1 HR: 2.163, p = 0.040). The combination of ATM and BRCA1 expression states further improved on the prediction of OS (HR: 4.195, p = 0.001, both low vs. both high expression). Transcriptomic analysis showed that inhibition of ATM kinase by KU55933 induced apoptosis signaling and potentiated cisplatin-induced cytotoxicity. These data unveil poor prognosis in the HNC patient subgroup with low expression of ATM and BRCA1 and support the notion of ATM-targeted therapy.
Collapse
|
3
|
Gluck C, Glathar A, Tsompana M, Nowak N, Garrett-Sinha LA, Buck MJ, Sinha S. Molecular dissection of the oncogenic role of ETS1 in the mesenchymal subtypes of head and neck squamous cell carcinoma. PLoS Genet 2019; 15:e1008250. [PMID: 31306413 PMCID: PMC6657958 DOI: 10.1371/journal.pgen.1008250] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/25/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous disease of significant mortality and with limited treatment options. Recent genomic analysis of HNSCC tumors has identified several distinct molecular classes, of which the mesenchymal subtype is associated with Epithelial to Mesenchymal Transition (EMT) and shown to correlate with poor survival and drug resistance. Here, we utilize an integrated approach to characterize the molecular function of ETS1, an oncogenic transcription factor specifically enriched in Mesenchymal tumors. To identify the global ETS1 cistrome, we have performed integrated analysis of RNA-Seq, ChIP-Seq and epigenomic datasets in SCC25, a representative ETS1high mesenchymal HNSCC cell line. Our studies implicate ETS1 as a crucial regulator of broader oncogenic processes and specifically Mesenchymal phenotypes, such as EMT and cellular invasion. We found that ETS1 preferentially binds cancer specific regulator elements, in particular Super-Enhancers of key EMT genes, highlighting its role as a master regulator. Finally, we show evidence that ETS1 plays a crucial role in regulating the TGF-β pathway in Mesenchymal cell lines and in leading-edge cells in primary HNSCC tumors that are endowed with partial-EMT features. Collectively our study highlights ETS1 as a key regulator of TGF-β associated EMT and reveals new avenues for sub-type specific therapeutic intervention. The expression of the transcriptional regulator, E26 transformation-specific 1 (ETS1), is elevated in many epithelial cancers and portends aggressive tumor behavior and poor survival. Within these carcinomas, ETS1 function has been shown to be associated with a wide range of cellular responses that include increased proliferation, angiogenesis, metastasis and drug resistance. Here we focus on Head and Neck Squamous Cell Carcinoma (HNSCC) and discover that higher expression of ETS1 is specifically more pronounced in the mesenchymal subtypes of HNSCC, which represent tumors with enriched expression of Epithelial to Mesenchymal Transition (EMT) markers and inflammation. By using genomic and epigenomic strategies, we have identified the global targets of ETS1 in a preclinical Mesenchymal HNSCC cell model and determined the crucial gene network that is most dependent upon its function. We further validate this ETS1-driven gene expression signature within several HNSCC patient derived datasets and conclude that ETS1 acts as a crucial regulator of the TGFβ signaling cascade to drive EMT. Our findings reinforce the challenges of epithelial tumor heterogeneity and offer insights into molecular underpinning of a specific subtype that can be mined for cancer vulnerability.
Collapse
Affiliation(s)
- Christian Gluck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Alexandra Glathar
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Maria Tsompana
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Norma Nowak
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | | | - Michael J. Buck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
4
|
Oliva J, Larque A, Marti C, Bodalo‐Torruella M, Nonell L, Nadal A, Castillo P, Sieira R, Ferrer A, Garcia‐Diez E, Alos L. Oral premalignant lesions of smokers and non‐smokers show similar carcinogenic pathways and outcomes. A clinicopathological and molecular comparative analysis. J Oral Pathol Med 2019; 50:280-286. [DOI: 10.1111/jop.12864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/04/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jorge Oliva
- Department of Pathology, Hospital Clínic, IDIBAPS University of Barcelona Barcelona Spain
| | - Ana‐Belen Larque
- Department of Pathology, Hospital Clínic, IDIBAPS University of Barcelona Barcelona Spain
| | - Carles Marti
- Department of Maxillofacial Surgery Hospital Clínic Barcelona Spain
| | - Marta Bodalo‐Torruella
- Microarray Analysis Service Institut Hospital del Mar d’InvestigacionsMèdiques (IMIM) Barcelona Spain
| | - Lara Nonell
- Microarray Analysis Service Institut Hospital del Mar d’InvestigacionsMèdiques (IMIM) Barcelona Spain
| | - Alfons Nadal
- Department of Pathology, Hospital Clínic, IDIBAPS University of Barcelona Barcelona Spain
| | - Paola Castillo
- Department of Pathology, Hospital Clínic, IDIBAPS University of Barcelona Barcelona Spain
| | - Ramón Sieira
- Department of Maxillofacial Surgery Hospital Clínic Barcelona Spain
| | - Ada Ferrer
- Department of Maxillofacial Surgery Hospital Clínic Barcelona Spain
| | - Eloy Garcia‐Diez
- Department of Maxillofacial Surgery Hospital Clínic Barcelona Spain
| | - Llucia Alos
- Department of Pathology, Hospital Clínic, IDIBAPS University of Barcelona Barcelona Spain
| |
Collapse
|
5
|
Ribeiro IP, Rodrigues JM, Mascarenhas A, Kosyakova N, Caramelo F, Liehr T, Melo JB, Carreira IM. Cytogenetic, genomic, and epigenetic characterization of the HSC-3 tongue cell line with lymph node metastasis. J Oral Sci 2018; 60:70-81. [PMID: 29479029 DOI: 10.2334/josnusd.16-0811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Oral carcinoma develops from squamous epithelial cells by the acquisition of multiple (epi) genetic alterations that target different genes and molecular pathways. Herein, we performed a comprehensive genomic and epigenetic characterization of the HSC-3 cell line through karyotyping, multicolor fluorescence in situ hybridization, array comparative genomic hybridization, and methylation-specific multiplex ligation-dependent probe amplification. HSC-3 turned out to be a near-triploid cell line with a modal number of 61 chromosomes. Banding and molecular cytogenetic analyses revealed that nonrandom gains of chromosomal segments occurred more frequently than losses. Overall, gains of chromosome 1, 3q, 5p, 7p, 8q, 9q, 10, 11p, 11q13, 12, 13, 14, 17, 18p, 20, Yp, and Xq were observed. The largest region affected by copy number loss was observed at chromosome 18q. Several of the observed genomic imbalances and their mapped genes were already associated with oral carcinoma and/or adverse prognosis, invasion, and metastasis in cancer. The most common rearrangements observed were translocations in the centromeric/near-centromeric regions. RARB, ESR1, and CADM1 genes were methylated and showed copy number losses, whereas TP73 and GATA5 presented with methylation and copy number gains. Thus, the current study presents a comprehensive characterization of the HSC-3 cell line; the use of this cell line may contribute to enriching the resources available for oral cancer research, especially for the testing of therapeutic agents.
Collapse
Affiliation(s)
- Ilda P Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| | - Joana M Rodrigues
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra
| | | | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| | - Isabel M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra.,Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra
| |
Collapse
|
6
|
Ribeiro IP, Marques F, Barroso L, Rodrigues J, Caramelo F, Melo JB, Carreira IM. Genomic profile of oral squamous cell carcinomas with an adjacent leukoplakia or with an erythroleukoplakia that evolved after the treatment of primary tumor: A report of two cases. Mol Med Rep 2017; 16:6780-6786. [PMID: 28901451 PMCID: PMC5865835 DOI: 10.3892/mmr.2017.7428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022] Open
Abstract
Oral leukoplakia and erythroleukoplakia are common oral potentially malignant disorders diagnosed in the oral cavity. The specific outcome of these lesions remains to be elucidated, as their malignant transformation rate exhibits great variation. The ability to predict which of those potentially malignant lesions are likely to progress to cancer would be vital to guide their future clinical management. The present study reported two patients with tongue squamous cell carcinoma: Case study 1 was diagnosed with a simultaneous leukoplakia and case study 2 developed an erythroleukoplakia following the primary tumor treatment. Whole genome copy number alterations were analyzed using array comparative genomic hybridization. The present study determined more genomic imbalances in the tissues from leukoplakia and erythroleukoplakia compared with their respective tumors. The present study also identified in tumor and potentially malignant lesions common alterations of chromosomal regions and genes, including FBXL5, UGT2B15, UGT2B28, KANSL1, GSTT1 and DUSP22, being some of these typical aberrations described in oral cancer and others are linked to chemoradioresistance. Several putative genes associated with hallmarks of malignancy that may have an important role in predicting the progression of leukoplakia and erythroleukoplakia to squamous cell carcinoma, namely gains in BNIPL, MCL1, STAG2, CSPP1 and ZNRF3 genes were also identified.
Collapse
Affiliation(s)
- Ilda P Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Francisco Marques
- Center of Investigation on Environment Genetics and Oncobiology, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Leonor Barroso
- Maxillofacial Surgery Department, Coimbra Hospital and University Centre, EPE, 3000‑075 Coimbra, Portugal
| | - Joana Rodrigues
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| | - Isabel M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, 3000‑354 Coimbra, Portugal
| |
Collapse
|
7
|
Ribeiro IP, Marques F, Barroso L, Miguéis J, Caramelo F, Santos A, Julião MJ, Melo JB, Carreira IM. Genetic and epigenetic characterization of the tumors in a patient with a tongue primary tumor, a recurrence and a pharyngoesophageal second primary tumor. Mol Cytogenet 2017; 10:13. [PMID: 28413448 PMCID: PMC5387319 DOI: 10.1186/s13039-017-0310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/14/2017] [Indexed: 11/13/2022] Open
Abstract
Background The choice of therapeutic modality for oral carcinoma in recurrent or second primary tumors remains controversial, as the treatment modalities available might be reduced by the treatment of the first tumor, and the overall survival is lower when compared with patients with a single or first tumor. Identifying biomarkers that predict the risk of relapse and the response to treatment is an emerging clinical issue. Case presentation A Caucasian 49-years-old man was treated with chemotherapy followed by chemoradiotherapy for a primary left side tongue tumor, achieving a complete response. After 49-months of follow-up, a local recurrence was diagnosed. After 3 months, a second primary tumor at the pharyngoesophageal region was detected. Genomic and epigenetic characterization of these three tumors was performed using array Comparative Genomic Hybridization, Multiplex Ligation-dependent Probe Amplification (MLPA) and Methylation Specific MLPA. Results The three tumors of this patient shared several imbalances in all chromosomes excluding chromosomes 9, 20 and 22, where genes related to important functional mechanisms of tumorigenesis are mapped. The shared genomic imbalances, such as losses at 1p, 2p, 3p, 4q, 5q, 6q, 7q, 8p, 10p, 11q, 12p, 12q, 13q, 15q, 16p, 16q, 17p, 17q, 18q, 19p, 19q, 21q and Xp and gains at 3q, 7q, 14q and 15q showed a common clonal origin for the diagnosed relapses. We identified some chromosomal imbalances and genes mapped in the chromosomes 2, 3, 4, 6, 7, 11, 14, 17, 18 and 22 as putative linked to chemoradioresistance and chemoradiosensitivity. We also observed that gains in short arm of chromosomes 6, 7, 8 and 18 were acquired after treatment of the primary tumor. We identified losses of VHL gene and promoter methylation of WT1 and GATA5 genes, as predictors of relapses. Conclusions A common clonal origin for the diagnosed relapses was observed and we identified some putative candidate biomarkers of prognosis, relapse risk and treatment response that could guide the development of management strategies for these patients.
Collapse
Affiliation(s)
- Ilda P Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, Coimbra, 3000-354 Portugal.,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, Coimbra, 3000-354 Portugal
| | - Francisco Marques
- CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, Coimbra, 3000-354 Portugal.,Department of Dentistry, Faculty of Medicine, University of Coimbra, Coimbra, 3000-075 Portugal.,Stomatology Unit, Coimbra Hospital and University Centre, CHUC, Coimbra, 3000-075 EPE Portugal
| | - Leonor Barroso
- Maxillofacial Surgery Department, Coimbra Hospital and University Centre, CHUC, Coimbra, 3000-075 EPE Portugal
| | - Jorge Miguéis
- Department of Otorhinolaryngology - Head and Neck Surgery, Coimbra Hospital and University Centre, CHUC, Coimbra, EPE Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, Coimbra, 3000-354 Portugal
| | - André Santos
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, Coimbra, 3000-354 Portugal
| | - Maria J Julião
- Department of Pathology, Coimbra Hospital and University Centre, CHUC, Coimbra, 3000-075 EPE Portugal
| | - Joana B Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, Coimbra, 3000-354 Portugal.,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, Coimbra, 3000-354 Portugal
| | - Isabel M Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, Coimbra, 3000-354 Portugal.,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, Coimbra, 3000-354 Portugal
| |
Collapse
|
8
|
Park SW, Joo YH, Jung SH, Yim SH, Nam IC, Cho KJ, Kim MS, Chung YJ. Chromosomal aberrations and prognosis in patients with concomitant chemoradiotherapy for resected head and neck cancer. Oncol Rep 2016; 35:2207-15. [PMID: 26821349 DOI: 10.3892/or.2016.4595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
Abstract
Although concomitant chemoradiotherapy (CCRT) has recently become a mainstay of a primary treatment modality in advanced head and neck squamous cell carcinoma (HNSCC), some of the patients experience CCRT failure. If we can predict the CCRT outcomes, we can reduce unnecessary CCRT avoiding risk of CCRT‑related complication. We aimed to identify genetic alteration markers related to treatment failure in HNSCC patients who underwent radical surgery and CCRT. Genome‑wide copy number alterations (CNAs) were analyzed in 18 HNSCC patients with (n=9) or without (n=9) recurrence using oligoarray‑comparative genomic hybridization and candidate CNAs were validated by quantitative RT‑PCR. A total of 15 recurrently altered regions (RARs) were identified in the 18 HNSCC cases. Among them, two RARs were significantly associated with CCRT‑failure: copy number gained RARs of 7p11.2 harboring EGFR (P=0.029) and 18p11.32 harboring TYMS gene (P=0.029). Three RARs (7p11.2, 9p21.3 and 18p11.32) were significantly associated with poor disease‑specific survival in univariate analysis, and 7p11.2 was consistently significant in the multivariate analysis (HR 40.68, P=0.003). In conclusion, we defined novel genomic alterations associated with CCRT‑failure: 7p11.2 (EGFR) and 18p11.32 (TYMS). Our results provide useful clues for the elucidation of the molecular pathogenesis of HNSCC and to predict CCRT‑failure.
Collapse
Affiliation(s)
- Sung-Won Park
- Integrated Research Center for Genome Polymorphism College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137‑701, Republic of Korea
| | - Young-Hoon Joo
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137‑040, Republic of Korea
| | - Seung-Hyun Jung
- Integrated Research Center for Genome Polymorphism College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137‑701, Republic of Korea
| | - Seon-Hee Yim
- Integrated Research Center for Genome Polymorphism College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137‑701, Republic of Korea
| | - In-Chul Nam
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137‑040, Republic of Korea
| | - Kwang-Jae Cho
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137‑040, Republic of Korea
| | - Min-Sik Kim
- Department of Otolaryngology‑Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137‑040, Republic of Korea
| | - Yeun-Jun Chung
- Integrated Research Center for Genome Polymorphism College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul 137‑701, Republic of Korea
| |
Collapse
|
9
|
Parsel SM, Grandis JR, Thomas SM. Nucleic acid targeting: towards personalized therapy for head and neck cancer. Oncogene 2015; 35:3217-26. [PMID: 26592450 PMCID: PMC4877278 DOI: 10.1038/onc.2015.424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Abstract
In light of a detailed characterization of genetic aberrations in cancer, nucleic acid targeting represents an attractive therapeutic approach with significant translational potential. Head and neck squamous cell carcinoma (HNSCC) is a leading cause of cancer deaths worldwide with stagnant 5-year survival rates. Advances in conventional treatment have done little to improve survival and combined chemoradiation is associated with significant adverse effects. Recent reports have characterized the genetic alterations in HNSCC and demonstrated that mutations confer resistance to conventional and molecular targeted therapies. The ability to use specific nucleic acid sequences to inhibit cancer-associated genes including non-druggable targets facilitates personalized medicine approaches with less adverse effects. Additionally, advances in drug delivery mechanisms have increased the transfection efficiency aiding in greater therapeutic responses. Given these advances, the stage has been set to translate the information garnered from genomic studies into personalized treatment strategies. Genes involved in the tumor protein 53 (TP53) and epidermal growth factor receptor (EGFR) pathways have been extensively investigated and many promising preclinical studies have shown tumor inhibition through genetic modulation. We, and others, have demonstrated that targeting oncogene expression with gene therapy approaches is feasible in patients. Other methods such as RNA interference have proven to be effective and are potential candidates for clinical studies. This review summarizes the major advances in sequence-specific gene modulation in the preclinical setting and in clinical trials in head and neck cancer patients.
Collapse
Affiliation(s)
- S M Parsel
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - J R Grandis
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - S M Thomas
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Riaz N, Morris LG, Lee W, Chan TA. Unraveling the molecular genetics of head and neck cancer through genome-wide approaches. Genes Dis 2014; 1:75-86. [PMID: 25642447 PMCID: PMC4310010 DOI: 10.1016/j.gendis.2014.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 12/15/2022] Open
Abstract
The past decade has seen an unprecedented increase in our understanding of the biology and etiology of head and neck squamous cell carcinomas (HNSCC). Genome-wide sequencing projects have identified a number of recurrently mutated genes, including unexpected alterations in the NOTCH pathway and chromatin related genes. Gene-expression profiling has identified 4 distinct genetic subtypes which show some parallels to lung squamous cell carcinoma biology. The identification of the human papilloma virus as one causative agent in a subset of oropharyngeal cancers and their association with a favorable prognosis has opened up avenues for new therapeutic strategies. The expanding knowledge of the underlying molecular abnormalities in this once very poorly understood cancer should allow for increasingly rational clinical trial design and improved patient outcomes.
Collapse
Affiliation(s)
- Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Luc G. Morris
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - William Lee
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Timothy A. Chan
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Human Oncology and Pathogenesis, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Tan M, Myers JN, Agrawal N. Oral cavity and oropharyngeal squamous cell carcinoma genomics. Otolaryngol Clin North Am 2013; 46:545-66. [PMID: 23910469 DOI: 10.1016/j.otc.2013.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent technological advances now permit the study of the entire cancer genome, which can elucidate complex pathway interactions that are not apparent at the level of single genes. In this review, the authors describe innovations that have allowed for whole-exome/genome analysis of genetic and epigenetic alterations and of changes in gene expression. Studies using next-generation sequencing, array comparative genomic hybridization, methylation arrays, and gene expression profiling are reviewed, with a particular focus on findings from recent whole-exome sequencing projects. A discussion of the implications of these data on treatment and future goals for cancer genomics is included.
Collapse
Affiliation(s)
- Marietta Tan
- Department of Otolaryngology, Head and Neck Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
12
|
Spiotto MT, Pytynia M, Liu GFF, Ranck MC, Widau R. Animal models to study the mutational landscape for oral cavity and oropharyngeal cancers. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2013; 4:e1. [PMID: 24422024 PMCID: PMC3886108 DOI: 10.5037/jomr.2013.4101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/23/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Cancer is likely caused by alterations in gene structure or expression. Recently, next generation sequencing has documented mutations in 106 head and neck squamous cell cancer genomes, suggesting several new candidate genes. However, it remains difficult to determine which mutations directly contributed to cancer. Here, summarize the animal models which have already validated and may test cancer causing mutations identified by next generation sequencing approaches. MATERIAL AND METHODS We reviewed the existing literature on genetically engineered mouse models and next generation sequencing (NGS), as it relates to animal models of squamous cell cancers of the head and neck (HNSCC) in PubMed. RESULTS NSG has identified an average of 19 to 130 distinct mutations per HNSCC specimen. While many mutations likely had biological significance, it remains unclear which mutations were essential to, or "drive," carcinogenesis. In contrast, "passenger" mutations also exist that provide no selection advantage. The genes identified by NGS included p53, RAS, Human Papillomavirus oncogenes, as well as novel genes such as NOTCH1, DICER and SYNE1,2. Animal models of HNSCC have already validated some of these common gene mutations identified by NGS. CONCLUSIONS The advent of next generation sequencing will provide new leads to the genetic changes occurring in squamous cell cancers of the head and neck. Animal models will enable us to validate these new leads in order to better elucidate the biology of squamous cell cancers of the head and neck.
Collapse
Affiliation(s)
- Michael T Spiotto
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| | - Matthew Pytynia
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| | - Gene-Fu F Liu
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| | - Mark C Ranck
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| | - Ryan Widau
- Department of Radiation and Cellular Oncology, The University of Chicago Chicago, Illinois USA
| |
Collapse
|
13
|
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Radiotherapy is a mainstay of treatment, either alone for early stage tumors or combined with chemotherapy for late stage tumors. An overall 5-year survival rate of around 50% for HNSCC demonstrates that treatment is often unsuccessful. Prediction of outcome is, therefore, aimed at sparing patients from ineffective and toxic treatments on the one hand, and indicating more successful treatment modalities on the other. Both functional and genetic assays have been developed to predict intrinsic radiosensitivity, hypoxia, and repopulation rate. Few, however, have shown consistent correlations with outcome across multiple studies. Messenger RNA and microRNA profiling show promise for predicting hypoxia, whereas epidermal growth factor receptor expression combined with other measures of tumor differentiation grade shows promise for predicting repopulation rate. Intrinsic radiosensitivity assays have not proven useful to date, although development of repair protein foci assays indicates promise from preclinical studies. Assays for cancer stem cell content have shown promise in several clinical studies. In addition, 2 assays showing robustness as predictors for outcome in HNSCC are human papilloma virus status and epidermal growth factor receptor expression. Neither these nor stem cell assays, however, can as yet reliably indicate alternative and better treatments for poor prognosis patients. It would be of great value to have assays that predict the benefit for an individual from combining new molecularly targeted agents with radiotherapy to increase response, in particular those that exploit tumor mutations to provide tumor specificity. Predictive assays are being developed for detecting defects in repair pathways for single- and double-strand DNA breaks, which should allow selection of drugs targeting the appropriate backup pathway, thus exploiting the concept of synthetic lethality. This is one of the most promising areas for prediction, both currently and in the future.
Collapse
|
14
|
Antiepidermal growth factor receptor therapy in squamous cell carcinoma of the head and neck. JOURNAL OF ONCOLOGY 2012; 2012:521215. [PMID: 22778735 PMCID: PMC3388373 DOI: 10.1155/2012/521215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/19/2012] [Indexed: 01/16/2023]
Abstract
Squamous cell carcinoma of head and neck (SCCHN) is the most common neoplasm of the upper aerodigestive tract. In this paper, we attempt to summarize the role and applications of the epidermal growth factor receptor (EGFR) inhibitors monoclonal antibodies (moAbs) and tyrosine kinase inhibitors (TKIs) locally advanced as well as metastatic SCCHN. Targeted therapy in SCCHN is now incorporated in the first-line regimes for advanced disease. Novel targeted agents, including the EGFR antibody, cetuximab, have been approved for use as single agents or in combination with radiation therapy or chemotherapy in treatment of recurrent metastatic or locally advanced SCCHN. Refractory mechanisms that bypass the pathway of EGFR inhibitors activity are identified explaining resistance to targeted therapy. Strategies of cotargeting EGFR and other pathways are under investigation. Examples of targeted therapy being used include mammalian target of rapamycin (mtor) inhibitors, antivascular endothelial growth factor (VEGF) moAb, and other inhibitors. We will be focusing our paper on the preclinical and clinical aspects of EGFR inhibition in SCCHN and touch upon other targeted therapies in application.
Collapse
|
15
|
Matizonkas-Antonio LF, Libório TN, Aquino Xavier FC, Silva-Valenzuela MDG, Michaluarte-Júnior P, Nunes FD. Detection of TGIF1 homeobox gene in oral squamous cell carcinoma according to histologic grading. ACTA ACUST UNITED AC 2011; 111:218-24. [PMID: 21237437 DOI: 10.1016/j.tripleo.2010.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/23/2010] [Accepted: 10/01/2010] [Indexed: 01/31/2023]
Abstract
OBJECTIVE TGIF1 homeobox gene involvement in oral cancer has not yet been investigated. This study analyzed the expression of TGIF1 transcripts and protein in oral squamous cell carcinoma (OSCC). STUDY DESIGN Snap-frozen samples from 16 patients were taken from both OSCC and nontumoral adjacent epithelium (NT) for in situ hybridization (ISH). Forty-six paraffin-embedded samples of OSCC were submitted to immunohistochemistry (IHC). A descriptive analysis of the transcript signal detection was accomplished, and TGIF1 immunoexpression was carried out considering protein levels, localization, and cellular differentiation. RESULTS ISH reactions showed TGIF1 transcripts with a signal that was frequently intense in NT, and generally weak in OSCC, and that had stronger transcript signal in well-differentiated areas of OSCC when compared with poorly differentiated ones. IHC reactions had poorly differentiated cases associated with TGIF1 protein expression in both the nucleus and cytoplasm (P = .05, Fisher test). CONCLUSIONS TGIF1 gain or loss of function might possibly play a role in oral cancer cell differentiation.
Collapse
|
16
|
Lee KW, Tsai YS, Chiang FY, Huang JL, Ho KY, Yang YH, Kuo WR, Chen MK, Lin CS. Lower ataxia telangiectasia mutated (ATM) mRNA expression is correlated with poor outcome of laryngeal and pharyngeal cancer patients. Ann Oncol 2011; 22:1088-1093. [DOI: 10.1093/annonc/mdq569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
17
|
Gene dosage, expression, and ontology analysis identifies driver genes in the carcinogenesis and chemoradioresistance of cervical cancer. PLoS Genet 2009; 5:e1000719. [PMID: 19911042 PMCID: PMC2768783 DOI: 10.1371/journal.pgen.1000719] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 10/14/2009] [Indexed: 12/26/2022] Open
Abstract
Integrative analysis of gene dosage, expression, and ontology (GO) data was performed to discover driver genes in the carcinogenesis and chemoradioresistance of cervical cancers. Gene dosage and expression profiles of 102 locally advanced cervical cancers were generated by microarray techniques. Fifty-two of these patients were also analyzed with the Illumina expression method to confirm the gene expression results. An independent cohort of 41 patients was used for validation of gene expressions associated with clinical outcome. Statistical analysis identified 29 recurrent gains and losses and 3 losses (on 3p, 13q, 21q) associated with poor outcome after chemoradiotherapy. The intratumor heterogeneity, assessed from the gene dosage profiles, was low for these alterations, showing that they had emerged prior to many other alterations and probably were early events in carcinogenesis. Integration of the alterations with gene expression and GO data identified genes that were regulated by the alterations and revealed five biological processes that were significantly overrepresented among the affected genes: apoptosis, metabolism, macromolecule localization, translation, and transcription. Four genes on 3p (RYBP, GBE1) and 13q (FAM48A, MED4) correlated with outcome at both the gene dosage and expression level and were satisfactorily validated in the independent cohort. These integrated analyses yielded 57 candidate drivers of 24 genetic events, including novel loci responsible for chemoradioresistance. Further mapping of the connections among genetic events, drivers, and biological processes suggested that each individual event stimulates specific processes in carcinogenesis through the coordinated control of multiple genes. The present results may provide novel therapeutic opportunities of both early and advanced stage cervical cancers.
Collapse
|
18
|
|
19
|
van den Broek GB, Wildeman M, Rasch CRN, Armstrong N, Schuuring E, Begg AC, Looijenga LHJ, Scheper R, van der Wal JE, Menkema L, van Diest PJ, Balm AJM, van Velthuysen MLF, van den Brekel MWM. Molecular markers predict outcome in squamous cell carcinoma of the head and neck after concomitant cisplatin-based chemoradiation. Int J Cancer 2009; 124:2643-50. [PMID: 19253368 DOI: 10.1002/ijc.24254] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Not all patients with squamous cell carcinomas of the head and neck (HNSCC) benefit from concurrent cisplatin-based chemoradiation, but reliable predictive markers for outcome after chemoradiation are scarce. We have investigated potential prognostic biomarkers for outcome in a large group of patients. Ninety-one tumor biopsies taken from consecutive HNSCC patients were evaluated for protein expression on a tissue microarray. Using immunohistochemistry, 18 biomarkers, involved in various cellular pathways were investigated. Univariable and multivariable proportional hazard analyses were performed to investigate associations between each individual marker and outcome. In addition, the global test was used to test all variables simultaneously and selected combinations of markers for an overall association with local control. Univariable analysis showed statistically significant increased relative risks of RB, P16 and MRP2 for local control and MDR1 and HIF-1alpha for overall survival. MRP2, MDR1 and P16 levels were positively associated with outcome whereas RB and HIF-1alpha had a negative relationship. Using Goeman's global testing no combination of markers was identified that was associated with local control. Grouping the markers according to their function revealed an association between a combination of 3 markers (P16, P21 and P27) and outcome (p = 0.05) was found. In the multivariable analysis, MRP2 and RB remained significant independent predictive markers for local control. This study describes the prognostic value of biomarkers for the outcome in patients uniformly treated with concurrent chemoradiation. MRP2 and RB were found to be associated with outcome in patients treated with concurrent chemoradiation.
Collapse
Affiliation(s)
- Guido B van den Broek
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Throughout the last 2 decades, great strides have been made in managing patients with locally advanced head and neck squamous cell carcinoma. In many clinical settings, they translated to significant advances in treatment efficacy and improvements in disease prognosis. To achieve this, most strategies, ranging from induction to postoperative treatments, are essentially based on multidisciplinary approaches. Nowadays, the indication and sequencing of surgery, radiotherapy, and systemic treatments are carefully weighted in the function of risk levels, efficacy results, and quality of life. Along this track, the coadministration of chemotherapy and radiotherapy was shown, as definitive or adjuvant treatment, to improve the results of conventional radiotherapy alone. However, recent prospective trials showed that the compliance of patients to aggressive approaches is more of a concern for poor tolerability and reduced compliance inevitably impact on treatment dose intensity, leading to the delivery of suboptimal regimens. Therefore, further efforts to tailor novel, multidisciplinary approaches based on drug-radiation interactions have been put forth to optimize treatment outcomes in terms of both disease control and quality of life. Because therapy is becoming more intense, a careful recording and reporting of treatment-related morbidity is also a crucial element in estimating the therapeutic gain from competing strategies.
Collapse
|
21
|
Ha PK, Chang SS, Glazer CA, Califano JA, Sidransky D. Molecular techniques and genetic alterations in head and neck cancer. Oral Oncol 2008; 45:335-9. [PMID: 18674960 DOI: 10.1016/j.oraloncology.2008.05.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It is well known that cellular DNA alterations can lead to the formation of cancer, and there has been much discovery in the pathways involved in the development of head and neck squamous cell carcinoma (HNSCC). With novel genome-wide molecular assays, our ability to detect these abnormalities has increased. We now have a better understanding of the molecular complexity of HNSCC, but there is still much research to be done. In this review, we discuss the well described genetic alterations and touch on the newer findings, as well as some of the future directions of head and neck cancer research.
Collapse
Affiliation(s)
- Patrick K Ha
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, 1550 E Orleans Street, CRB II Rm 5M06, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
22
|
Current World Literature. Curr Opin Otolaryngol Head Neck Surg 2008; 16:175-82. [DOI: 10.1097/moo.0b013e3282fd9415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|