1
|
Ouyang J, Chai H, Sun C, Wang S, She C, Geng D, Xu W. Titanium Particles Activate Osteocytic Connexin 43 to Induce Oxidative Stress and Osteoclastogenesis Through the JAK-STAT Pathway. Antioxid Redox Signal 2025. [PMID: 40207369 DOI: 10.1089/ars.2024.0894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Aims: Periprosthetic osteolysis (PPO), a leading cause of aseptic loosening in joint replacement, arose from complex interactions among osteoblasts, osteoclasts, and osteocytes. Given the pivotal role of connexin 43 (Cx43) in osteocyte communication and bone remodeling, investigating its function was essential for understanding the mechanisms of osteolysis. Our previous studies showed that titanium (Ti) particles increased Cx43 expression in osteocytes. However, the role of Cx43 in osteolysis remained unclear. This study investigated the role of Cx43-mediated regulation of osteocytes on osteoclastogenesis in wear debris-induced osteolysis. Results: Using Dmp1-cre conditional Cx43 knockout mice and the MLO-Y4 osteocyte cell line, we demonstrated that Cx43 deficiency reduced bone resorption and osteoclastogenesis, thereby improving bone remodeling in a Ti particle-induced osteolysis model. Sequencing analysis revealed that Cx43 gene expression changes might be linked to oxidative stress and the Janus Kinase (JAK)-STAT pathway. Elevated Cx43 expression in osteocytes stimulated by Ti particles increased STAT1 protein phosphorylation, induced oxidative stress, elevated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Osteoprotegerin (OPG) ratio, and promoted osteoclast activation and bone resorption. Conversely, Cx43 gene knockout decreased STAT1 protein phosphorylation and enhanced Nuclear Factor Erythroid 2-Related Factor 2 (NrF2) protein expression. Blocking the JAK-STAT signaling pathway activated by Cx43 increased NrF2 expression, reduced reactive oxygen species levels, and subsequently decreased the RANKL/OPG ratio. Innovation and Conclusions: This study identified a novel mechanism where Cx43 in osteocytes promoted osteoclastogenesis through JAK-STAT pathway activation and oxidative stress in wear debris-induced osteolysis. These findings highlighted the critical role of Cx43 in bone resorption and suggested targeting Cx43 or the JAK-STAT pathway as potential therapeutic strategies to mitigate osteolysis and improve implant longevity. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jiawei Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Zhang S, Guo S, Yu M, Wang Y, Tao L, Zhang X. Analgesics can affect the sensitivity of temozolomide to glioma chemotherapy through gap junction. Med Oncol 2023; 40:162. [PMID: 37100898 DOI: 10.1007/s12032-023-01998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 04/28/2023]
Abstract
This study investigated the effect of frequently used analgesics in cancer pain management (flurbiprofen (FLU), tramadol (TRA), and morphine (MOR)) and a novel α2-adrenergic agonist (dexmedetomidine, DEX) on temozolomide (TMZ) sensitivity in glioma cells. Cell counting kit-8 and colony-formation assays were performed to analyze the viability of U87 and SHG-44 cell lines. A high and low cell density of colony method, pharmacological methods, and connexin43 mimetic peptide GAP27 were used to manipulate the function of gap junctions; "Parachute" dye coupling and western blot were employed to determine junctional channel transfer ability and connexin expression. The results showed that DEX (in the concentration range of 0.1 to 5.0 ng/ml) and TRA (in the concentration range of 1.0 to 10.0 µg/ml) reduced the TMZ cytotoxicity in a concentration-dependent manner but was only observed with high cell density (having formed gap junction). The cell viability percentage was 71.3 to 86.8% when DEX was applied at 5.0 ng/ml, while tramadol showed 69.6 to 83.7% viability at 5.0 μg/ml in U87 cells. Similarly, 5.0 ng/ml of DEX resulted in 62.6 to 80.5%, and 5.0 μg/ml TRA showed 63.5 to 77.3% viability in SHG-44 cells. Further investigating the impact of analgesics on gap junctions, only DEX and TRA were found to decrease channel dye transfer through connexin phosphorylation and ERK pathway, while no such effect was observed for FLU and MOR. Analgesics that can affect junctional communication may compromise the effectiveness of TMZ when used simultaneously.
Collapse
Affiliation(s)
- Suzhi Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Sanxing Guo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Yu Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| |
Collapse
|
4
|
Zhou X, Li M, Cheng Q, Shao Y, Wang W, Du Q, Liu J, Yang Y. Methylselenocysteine Potentiates Etoposide-Induced Cytotoxicity by Enhancing Gap Junction Activity. Biol Pharm Bull 2022; 45:467-476. [DOI: 10.1248/bpb.b21-00893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xueli Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Man Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Qianqian Cheng
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Yu Shao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Qianyu Du
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Jing Liu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
5
|
Interactions of Analgesics with Cisplatin: Modulation of Anticancer Efficacy and Potential Organ Toxicity. MEDICINA (KAUNAS, LITHUANIA) 2021; 58:medicina58010046. [PMID: 35056355 PMCID: PMC8781901 DOI: 10.3390/medicina58010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Cisplatin (CDDP), one of the most eminent cancer chemotherapeutic agents, has been successfully used to treat more than half of all known cancers worldwide. Despite its effectiveness, CDDP might cause severe toxic adverse effects on multiple body organs during cancer chemotherapy, including the kidneys, heart, liver, gastrointestinal tract, and auditory system, as well as peripheral nerves causing severely painful neuropathy. The latter, among other pains patients feel during chemotherapy, is an indication for the use of analgesics during treatment with CDDP. Different types of analgesics, such as acetaminophen, non-steroidal anti-inflammatory drugs (NSAIDS), and narcotic analgesics, could be used according to the severity of pain. Administered analgesics might modulate CDDP’s efficacy as an anticancer drug. NSAIDS, on one hand, might have cytotoxic effects on their own and few of them can potentiate CDDP’s anticancer effects via inhibiting the CDDP-induced cyclooxygenase (COX) enzyme, or through COX-independent mechanisms. On the other hand, some narcotic analgesics might ameliorate CDDP’s anti-neoplastic effects, causing chemotherapy to fail. Concerning safety, some analgesics share the same adverse effects on normal tissues as CDDP, augmenting its potentially hazardous effects on organ impairment. This article offers an overview of the reported literature on the interactions between analgesics and CDDP, paying special attention to possible mechanisms that modulate CDDP’s cytotoxic efficacy and potential adverse reactions.
Collapse
|
6
|
Watson J, Ninh MK, Ashford S, Cornett EM, Kaye AD, Urits I, Viswanath O. Anesthesia Medications and Interaction with Chemotherapeutic Agents. Oncol Ther 2021; 9:121-138. [PMID: 33861416 PMCID: PMC8140172 DOI: 10.1007/s40487-021-00149-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/13/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is now a leading health concern worldwide. In an effort to provide these patients with adequate care, coordination between anesthesiologists and surgeons is crucial. In cancer-related treatment, it is very clear that radio-chemotherapy and medical procedures are important. There are some obstacles to anesthesia when dealing with cancer treatment, such as physiological disturbances, tumor-related symptoms, and toxicity in traditional chemotherapy treatment. Therefore, it is important that a multisystemic, multidisciplinary and patient-centered approach is used to preserve perioperative homeostasis and immune function integrity. Adding adjuvants can help increase patient safety and satisfaction and improve clinical efficacy. Correctly paired anesthetic procedures and medications will reduce perioperative inflammatory and immune changes that could potentially contribute to improved results for future cancer patients. Further research into best practice strategies is required which will help to enhance the acute and long-term effects of cancer care in clinical practice.
Collapse
Affiliation(s)
- Jeremy Watson
- LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103 USA
| | - Michael K. Ninh
- LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103 USA
| | - Scott Ashford
- LSU Health Shreveport, 1501 Kings Hwy, Shreveport, LA 71103 USA
| | - Elyse M. Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, P.O. Box 33932, Shreveport, LA 71103 USA
| | - Alan David Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA 71103 USA
| | - Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215 USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Shreveport, Shreveport, LA USA
- Valley Pain Consultants – Envision Physician Services, Phoenix, AZ USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE USA
| |
Collapse
|
7
|
Bakır E, Çal T, Aydın Dilsiz S, Canpınar H, Eken A, Ündeğer Bucurgat Ü. Assessment of the cytotoxic, genotoxic, and apoptotic potential of flurbiprofen in HeLa and HepG2 cell lines. J Biochem Mol Toxicol 2021; 35:1-11. [PMID: 33709623 DOI: 10.1002/jbt.22770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
In the literature, the anticancer potential of flurbiprofen isn't fully understood. In this study, the cytotoxic, genotoxic, and apoptotic effects of flurbiprofen were evaluated in human cervical and liver cancer cells. Cytotoxicity was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and it was observed that cytotoxicity increased in a concentration- and time-dependent manner. Genotoxicity was determined using alkaline Comet assay. DNA damage increased in a concentration-dependent manner. Early apoptosis was evaluated using real-time polymerase chain reaction, and it was found that apoptotic gene levels increased while antiapoptotic gene levels decreased. Late apoptosis and cell cycle analyzes were determined using flow cytometry. No evidence of late apoptosis was observed, and no significant arrest was found in the cell cycle. In conclusion, it seems that flurbiprofen has a cytotoxic, genotoxic, and apoptotic effects in both human cancer cell lines. Moreover, the findings indicate that flurbiprofen is effective at the gene level and induces apoptosis with an intracellular pathway.
Collapse
Affiliation(s)
- Elçin Bakır
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Tuğbagül Çal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sevtap Aydın Dilsiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Hande Canpınar
- Department of Basic Oncology, Institute of Cancer, Hacettepe University, Ankara, Turkey
| | - Ayşe Eken
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
|
9
|
Bis‐conjugation of Bioactive Molecules to Cisplatin‐like Complexes through (2,2′‐Bipyridine)‐4,4′‐Dicarboxylic Acid with Optimal Cytotoxicity Profile Provided by the Combination Ethacrynic Acid/Flurbiprofen. Chemistry 2020; 26:17525-17535. [DOI: 10.1002/chem.202003199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Indexed: 12/17/2022]
|
10
|
Fan L, Zheng N, Peng F, Zhao Z, Fan D, Cai S, Tao L, Wang Q. Nitric oxide affects cisplatin cytotoxicity oppositely in A2780 and A2780-CDDP cells via the connexin32/gap junction. Cancer Sci 2020; 111:2779-2788. [PMID: 32342615 PMCID: PMC7419057 DOI: 10.1111/cas.14436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/12/2020] [Accepted: 04/22/2020] [Indexed: 01/14/2023] Open
Abstract
Chemoresistance is a main obstacle in ovarian cancer therapy and new treatment strategies and further information regarding the mechanism of the medication cisplatin are urgently needed. Nitric oxide has a critical role in modulating the activity of chemotherapeutic drugs. Our previous work showed that connexin32 contributed to cisplatin resistance. However, whether nitric oxide is involved in connexin32-mediated cisplatin resistance remains unknown. In this study, using A2780 and A2780 cisplatin-resistant cells, we found that S-nitroso-N-acetyl-penicillamine, a nitric oxide donor, attenuated cisplatin toxicity by decreasing gap junctions in A2780 cells. Enhancement of gap junctions using retinoic acid reversed the effects of S-nitroso-N-acetyl-penicillamine on cisplatin toxicity. In A2780 cisplatin-resistant cells, however, S-nitroso-N-acetyl-penicillamine enhanced cisplatin toxicity by decreasing connexin32 expression. Downregulation of connexin32 expression by small interfering RNA exacerbated the effects of S-nitroso-N-acetyl-penicillamine on cisplatin cytotoxicity and upregulation of connexin32 expression by pcDNA transfection reversed the effects of S-nitroso-N-acetyl-penicillamine on cisplatin cytotoxicity. Our study suggests for the first time that combining cisplatin with nitric oxide in clinical therapies for ovarian cancer should be avoided before cisplatin resistance emerges. The present study provides a productive area of further study for increasing the efficacy of cisplatin by combining cisplatin with the specific inhibitors or enhancers of nitric oxide in clinical treatment.
Collapse
Affiliation(s)
- Lixia Fan
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
- Department of Basic Medicine and Biomedical EngineeringSchool of Stomatology and MedicineFoshan UniversityFoshanPeople’s Republic of China
| | - Ningze Zheng
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Fuhua Peng
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Ziyu Zhao
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Di Fan
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Shaoyi Cai
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Liang Tao
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| | - Qin Wang
- Department of PharmacologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouPeople’s Republic of China
| |
Collapse
|
11
|
Abstract
OPINION STATEMENT Opioids are the gold standard for the treatment of cancer-related pain. Preclinical studies have associated opioids with cancer progression and overall survival. In mice models, opioids have been shown to possess pro-tumor activity secondary to immunosuppression, migration of tumor cells, increased activity of vascular endothelial growth factor receptors, and angiogenesis leading to tumor progression. In contrast, opioids have also been associated with having antitumor activity by activation of apoptosis and phagocytosis. However, high-quality randomized controlled trials in humans that are focused on the association between opioids and survival in cancer patients are lacking, which underscores the importance of being cautious when interpreting the results of the preclinical studies. Cancer-related pain is complex and multifactorial and may worsen as the disease progresses leading to higher opioid utilization. Moreover, cancer pain by itself has been associated with poor survival. The survival in these advanced cancer patients taking opioids may be more likely to be associated with cancer progression and not the opioid use. Adequate treatment of cancer pain has the potential to improve quality of life and performance status, highlighting the importance of continuing to use opioids to manage pain efficiently. More research is clearly needed.
Collapse
|
12
|
Szczepaniak A, Fichna J, Zielińska M. Opioids in Cancer Development, Progression and Metastasis: Focus on Colorectal Cancer. Curr Treat Options Oncol 2020; 21:6. [PMID: 31970561 PMCID: PMC6976545 DOI: 10.1007/s11864-019-0699-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OPINION STATEMENT So far, opioids have been successfully used to reduce cancer pain in patients in order to improve their quality of life. However, the use of opioids leads to numerous side effects such as constipation, drowsiness, nausea, itching, increased sweating and hormonal changes. In this review, we described the action of opioids in several molecular pathways significant for maintenance of the intestinal homeostasis including the impact on the intestinal epithelium integrity, changes in microbiome composition, modulation of the immune system or induction of apoptosis and inhibition of angiogenesis. We summed up the role of individual opioids in the processes involved in the growth and development of cancer and elucidated if targeting opioid receptors may constitute novel therapeutic option in colon cancer.
Collapse
Affiliation(s)
- Adrian Szczepaniak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
13
|
The gap junction inhibitor INI-0602 attenuates mechanical allodynia and depression-like behaviors induced by spared nerve injury in rats. Neuroreport 2019; 30:369-377. [PMID: 30741784 DOI: 10.1097/wnr.0000000000001209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gap junctions (GJs) are novel molecular targets for pain therapeutics due to their pain-promoting function. INI-0602, a new GJ inhibitor, exerts a neuroprotective role, while its role in neuropathic pain is unclear. The objective was to investigate the analgesic role and mechanisms of INI-0602 in neuropathic pain induced by spared nerve injury (SNI), and whether INI-0602 attenuated pain-induced depression-like behaviors. Rats were randomly assigned to saline treatment groups (sham+NS and SNI+NS) or INI-0602 treatment groups (sham+INI-0602 and SNI+INI-0602). The von Frey test was used to assess pain behavior, and the sucrose preference test, the forced swimming test, and the tail suspension test were used to assess depression-like behaviors. Gap junction intercellular communication (GJIC) was measured by parachute assay. Western blots were used to determine the protein expression. In vitro, INI-0602 significantly suppressed GJIC by decreasing connexin43 and connexin32 expression. In vivo, INI-0602 significantly suppressed mechanical allodynia during initiation (7 days after SNI) and the maintenance phase (21 days after SNI) and simultaneously attenuated accompanying depression-like behaviors. Furthermore, INI-0602 markedly suppressed the activation of astrocytes and microglia on days 7 and 21 by reducing GJIC. Finally, INI-0602 reversed the changes in the brain-derived neurotrophic factor and Nr2b subunits of the N-methyl-D-aspartate receptor in SNI rats, suggesting that these effects of INI-0602 were related to its analgesic effect. Our findings demonstrated that blocking GJs with INI-0602 attenuated mechanical pain hypersensitivity and related depression-like behaviors in SNI rats by reducing glial activation.
Collapse
|
14
|
Yuan D, Li X, Luo C, Li X, Cheng N, Ji H, Qiu R, Luo G, Chen C, Hei Z. Inhibition of gap junction composed of Cx43 prevents against acute kidney injury following liver transplantation. Cell Death Dis 2019; 10:767. [PMID: 31601792 PMCID: PMC6787008 DOI: 10.1038/s41419-019-1998-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 08/12/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Postoperative acute kidney injury (AKI) is a severe complication after liver transplantation (LT). Its deterioration and magnification lead to the increase in mortality. Connexin43 (Cx43) mediates direct transmission of intracellular signals between neighboring cells, always considered to be the potent biological basis of organ damage deterioration and magnification. Thus, we explored the effects of Cx43 on AKI following LT and its related possible mechanism. In this study, alternations of Cx43 expression were observed in 82 patients, receiving the first-time orthotopic LT. We built autologous orthotopic liver transplantation (AOLT) models with Sprague–Dawley (SD) rats in vivo, and hypoxia-reoxygenation (H/R) or lipopolysaccharide (LPS) pretreatment models with kidney tubular epithelial cells (NRK-52E) in vitro, both of which were the most important independent risk factors of AKI following LT. Then, different methods were used to alter the function of Cx43 channels to determine its protective effects on AKI. The results indicated that patients with AKI suffering from longer time of tracheal intubation or intensive care unit stay, importantly, had significantly lower survival rate at postoperative 30 days and 3 years. In rat AOLT models, as Cx43 was inhibited with heptanol, postoperative AKI was attenuated significantly. In vitro experiments, downregulation of Cx43 with selective inhibitors, or siRNA protected against post-hypoxic NRK-52E cell injuries caused by H/R and/or LPS, while upregulation of Cx43 exacerbated the above-mentioned cell injuries. Of note, alternation of Cx43 function regulated the content of reactive oxygen species (ROS), which not only mediated oxidative stress and inflammation reactions effectively, but also regulated necroptosis. Therefore, we concluded that Cx43 inhibition protected against AKI following LT through attenuating ROS transmission between the neighboring cells. ROS alternation depressed oxidative stress and inflammation reaction, which ultimately reduced necroptosis. This might offer new insights for targeted intervention for organ protection in LT, or even in other major surgeries.
Collapse
Affiliation(s)
- Dongdong Yuan
- Department of Anesthesiology, the third affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, PR China.
| | - Xiaoyun Li
- Department of Anesthesiology, the third affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, PR China
| | - Chenfang Luo
- Department of Anesthesiology, the third affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, PR China
| | - Xianlong Li
- Department of Anesthesiology, the third affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, PR China
| | - Nan Cheng
- Department of Anesthesiology, the third affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, PR China
| | - Haocong Ji
- Department of Anesthesiology, Huizhou first People's Hospital, No. 20, San Xin Nan Road, Jiangbei, Huizhou, PR China
| | - Rongzong Qiu
- Department of Anesthesiology, Huizhou first People's Hospital, No. 20, San Xin Nan Road, Jiangbei, Huizhou, PR China
| | - Gangjian Luo
- Department of Anesthesiology, the third affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, PR China
| | - Chaojin Chen
- Department of Anesthesiology, the third affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, PR China.
| | - Ziqing Hei
- Department of Anesthesiology, the third affiliated Hospital of Sun Yat-sen University, Tianhe Road, Guangzhou, PR China.
| |
Collapse
|
15
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Wang YY, Huang JL, Yin XX. A Novel Role of Connexin 40-Formed Channels in the Enhanced Efficacy of Photodynamic Therapy. Front Oncol 2019; 9:595. [PMID: 31338328 PMCID: PMC6629863 DOI: 10.3389/fonc.2019.00595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Despite responses to initial treatment of photodynamic therapy (PDT) being promising, a recurrence rate exists. Thus, finding novel therapeutic targets to enhance PDT efficacy is an urgent need. Reports indicate that connexin (Cx) 40 plays an important role in tumor angiogenesis and growth. However, it is unknown whether Cx40-composed channels have effects on PDT efficacy. The study uniquely demonstrated that Cx40-formed channels could enhance the phototoxicity of PDT to malignant cells in vitro and in vivo. Specifically, Cx40-formed channels at high cell density could increase PDT photocytotoxicity. This action was substantially restricted when Cx40 expression was not induced or Cx40 channels were restrained. Additionally, the presence of Cx40-composed channels enhanced the phototoxicity of PDT in the tumor xenografts. The above results indicate that enhancing the function of Cx40-formed channels increases PDT efficacy. The enhancement of PDT efficacy mediated by Cx40 channels was related with intracellular pathways mediated by ROS and calcium pathways, but not the lipid peroxide-mediated pathway. This work demonstrates the capacity of Cx40-mediated channels to increase PDT efficacy and suggests that therapeutic strategies designed to maintain or enhance Cx40 expression and/or channels composed by Cx40 may increase the therapeutic efficacy of PDT.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Li-Ru Bai
- Department of Pharmacy, Wuxi Ninth Affiliated Hospital of Suzhou University, Wuxi, China
| | - Yan-Fang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Si-Man Yang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuan-Yuan Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China.,Department of Pharmacology, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
16
|
Wu DP, Bai LR, Lv YF, Zhou Y, Ding CH, Yang SM, Zhang F, Huang JL. A novel role of Cx43-composed GJIC in PDT phototoxicity: an implication of Cx43 for the enhancement of PDT efficacy. Int J Biol Sci 2019; 15:598-609. [PMID: 30745846 PMCID: PMC6367575 DOI: 10.7150/ijbs.29582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/28/2018] [Indexed: 11/07/2022] Open
Abstract
In spite of initially promising responses, 5-year recurrence after photodynamic therapy (PDT) sustains high level and an increase in PDT effectiveness is needed. It has been demonstrated that gap junctional intercellular communication (GJIC) formed by Connexin (Cx)43 could improve the transfer of "death signal" between cells, thereby causing the enhancement of cytotoxicity of chemotherapeutics and suicide gene therapy. Nevertheless, whether Cx43-composed GJIC has an effect on PDT phototoxicity remains unknown. This study showed that Cx43-formed GJIC could improve PDT phototoxicity to tumor cells in vitro and in vivo. Specifically, Cx43-formed GJIC under the condition of high cellular density could improve PDT phototoxicity in Cx43-transfected HeLa cells and Cx43-expressing U87 glioma cells. This effect was remarkably inhibited when Cx43 was not expressed or Cx43-formed GJ channels were prohibited. Additionally, the presence of Cx43-mediated GJIC could decrease the mean RTV and tumor weights of xenografts after Photofrin-PDT. The improved PDT efficacy by Cx43-composed GJIC was correlated with stress signaling pathways mediated by ROS, calcium and lipid peroxide. The present study demonstrates the presence of Cx43-composed GJIC improves PDT phototoxicity and suggests that therapeutic strategies designed to upregulate the expression of Cx43 or enhance Cx43-mediated GJIC function may increase the sensitivity of malignant cell to PDT, leading to the increment of PDT efficacy. Oppositely, factors that retard Cx43 expression or prohibit the function of Cx43-mediated GJIC may cause insensitivity of malignant cells to PDT, leading to PDT resistance.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Li-Ru Bai
- Department of Pharmacy,Wuxi Ninth Affiliated Hospital of Suzhou University, 214062, Wuxi City, Jiangsu Province, P.R. China
| | - Yan-Fang Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Chun-Hui Ding
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Si-Man Yang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Fan Zhang
- Scientific research center of traditional Chinese medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| |
Collapse
|
17
|
Gap Junction Intercellular Communication Positively Regulates Cisplatin Toxicity by Inducing DNA Damage through Bystander Signaling. Cancers (Basel) 2018; 10:cancers10100368. [PMID: 30279363 PMCID: PMC6210410 DOI: 10.3390/cancers10100368] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
The radiation-induced bystander effect (RIBE) can increase cellular toxicity in a gap junction dependent manner in unirradiated bystander cells. Recent reports have suggested that cisplatin toxicity can also be mediated by functional gap junction intercellular communication (GJIC). In this study using lung and ovarian cancer cell lines, we showed that cisplatin cytotoxicity is mediated by cellular density. This effect is ablated when GJA1 or Connexin 43 (Cx43) is targeted, a gap junction gene and protein, respectively, leading to cisplatin resistance but only at high or gap junction forming density. We also observed that the cisplatin-mediated bystander effect was elicited as DNA Double Strand Breaks (DSBs) with positive H2AX Ser139 phosphorylation (γH2AX) formation, an indicator of DNA DSBs. These DSBs are not observed when gap junction formation is prevented. We next showed that cisplatin is not the “death” signal traversing the gap junctions by utilizing the cisplatin-GG intrastrand adduct specific antibody. Finally, we also showed that cells deficient in the structure-specific DNA endonuclease ERCC1-ERCC4 (ERCC1-XPF), an important mediator of cisplatin resistance, further sensitized when treated with cisplatin in the presence of gap junction forming density. Taken together, these results demonstrate the positive effect of GJIC on increasing cisplatin cytotoxicity.
Collapse
|
18
|
Wu DP, Lin TY, Bai LR, Huang JL, Zhou Y, Zhou N, Zhong SL, Gao S, Yin XX. Enhanced phototoxicity of photodynamic treatment by Cx26-composed GJIC via ROS-, calcium- and lipid peroxide-mediated pathways. JOURNAL OF BIOPHOTONICS 2017; 10:1586-1596. [PMID: 28417552 DOI: 10.1002/jbio.201600255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/11/2016] [Accepted: 01/12/2017] [Indexed: 06/07/2023]
Abstract
In spite of the promising initial treatment responses presented by photodynamic therapy (PDT), 5-year recurrence rates remain high level. Therefore, improvement in the efficacy of PDT is needed. There are reports showing that connexin(Cx) 26-composed gap junctional intercellular communication (GJIC) enhances the intercellular propagation of "death signal", thereby increasing chemotherapeutic cytotoxicity. However, it is unclear whether Cx26-formed GJIC has an effect on PDT phototoxicity. The results in the present study showed that Cx26-composed GJ formation at high density enhances the phototoxicity of Photofrin-PDT. When the Cx26 is not expressed or Cx26 channels are blocked, the phototoxicity in high-density cultures substantially reduces, indicating that the enhanced PDT phototoxicity at high density is mediated by Cx26-composed GJIC. The GJIC-mediated increase in PDT phototoxicity was associated with ROS, calcium and lipid peroxide-mediated stress signaling pathways. The work presents the ability of Cx26-composed GJIC to enhance the sensitivity of malignant cells to PDT, and indicates that maintenance or increase of Cx26-formed GJIC may be a profitable strategy towards the enhancement of PDT therapeutic efficiency. Picture: The survival response of Photofrin-PDT in Dox-treated (Cx26 expressing, GJ-formed) and Dox-untreated cells (Cx26 non-expressing, GJ-unformed) at high-cell density condition.
Collapse
Affiliation(s)
- Deng-Pan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Tian-Yu Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Li-Ru Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Jin-Lan Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
- Department of Pharmacology, Pharmacy School of Xuzhou Medical University, 221004, Xuzhou City, Jiangsu Province, P.R. China
| | - Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Nan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Sheng-Lei Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Shan Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| | - Xiao-Xing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical University, Xuzhou City, Jiangsu Province, 221004, P.R. China
| |
Collapse
|
19
|
Wang L, Peng Y, Peng J, Shao M, Ma L, Zhu Z, Zhong G, Xia Z, Huang H. Tramadol attenuates the sensitivity of glioblastoma to temozolomide through the suppression of Cx43‑mediated gap junction intercellular communication. Int J Oncol 2017; 52:295-304. [PMID: 29115581 DOI: 10.3892/ijo.2017.4188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/05/2017] [Indexed: 11/06/2022] Open
Abstract
Analgesics and antineoplastic drugs are often used concurrently for cancer patients. Our previous study reported that gap junctions composed of connexin32 (Cx32) was implicated in the effect of analgesics on cisplatin cytotoxicity. However, the effect of analgesic on the most widely expressed connexin (Cx), connexin43 (Cx43), and whether such effect mediates the influence on chemotherapeutic efficiency remain unknown. By manipulation of Cx43 expression or gap junction function, we found that there were gap junction-dependent and independent effect of Cx43 on temozolomide (TMZ) sensitivity in U87 glioblastoma cells. Studies on survival and apoptosis showed widely used analgesic tramadol significantly reduced TMZ-induced cytotoxicity in control and negative control cells but not shCx43-transfected cells. Proliferation assay demonstrated tramadol suppressed TMZ-induced cytotoxicity only on high density (with gap junction formation) but not on low density (without gap junction formation). Tramadol inhibited dye-coupling through gap junctions between U87 cells. Tramadol treatment for 72 h did not alter Cx43 expression, but decreased Cx43 phosphorylation accompanied with reduced p-ERK and p-JNK. Our results indicated that long-term treatment with tramadol reduced TMZ cytotoxicity in U87 cells by suppressing Cx43-composed gap junctions, suggesting identification and usage of antinociceptive drugs which do not downregulate connexin activity should have beneficial therapeutic consequences.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yuexia Peng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianxin Peng
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - Min Shao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Li Ma
- Department of Cardiovascular Internal Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Zhuoli Zhu
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Guocheng Zhong
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Zhengyuan Xia
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Huansen Huang
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
20
|
Lai Y, Fan L, Zhao Y, Ge H, Feng X, Wang Q, Zhang X, Peng Y, Wang X, Tao L. Cx32 suppresses extrinsic apoptosis in human cervical cancer cells via the NF‑κB signalling pathway. Int J Oncol 2017; 51:1159-1168. [PMID: 28902345 DOI: 10.3892/ijo.2017.4106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/28/2017] [Indexed: 01/22/2023] Open
Abstract
Tumour necrosis factor α (TNFα) and TNF‑related apoptosis inducing ligand (TRAIL) usually trigger either survival or apoptosis signals in various cell types, and nuclear factor κB (NF‑κB) is a key factor that regulates their biological effects. Connexin 32 (Cx32) is a gap junction (GJ) protein that plays vital roles in tumourigenesis and tumour progression. Our previous study explored abnormal Cx32 expression in para‑nuclear areas, exacerbated prognostic parameters and suppressed streptonigrin/cisplatin-induced apoptosis in human cervical cancer (CaCx) cells. In this study, we investigated the role of Cx32 in the extrinsic apoptosis pathway of CaCx cells. In transgenic HeLa cells and C-33A cells, Cx32 expression was manipulated using doxycycline or Cx32 siRNA. GJ inhibitors or low density culturing was used to change the status of gap junction intracellular communication (GJIC). We found that apoptosis induced by TNFα and TRAIL was suppressed by Cx32 expression despite the presence or absense of GJIC. We also found that Cx32 upregulated the expression of nuclear NF‑κB and its downstream targets c-IAP1, MMP‑2, and MMP‑9 in HeLa‑Cx32 and C-33A cells. Following our previous study design, our clinical data showed that NF‑κB and MMP‑2 levels increased in human CaCx specimens with high Cx32 expression compared to levels in para‑carcinoma of cervical specimens. SC75741 and JSH-23, NF‑кB signalling pathway inhibitors, inhibited the anti-apoptotic effects of Cx32. In conclusion, Cx32 suppressed TNFα /TRAIL-induced extrinsic apoptosis by upregulating the NF‑κB signalling pathway. This study demonstrates a novel mechanism for Cx32's anti-apoptotic effect and provides a reasonable explanation for the pro-tumour effect of Cx32 in human CaCx cells.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lixia Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yifan Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hui Ge
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Xue Feng
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuexia Peng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiyan Wang
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
21
|
Su M, Zhang Q. Deficiency of gap junction composed of connexin43 contributes to oxaliplatin resistance in colon cancer cells. Oncol Lett 2017; 14:3669-3674. [PMID: 28927129 DOI: 10.3892/ol.2017.6598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
Although comprehensive strategies in the treatment of colorectal cancer have been developed for a number of years, the five-year survival rate of metastatic colon cancer remains less than 10%. Oxaliplatin, a commonly used chemotherapeutic agent for metastatic colon cancer, improves the response rate of patients and prolongs patients' progression-free survival. However, the generation of resistance limits the clinical application of oxaliplatin, and the mechanisms of this remain unclear. The present study mainly investigated the effect of the gap junction (GJ) composed of connexin43 (Cx43) on oxaliplatin cytotoxicity in colon cancer cells. Three different methods with distinct mechanisms were used to change the function of Cx43 GJs, including cell culture at different densities, pretreatment with a specific inhibitor or enhancer, and special gene knockdown, to observe the cytotoxicity of oxaliplatin and the level of reactive oxygen species (ROS) mediated by Cx43 GJs. The results revealed that the cytotoxicity of oxaliplatin and the level of ROS were decreased with the downregulation of Cx43 GJ function, but exacerbated with the upregulation of Cx43 GJ function. Moreover, ROS scavenging with N-acetyl-L-cysteine and apocynin decreased the cytotoxicity of oxaliplatin. We concluded that the loss of GJ composed of Cx43 contributed to the resistance of oxaliplatin in colon cancer cells, and the mechanism was associated with intracellular ROS alternation.
Collapse
Affiliation(s)
- Min Su
- Department of Oncology, Hospital Affiliated to Hubei University of Arts and Science/Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| | - Qi Zhang
- Department of Oncology, Hospital Affiliated to Hubei University of Arts and Science/Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
22
|
Zhang Q, Su M. Sufentanil attenuates oxaliplatin cytotoxicity via inhibiting connexin 43‑composed gap junction function. Mol Med Rep 2017; 16:943-948. [PMID: 28586033 DOI: 10.3892/mmr.2017.6669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/27/2017] [Indexed: 11/06/2022] Open
Abstract
Comprehensive strategies for the treatment of colorectal cancer (CRC) have become increasingly important. One of the most important factors is pain relief. Therefore, patients with CRC are concurrently treated with analgesics and chemotherapeutic agents; however, the effects of analgesics on the therapeutic activity of chemotherapeutic agents remain largely unknown. The present study investigated the effects of three widely used analgesics in clinics: Fentanyl, remifentanil and sufentanil, on the cytotoxicity of oxaliplatin, a commonly used chemotherapeutic agent for CRC. Furthermore, the underlying mechanisms of those effects in association with connexin 43 (Cx43)‑composed gap junction (GJ) function were analyzed. The Lovo, Colo320, HCT116 and HT29 human CRC cell lines, with or without Cx43 expression, were used to examine the effects of the three analgesics on the cytotoxicity of oxaliplatin. The results demonstrated that in the cell lines expressing Cx43 (Lovo and Colo320), the cytotoxicity of oxaliplatin was attenuated and Cx43 GJ function was inhibited. Sufentanil, not fentanyl or remifentanil, inhibited Cx43 GJ function effectively, and reduced the cytotoxicity of oxaliplatin. In contrast, these effects were not observed in the other two colon cancer cell lines not expressing Cx43 (HCT116 and HT29). These results suggested that alternation of Cx43 GJ function may regulate the cytotoxicity of oxaliplatin in regard to CRC. Furthermore, sufentanil, not fentanyl or remifentanil, suppressed the cytotoxicity of oxaliplatin through inhibition of Cx43 GJ function. These results may be beneficial for the treatment of CRC and reduction of treatment resistance.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Oncology, Hospital Affiliated to Hubei University of Arts and Science/Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| | - Min Su
- Department of Oncology, Hospital Affiliated to Hubei University of Arts and Science/Xiangyang Central Hospital, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
23
|
Jiang G, Dong S, Yu M, Han X, Zheng C, Zhu X, Tong X. Influence of gap junction intercellular communication composed of connexin 43 on the antineoplastic effect of adriamycin in breast cancer cells. Oncol Lett 2016; 13:857-866. [PMID: 28356970 DOI: 10.3892/ol.2016.5471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Gap junctions (GJs) serve the principal role in the antineoplastic (cytotoxicity and induced apoptosis) effect of chemical drugs. The aim of the present study was to determine the effect of GJ intercellular communication (GJIC) composed of connexin 43 (Cx43) on adriamycin cytotoxicity in breast cancer cells. Four cell lines (Hs578T, MCF-7, MDA-MB-231 and SK-BR-3) with different degree of malignancy were used in the study. The results of western blotting and immunofluorescence revealed that, in Hs578T and MCF-7 cells, which have a low degree of malignancy, the expression levels of Cx43 and GJIC were higher than those in MDA-MB-231 and SK-BR-3 cells (which have a high degree of malignancy). In Hs578T and MCF-7 cells, where GJ could be formed, the function of GJ was modulated by a pharmacological potentiators [retinoid acid (RA)]/inhibitors [oleamide and 18-α-glycyrrhetinic acid (18-α-GA)] and small interfering RNA (siRNA). In high-density cells (where GJ was formed), enhancement of GJ function by RA increased the cytotoxicity of adriamycin, while inhibition of GJ function by oleamide/18-α-GA and siRNA decreased the cytotoxicity caused by adriamycin. Notably, the modulation of GJ did not affect the survival of cells treated with adriamycin when cells were in low density (no GJ was formed). The present study illustrated the association between GJIC and the antitumor effect of adriamycin in breast cancer cells. The cytotoxicity of adriamycin on breast cancer cells was increased when the function of gap junctions was enhanced.
Collapse
Affiliation(s)
- Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shuying Dong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Meiling Yu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China; Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xi Han
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chao Zheng
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xiaoguang Zhu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xuhui Tong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
24
|
Wu JF, Ji J, Dong SY, Li BB, Yu ML, Wu DD, Tao L, Tong XH. Gefitinib enhances oxaliplatin-induced apoptosis mediated by Src and PKC-modulated gap junction function. Oncol Rep 2016; 36:3251-3258. [DOI: 10.3892/or.2016.5156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/31/2016] [Indexed: 11/05/2022] Open
|
25
|
Zou ZW, Chen HJ, Yu JL, Huang ZH, Fang S, Lin XH. Gap junction composed of connexin43 modulates 5‑fluorouracil, oxaliplatin and irinotecan resistance on colorectal cancers. Mol Med Rep 2016; 14:4893-4900. [PMID: 27748862 DOI: 10.3892/mmr.2016.5812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 09/29/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy is one of the most commonly used therapeutic strategies for metastatic colon cancer. However, the development of resistance to chemotherapeutic agents limits their application in clinical use. The underlying mechanisms of this resistance development require further elucidation. The current study investigated the effects of connexin43 (Cx43) gap junctions on 5‑fluorouracil (5‑FU), oxaliplatin and irinotecan in colon cancer cells. Three different methods were used to manipulate Cx43 gap junction function: i) Cell culture at different densities; ii) pretreatment with a Cx43 specific inhibitor or enhancer; and iii) Cx43 gene knock‑down. Results indicated that the cell toxicity of 5‑FU, oxaliplatin and irinotecan was cell density‑dependent, which was mediated by gap junctions. Downregulation of Cx43 gap junction functioning attenuated 5‑FU, oxaliplatin and irinotecan toxicity in colon cancer cells, which was increased in cells treated with a Cx43 gap junction function enhancer. Thus, the results of the present study suggest that resistance to 5‑FU, oxaliplatin and irinotecan in colon cancer cells was relative to Cx43 expression loss as cancer developed, which may indicate a novel basis for therapeutic strategy development to combat drug resistance in numerous cell types, in addition to colon cancer cells.
Collapse
Affiliation(s)
- Zhao-Wei Zou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Hai-Jin Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jin-Long Yu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Zong-Hai Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shun Fang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Xiao-Hua Lin
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
26
|
Wang Y, Zhang S, Zhang C, Zhao Z, Zheng X, Xue L, Liu J, Yuan XC. Investigation of an SPR biosensor for determining the influence of connexin 43 expression on the cytotoxicity of cisplatin. Analyst 2016; 141:3411-3420. [PMID: 27140873 DOI: 10.1039/c6an00264a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The real-time and label free detection abilities of surface plasmon resonance (SPR) biosensors provide a way of evaluating the influence of some genes' expression on anti-tumor drug cytotoxicity. However, studies in this field are lacking. Connexin 43 is a tumor suppressor gene and the mechanism of its effect in cisplatin cytotoxicity is still unclear. A phase SPR biosensor was used to determine the influence of connexin 43 expression on cisplatin cytotoxicity in three cancer cell lines. The results showed that the SPR signal curves have two stages. In the first hour, the SPR signal shows dramatic changes which are related to connexin 43 expression. In the subsequent stage, the SPR signal slowly declines and is related to apoptosis. Comparison of SPR measurements from several conventional biological assays showed that connexin 43 expression can affect cellular response to cisplatin in the period of oxidative stress, and results in the cells being more sensitive to cisplatin. The conclusion is further confirmed by long-term SPR measurement results and cellular morphological changes.
Collapse
Affiliation(s)
- Yijia Wang
- Tianjin Union Medical Center, Tianjin, 300121, China.
| | - Shiwu Zhang
- Tianjin Union Medical Center, Tianjin, 300121, China.
| | - Chunze Zhang
- Tianjin Union Medical Center, Tianjin, 300121, China.
| | - Zhenying Zhao
- Tianjin Union Medical Center, Tianjin, 300121, China.
| | - Xiaoli Zheng
- Tianjin Union Medical Center, Tianjin, 300121, China.
| | - Lihua Xue
- Tianjin Union Medical Center, Tianjin, 300121, China.
| | - Jun Liu
- Tianjin Union Medical Center, Tianjin, 300121, China.
| | - X-C Yuan
- Institute of Micro & Nano Optics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
27
|
Zhang Y, Wang X, Wang Q, Ge H, Tao L. Propofol depresses cisplatin cytotoxicity via the inhibition of gap junctions. Mol Med Rep 2016; 13:4715-20. [PMID: 27082707 DOI: 10.3892/mmr.2016.5119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
The general anesthetic, propofol, affects chemotherapeutic activity, however, the mechanism underlying its effects remains to be fully elucidated. Our previous study showed that tramadol and flurbiprofen depressed the cytotoxicity of cisplatin via the inhibition of gap junction (GJ) intercellular communication (GJIC) in connexin (Cx)32 HeLa cells. The present study investigated whether the effects of propofol on the cytotoxicity of cisplatin were mediated by GJ in U87 glioma cells and Cx26‑transfected HeLa cells. Standard colony formation assay was used to determine the cytotoxicity of cisplatin. Parachute dye coupling assay was used to measure GJ function, and western blot analysis was used to determine the expression levels of Cx32. The results revealed that exposure of the U87 glioma cells and the Cx26-transfected HeLa cells to cisplatin for 1 h reduced clonogenic survival in low density cultures (without GJs) and high density cultures (with GJs). However, the toxic effect was higher in the high density culture. In addition, pretreatment of the cells with propofol significantly reduced cisplatin‑induced cytotoxicity, but only in the presence of functional GJs. Furthermore, propofol significantly inhibited dye coupling through junctional channels, and a long duration of exposure of the cells to propofol downregulated the expression levels of Cx43 and Cx26. These results demonstrated that the inhibition of GJIC by propofol affected the therapeutic efficacy of chemotherapeutic drugs. The present study provides evidence of a novel mechanism underlying the effects of analgesics in counteracting chemotherapeutic efficiency.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiyan Wang
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Ge
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
28
|
Cai Y, Xu Y, Chan HF, Fang X, He C, Chen M. Glycyrrhetinic Acid Mediated Drug Delivery Carriers for Hepatocellular Carcinoma Therapy. Mol Pharm 2016; 13:699-709. [PMID: 26808002 DOI: 10.1021/acs.molpharmaceut.5b00677] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycyrrhetinic acid (GA), the main hydrolysate of glycyrrhizic acid extracted from the root of licorice, has been used in hepatocellular carcinoma (HCC) therapy. Particularly, GA as a ligand in HCC therapy has been widely explored in different drug delivery systems, including liposomes, micelles, and nanoparticles. There is considerable interest worldwide with respect to the development of GA-modified drug delivery systems due to the extensive presence of GA receptors on the surface of hepatocyte. Up until now, much work has been focused on developing GA-modified drug delivery systems which bear good liver- or hepatocyte-targeted efficiency both in vitro and in vivo. Owing to its contribution in overcoming the limitations of low lipophilicity and poor bioavailability as well as its ability to promote receptor-mediated endocytosis, GA-modified drug delivery systems play an important role in enhancing liver-targeting efficacy and thus are focused on the treatment of HCC. Moreover, since GA-modified delivery systems present more favorable pharmacokinetic properties and hepatocyte-targeting effects, they may be a promising formulation for GA in the treatment of HCC. In this review, we will give an overview of GA-modified novel drug delivery systems, paying attention to their efficacy in treating HCC and discussing their mechanism and the treatment effects.
Collapse
Affiliation(s)
- Yuee Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Yingqi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Hon Fai Chan
- Department of Biomedical Engineering, Columbia University , New York 10027, United States
| | - Xiaobin Fang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macau 999078, China
| |
Collapse
|
29
|
Wu D, Fan L, Xu C, Liu Z, Zhang Y, Liu L, Wang Q, Tao L. GJIC Enhances the phototoxicity of photofrin-mediated photodynamic treatment by the mechanisms related with ROS and Calcium pathways. JOURNAL OF BIOPHOTONICS 2015; 8:764-774. [PMID: 25597481 DOI: 10.1002/jbio.201400131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
Despite initially positive responses, recurrences after Photodynamic treatment (PDT) can occur and there is need for improvement in the effectiveness of PDT. Our study uniquely showed that there was a significantly gap junctional intercellular communication (GJIC)-dependent PDT cytotoxicity. The presence of GJIC composed of Connexin 32 increased the PDT phototoxicity in transfected HeLa cells and in the xenograft tumors, and the enhanced phototoxicity of Photofrin-mediated PDT by GJIC was related with ROS and calcium pathways. Our study indicates the possibility that up-regulation or maintenance of gap junction functionality may be used to increase the efficacy of PDT. The phototoxicity effect of Photofrin was substantially greater in Dox-treated cells, which expressed the Cx32 and formed the GJ, than Dox-untreated.
Collapse
Affiliation(s)
- Dengpan Wu
- Department of Pharmacology, Pharmacy School of Xuzhou Medical College, 221004, Xuzhou, P.R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Pharmacy School of Xuzhou Medical College, 221004, Xuzhou, P.R. China
| | - Lixia Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China
| | - Chengfang Xu
- Department of Gynaecology and Obstetrics, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, P.R. China
| | - Zhen Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China
| | - Yuan Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China
| | - Lucy Liu
- Department of Cell & Systems Biology, University of Toronto, Ontario, M5S3G5, Canada
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China.
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, P.R. China
| |
Collapse
|
30
|
Wang L, Peng J, Huang H, Wang Q, Yu M, Tao L. Simvastatin protects Sertoli cells against cisplatin cytotoxicity through enhanced gap junction intercellular communication. Oncol Rep 2015; 34:2133-41. [PMID: 26260290 DOI: 10.3892/or.2015.4192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/09/2015] [Indexed: 11/06/2022] Open
Abstract
Cisplatin, an important chemotherapeutic agent against testicular germ cell cancer, induces testicular toxicity on Leydig and Sertoli cells, leading to serious side-effects such as azoospermia and infertility. In a previous study, it was found that simvastatin enhanced the sensitivity of Leydig tumor cells to chemotherapeutic toxicity through the enhancement of gap junction functions. In the present study, the effect of simvastatin on the sensitivity of normal Sertoli cells to cisplatin and the role of gap junctions in such effects was investigated. The results showed that, simvastatin attenuated cisplatin toxicity only when cells exhibited high-density culture where gap junctional formation was possible. When gap junction function was decreased by the gap junction inhibitor or by siRNA targeting connexin 43, the protective effect of simvastatin to cisplatin toxicity was substantially attenuated. Simvastatin also enhanced gap junction functions between Sertoli cells. This effect was mediated by the reduction of PKC-mediated connexin phosphorylation, thereby increasing connexin 43 membrane localization. Thus, simvastatin-induced enhancement of gap junction‑mediated intercellular communication attenuated cisplatin toxicity on Sertoli cells. This result indicated that enhancement of gap junction function by simvastatin may have bilateral beneficial effects on cisplatin‑based chemotherapy, enhancing cisplatin killing on cancer while ameliorating the reproduction toxicity.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| | - Jianxin Peng
- Department of Hepatobiliary Surgery, Guangdong Province Traditional Chinese Medical Hospital, Guangzhou 510120, P.R. China
| | - Huansen Huang
- Department of Anaesthesia, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, P.R. China
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, P.R. China
| |
Collapse
|
31
|
Different gap junction-propagated effects on cisplatin transfer result in opposite responses to cisplatin in normal cells versus tumor cells. Sci Rep 2015. [PMID: 26215139 PMCID: PMC4517168 DOI: 10.1038/srep12563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Previous work has shown that gap junction intercellular communication (GJIC) enhances cisplatin (Pt) toxicity in testicular tumor cells but decreases it in non-tumor testicular cells. In this study, these different GJIC-propagated effects were demonstrated in tumor versus non-tumor cells from other organ tissues (liver and lung). The downregulation of GJIC by several different manipulations (no cell contact, pharmacological inhibition, and siRNA suppression) decreased Pt toxicity in tumor cells but enhanced it in non-tumor cells. The in vivo results using xenograft tumor models were consistent with those from the above-mentioned cells. To better understand the mechanism(s) involved, we studied the effects of GJIC on Pt accumulation in tumor and non-tumor cells from the liver and lung. The intracellular Pt and DNA-Pt adduct contents clearly increased in non-tumor cells but decreased in tumor cells when GJIC was downregulated. Further analysis indicated that the opposite effects of GJIC on Pt accumulation in normal versus tumor cells from the liver were due to its different effects on copper transporter1 and multidrug resistance-associated protein2, membrane transporters attributed to intracellular Pt transfer. Thus, GJIC protects normal organs from cisplatin toxicity while enhancing it in tumor cells via its different effects on intracellular Pt transfer.
Collapse
|
32
|
Yang J, Qin G, Luo M, Chen J, Zhang Q, Li L, Pan L, Qin S. Reciprocal positive regulation between Cx26 and PI3K/Akt pathway confers acquired gefitinib resistance in NSCLC cells via GJIC-independent induction of EMT. Cell Death Dis 2015. [PMID: 26203858 PMCID: PMC4650742 DOI: 10.1038/cddis.2015.197] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gefitinib efficiency in non-small-cell lung cancer (NSCLC) therapy is limited due to development of drug resistance. The molecular mechanisms of gefitinib resistance remain still unclear. In this study, we first found that connexin 26 (Cx26) is the predominant Cx isoform expressed in various NSCLC cell lines. Then, two gefitinib-resistant (GR) NSCLC cell lines, HCC827 GR and PC9 GR, from their parental cells were established. In these GR cells, the results showed that gefitinib resistance correlated with changes in cellular EMT phenotypes and upregulation of Cx26. Cx26 was detected to be accumulated in the cytoplasm and failed to establish functional gap-junctional intercellular communication (GJIC) either in GR cells or their parental cells. Ectopic expression of GJIC-deficient chimeric Cx26 was sufficient to induce EMT and gefitinib insensitivity in HCC827 and PC9 cells, while knockdown of Cx26 reversed EMT and gefitinib resistance in their GR cells both in vitro and in vivo. Furthermore, Cx26 overexpression could activate PI3K/Akt signaling in these cells. Cx26-mediated EMT and gefitinib resistance were significantly blocked by inhibition of PI3K/Akt pathway. Specifically, inhibition of the constitutive activation of PI3K/Akt pathway substantially suppressed Cx26 expression, and Cx26 was confirmed to functionally interplay with PI3K/Akt signaling to promote EMT and gefitinib resistance in NSCLC cells. In conclusion, the reciprocal positive regulation between Cx26 and PI3K/Akt signaling contributes to acquired gefitinib resistance in NSCLC cells by promoting EMT via a GJIC-independent manner.
Collapse
Affiliation(s)
- J Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - G Qin
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - M Luo
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - J Chen
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning 530021, Guangxi, China
| | - Q Zhang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - L Li
- Division of Pulmonary, Department of Medicine, Allergy and Critical Care, Lung Biology Laboratory, Columbia University Medical Center, New York, NY 10032, USA
| | - L Pan
- Nephrology Division, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China
| | - S Qin
- Department of Respiratory Medicine, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China
| |
Collapse
|
33
|
Suzhi Z, Liang T, Yuexia P, Lucy L, Xiaoting H, Yuan Z, Qin W. Gap Junctions Enhance the Antiproliferative Effect of MicroRNA-124-3p in Glioblastoma Cells. J Cell Physiol 2015; 230:2476-88. [DOI: 10.1002/jcp.24982] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 03/03/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Zhang Suzhi
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou P.R. China
| | - Tao Liang
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou P.R. China
| | - Peng Yuexia
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou P.R. China
| | - Liu Lucy
- Department of Cell and Systems Biology; University of Toronto; Ontario Canada
| | - Hong Xiaoting
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou P.R. China
| | - Zhang Yuan
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou P.R. China
| | - Wang Qin
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; Guangzhou P.R. China
| |
Collapse
|
34
|
Luo C, Yuan D, Li X, Yao W, Luo G, Chi X, Li H, Irwin MG, Xia Z, Hei Z. Propofol attenuated acute kidney injury after orthotopic liver transplantation via inhibiting gap junction composed of connexin 32. Anesthesiology 2015; 122:72-86. [PMID: 25254904 DOI: 10.1097/aln.0000000000000448] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Postliver transplantation acute kidney injury (AKI) severely affects patient survival, whereas the mechanism is unclear and effective therapy is lacking. The authors postulated that reperfusion induced enhancement of connexin32 (Cx32) gap junction plays a critical role in mediating postliver transplantation AKI and that pretreatment/precondition with the anesthetic propofol, known to inhibit gap junction, can confer effective protection. METHODS Male Sprague-Dawley rats underwent autologous orthotopic liver transplantation (AOLT) in the absence or presence of treatments with the selective Cx32 inhibitor, 2-aminoethoxydiphenyl borate or propofol (50 mg/kg) (n = 8 per group). Also, kidney tubular epithelial (NRK-52E) cells were subjected to hypoxia-reoxygenation and the function of Cx32 was manipulated by three distinct mechanisms: cell culture in different density; pretreatment with Cx32 inhibitors or enhancer; Cx32 gene knock-down (n = 4 to 5). RESULTS AOLT resulted in significant increases of renal Cx32 protein expression and gap junction, which were coincident with increases in oxidative stress and impairment in renal function and tissue injury as compared to sham group. Similarly, hypoxia-reoxygenation resulted in significant cellular injury manifested as reduced cell growth and increased lactate dehydrogenase release, which was significantly attenuated by Cx32 gene knock-down but exacerbated by Cx32 enhancement. Propofol inhibited Cx32 function and attenuated post-AOLT AKI. In NRK-52E cells, propofol reduced posthypoxic reactive oxygen species production and attenuated cellular injury, and the cellular protective effects of propofol were reinforced by Cx32 inhibition but cancelled by Cx32 enhancement. CONCLUSION Cx32 plays a critical role in AOLT-induced AKI and that inhibition of Cx32 function may represent a new and major mechanism whereby propofol reduces oxidative stress and subsequently attenuates post-AOLT AKI.
Collapse
Affiliation(s)
- Chenfang Luo
- From the Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China (C.L., D.Y., X.L., W.Y., G.L., X.C., Z.H.); and Department of Anesthesiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China (H.L., M.G.I., Z.X.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liu Z, Wang Q, Fan L, Wu DP, Zhang Y, Liu L, Tao L. Gap junction enhances phototoxicity of photodynamic therapy agent 2-[1-hexyloxyethyl]-2-devinylpyropheophorbide-a (HPPH). Lasers Surg Med 2014; 47:68-76. [DOI: 10.1002/lsm.22311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Zhen Liu
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; 74 Zhongshan 2nd Road Guangzhou 510080 China
| | - Qin Wang
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; 74 Zhongshan 2nd Road Guangzhou 510080 China
| | - Lixia Fan
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; 74 Zhongshan 2nd Road Guangzhou 510080 China
| | - Deng Pan Wu
- Department of Pharmacology; Pharmacy School of Xuzhou Medical College; China
| | - Yuan Zhang
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; 74 Zhongshan 2nd Road Guangzhou 510080 China
| | - Lucy Liu
- Department of Cell & Systems Biology; University of Toronto; Ontario M5S 3G5 Canada
| | - Liang Tao
- Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-Sen University; 74 Zhongshan 2nd Road Guangzhou 510080 China
| |
Collapse
|
36
|
Wang L, Fu Y, Peng J, Wu D, Yu M, Xu C, Wang Q, Tao L. Simvastatin-induced up-regulation of gap junctions composed of connexin 43 sensitize Leydig tumor cells to etoposide: An involvement of PKC pathway. Toxicology 2013; 312:149-57. [DOI: 10.1016/j.tox.2013.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/05/2013] [Accepted: 08/13/2013] [Indexed: 02/02/2023]
|
37
|
Zhang C, Tong X, Qi B, Yu X, Dong S, Zhang S, Li X, Yu M. Components of Panax notoginseng saponins enhance the cytotoxicity of cisplatin via their effects on gap junctions. Mol Med Rep 2013; 8:897-902. [PMID: 23900706 DOI: 10.3892/mmr.2013.1597] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 07/12/2013] [Indexed: 11/05/2022] Open
Abstract
Previously, Panax notoginseng saponin (PNS)-induced enhancement of gap junction (GJ) formation or function was observed to be responsible for the increased cytotoxic action of cisplatin. PNS has three constituents, ginsenoside Rg1 and Rb1, and notoginsenoside R1. The active compounds in PNS responsible for enhancing the cytotoxicity of cisplatin remain unknown. Thus, the effects of the main components of PNS on the cytotoxicity of cisplatin were investigated, as well as the correlation with the modulation of GJ function in transfected HeLa cells. The cytotoxicity of cisplatin (0.25-1 µg/ml) was increased in the presence of GJs. By contrast, the cytotoxicity of cisplatin was decreased when GJs were inhibited by a GJ blocker or by the inhibition of connexin expression. Ginsenoside Rg1 (100 µM) and notoginsenoside R1 (100 µM) were observed to significantly enhance cisplatin cytotoxicity in cells with functional GJs. Ginsenoside Rb1 had no effect on the cytotoxicity of cisplatin in the presence or absence of functional GJs. Cell exposure to ginsenoside Rg1 and notoginsenoside R1 for 4 h led to significant enhancement of a dye-coupled GJ in a dose-dependent manner; however, no effect was observed in cells exposed to ginsenoside Rb1. The present results indicate that ginsenoside Rg1 and notoginsenoside R1 are the active compounds responsible for enhancing the cytotoxic action of cisplatin induced by PNS in the presence of functional GJs.
Collapse
Affiliation(s)
- Cuiling Zhang
- Department of Pharmacology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu S, Fang Y, Shen H, Xu W, Li H. Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim Biophys Sin (Shanghai) 2013; 45:756-62. [PMID: 23824073 DOI: 10.1093/abbs/gmt075] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown that microRNA-21 (miR-21) contributes to tumor resistance to chemotherapy. Interestingly, we have found that berberine could inhibit miR-21 expression in several cancer cell lines. In this study, we investigated whether berberine could modulate the sensitivity of ovarian cancer cells to cisplatin and explored the mechanism. The cisplatin-resistant SKOV3 cells that were incubated with berberine combined with cisplatin had a significantly lower survival than the cisplatin alone group and enhanced cisplatin-induced apoptosis. Berberine could inhibit miR-21 expression and function in ovarian cancer, as shown by an enhancement of its target PDCD4, an important tumor suppressor in ovarian cancer. The results suggested that berberine could modulate the sensitivity of cisplatin via regulating miR-21/PDCD4 axis in the ovarian cancer cells.
Collapse
Affiliation(s)
- Shiguo Liu
- Department of Clinical Laboratory, Hubei Zhongshan Hospital, Wuhan, China
| | | | | | | | | |
Collapse
|
39
|
Tong X, Dong S, Yu M, Wang Q, Tao L. Role of heteromeric gap junctions in the cytotoxicity of cisplatin. Toxicology 2013; 310:53-60. [PMID: 23747833 DOI: 10.1016/j.tox.2013.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023]
Abstract
In several systems, the presence of gap junctions made of a single connexin has been shown to enhance the cytotoxicity of cisplatin. However, most gap junction channels in vivo appear to be heteromeric (composed of more than one connexin isoform). Here we explore in HeLa cells the cytotoxicity to cisplatin that is enhanced by heteromeric gap junctions composed of Cx26 and Cx32, which have been shown to be more selective among biological permeants than the corresponding homomeric channels. We found that survival and subsequent proliferation of cells exposed to cisplatin were substantially reduced when gap junctions were present than when there were no gap junctions. Functional inhibition of gap junctions by oleamide enhanced survival/proliferation, and enhancement of gap junctions by retinoic acid decreased survival/proliferation. These effects occurred only in high density cultures, and the treatments were without effect when there was no opportunity for gap junction formation. The presence of functional gap junctions enhanced apoptosis as reflected in markers of both early-stage and late-stage apoptosis. Furthermore, analysis of caspases 3, 8 and 9 showed that functional gap junctions specifically induced apoptosis by the mitochondrial pathway. These results demonstrate that heteromeric Cx26/Cx32 gap junctions increase the cytotoxicity of cisplatin by induction of apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pharmacy, Bengbu Medical College, Bengbu 233000, PR China
| | | | | | | | | |
Collapse
|
40
|
Liang H, Wang HB, Liu HZ, Wen XJ, Zhou QL, Yang CX. The effects of combined treatment with sevoflurane and cisplatin on growth and invasion of human adenocarcinoma cell line A549. Biomed Pharmacother 2013; 67:503-9. [PMID: 23639227 DOI: 10.1016/j.biopha.2013.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 10/27/2022] Open
Abstract
Sevoflurane, an inhalational anesthetic, and cisplatin (DDP)-based chemotherapy have been widely used during lung cancer surgery. However, the effect of sevoflurane on the sensitivity of lung cancer cells to DDP chemotherapy remains unclear. In this study, the effects of combined treatment with sevoflurane and cisplatin on the growth and invasion of human lung adenocarcinoma A549 cell line have been investigated. The underlying mechanism has also been explored. In our experiment, A549 cells were treated with 2.5% sevoflurane, 10μmol/L DDP, or the co-treatment of sevoflurane and DDP for 4h, respectively. Cell proliferation was evaluated by the MTT assay and colony formation assay. Apoptosis was assessed by flow cytometry. Cell invasion was detected by Transwell assay. The expressions of X-linked inhibitor of apoptosis protein (XIAP), Survivin, matrix metalloproteinase (MMP)-2 and MMP-9 were determined by western blotting. Our results showed that sevoflurane combined with DDP resulted in a more pronounced inhibition of tumor cells growth and invasion as compared with either drug alone. Besides, XIAP, Survivin, MMP-2, and MMP-9 were downregulated more significantly by the co-treatment of the two drugs as compared to sevoflurane treatment or DDP treatment alone. Taken together, the growth-inhibitory and invasion-inhibitory synergy between sevoflurane and DDP in human adenocarcinoma A549 cell line was found in this study. Furthermore, we showed that the growth-inhibitory synergy between sevoflurane and DDP might be associated with the downregulation of XIAP and Survivin, and the invasion-inhibitory synergy between sevoflurane and DDP might be involved in the downregulation of MMP-2 and MMP-9.
Collapse
Affiliation(s)
- Hua Liang
- Department of Anesthesiology, Affiliated FoShan Hospital of Sun Yat-Sen University, Foshan, 528000 Guangdong, China.
| | | | | | | | | | | |
Collapse
|
41
|
Ding Y, Prasain K, Nguyen TDT, Hua DH, Nguyen TA. The effect of the PQ1 anti-breast cancer agent on normal tissues. Anticancer Drugs 2013; 23:897-905. [PMID: 22569107 DOI: 10.1097/cad.0b013e328354ac71] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gap junctions are intercellular channels connecting adjacent cells, allowing cells to transport small molecules. The loss of gap junctional intercellular communication (GJIC) is one of the important hallmarks of cancer. Restoration of GJIC is related to the reduction of tumorigenesis and increase in drug sensitivity. Previous reports have shown that PQ1, a quinoline derivative, increases GJIC in T47D breast cancer cells, and subsequently attenuates xenograft breast tumor growth. Combinational treatment of PQ1 and tamoxifen can lower the effective dose of tamoxifen in cancer cells. In this study, the effects of PQ1 were examined in normal C57BL/6J mice, evaluating the distribution, toxicity, and adverse effects. The distribution of PQ1 was quantified by high-performance liquid chromatography and mass spectrometry. The expressions of survivin, caspase-8, cleaved caspase-3, aryl hydrocarbon receptor (AhR), and gap junction protein, connexin 43 (Cx43), were assessed using western blot analysis. Our results showed that PQ1 was absorbed and distributed to vital organs within 1 h and the level of PQ1 decreased after 24 h. Furthermore, PQ1 increased the expression of survivin, but decreased the expression of caspase-8 and caspase-3 activity. Interestingly, the expression of AhR increased in the presence of PQ1, suggesting that PQ1 may be involved in the AhR-mediated response. Previously, PQ1 caused an increase in Cx43 expression in breast cancer cells; however, PQ1 induced a decrease in Cx43 in normal tissues. Hemotoxylin and eosin staining of the tissues showed no histological change between the treated and the untreated organs. Our studies indicate that the administration of PQ1 by an oral gavage can be achieved with low toxicity to normal vital organs.
Collapse
Affiliation(s)
- Ying Ding
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
42
|
Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function. J Trauma Acute Care Surg 2012; 73:67-72. [PMID: 22743374 DOI: 10.1097/ta.0b013e318256a0fe] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). METHODS Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. RESULTS The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. CONCLUSION Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.
Collapse
|
43
|
Shishido SN, Nguyen TA. Gap junction enhancer increases efficacy of cisplatin to attenuate mammary tumor growth. PLoS One 2012; 7:e44963. [PMID: 23028705 PMCID: PMC3441663 DOI: 10.1371/journal.pone.0044963] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/10/2012] [Indexed: 02/05/2023] Open
Abstract
Cisplatin treatment has an overall 19% response rate in animal models with malignant tumors. Increasing gap junction activity in tumor cells provides the targets to enhance antineoplastic therapies. Previously, a new class of substituted quinolines (PQs) acts as gap junction enhancer, ability to increase the gap junctional intercellular communication, in breast cancer cells. We examined the effect of combinational treatment of PQs and antineoplastic drugs in an animal model, showing an increase in efficacy of antineoplastic drugs via the enhancement of gap junctions. Mice were implanted with estradiol-17ß (1.7 mg/pellet) before the injection of 1×107 T47D breast cancer cells subcutaneously into the inguinal region of mammary fat pad. Animals were treated intraperitoneally with DMSO (control), cisplatin (3.5 mg/kg), PQ (25 mg/kg), or a combining treatment of cisplatin and PQ. Cisplatin alone decreased mammary tumor growth by 85% while combinational treatment of cisplatin and PQ1 or PQ7 showed an additional reduction of 77% and 22% of tumor growth after 7 treatments at every 2 days, respectively. Histological results showed a significant increase of gap junction proteins, Cx43 and Cx26, in PQ-treated tissues compared to control or cisplatin. Furthermore, evidence of highly stained caspase 3 in tumors of combinational treatment (PQ and cisplatin) was seen compared to cisplatin alone. We have showed for the first time an increase in the efficacy of antineoplastic drugs through a combinational treatment with PQs, a specific class of gap junction enhancers.
Collapse
Affiliation(s)
- Stephanie N. Shishido
- Departments of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Thu A. Nguyen
- Departments of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Induced CD4+ forkhead box protein–positive T cells inhibit mast cell function and established contact hypersensitivity through TGF-β1. J Allergy Clin Immunol 2012; 130:444-52.e7. [DOI: 10.1016/j.jaci.2012.05.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/27/2012] [Accepted: 05/10/2012] [Indexed: 01/14/2023]
|
45
|
Wang Y, Zhu Q, Luo C, Zhang A, Hei Z, Su G, Xia Z, Irwin MG. Dual Effects of Bilirubin on the Proliferation of Rat Renal NRK52E Cells and ITS Association with Gap Junctions. Dose Response 2012; 11:220-37. [PMID: 23930103 PMCID: PMC3682199 DOI: 10.2203/dose-response.12-003.hei] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The effect of bilirubin on renal pathophysiology is controversial. This study aimed to observe the effects of bilirubin on the proliferation of normal rat renal tubular epithelial cell line (NRK52E) and its potential interplay with gap junction function. METHODS Cultured NRK52E cells, seeded respectively at high- or low- densities, were treated with varying concentrations of bilirubin for 24 hours. Cell injury was assessed by measuring cell viability and proliferation, and gap junction function was assessed by Parachute dye-coupling assay. Connexin 43 protein was assessed by Western blotting. RESULTS At doses from 17.1 to 513μmol/L, bilirubin dose-dependently enhanced cell viability and colony-formation rates when cells were seeded at either high- or low- densities (all p<0.05 vs. solvent group) accompanied with enhanced intercellular fluorescence transmission and increased Cx43 protein expression in high-density cells. However, the above effects of BR were gradually reversed when its concentration increased from 684 to 1026μmol/L. In high-density cells, gap junction inhibitor 12-O-tetradecanoylphorbol 13-acetate attenuated bilirubin-induced enhancement of colony-formation and fluorescence transmission. However, in the presence of high concentration bilirubin (1026μmol/L), activation of gap junction with retinoid acid decreased colony-formation rates. CONCLUSION Bilirubin can confer biphasic effects on renal NRK52E cell proliferation potentially by differentially affecting gap junction functions.
Collapse
Affiliation(s)
- Yanling Wang
- Department of anesthesiology, the third affiliated hospital of Sun Yat-sen university. NO.600 Tianhe Road, Tianhe district, Guangzhou, China, 510630
| | - Qiongfang Zhu
- Department of Anesthesiology, the first affiliated hospital of Sun Yat-sen university. NO.58, Zhongshan Road II, Yuexiu district, Guangzhou, China
| | - Chenfang Luo
- Department of anesthesiology, the third affiliated hospital of Sun Yat-sen university. NO.600 Tianhe Road, Tianhe district, Guangzhou, China, 510630
| | - Ailan Zhang
- Department of anesthesiology, the third affiliated hospital of Sun Yat-sen university. NO.600 Tianhe Road, Tianhe district, Guangzhou, China, 510630
| | - Ziqing Hei
- Department of anesthesiology, the third affiliated hospital of Sun Yat-sen university. NO.600 Tianhe Road, Tianhe district, Guangzhou, China, 510630
| | - Guangjie Su
- Department of anesthesiology, the third affiliated hospital of Sun Yat-sen university. NO.600 Tianhe Road, Tianhe district, Guangzhou, China, 510630
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong. Room 424, 4th Floor, Block K, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Michael G. Irwin
- Department of Anesthesiology, University of Hong Kong. Room 424, 4th Floor, Block K, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
46
|
Ding Y, Nguyen TA. Gap Junction Enhancer Potentiates Cytotoxicity of Cisplatin in Breast Cancer Cells. ACTA ACUST UNITED AC 2012; 4:371-378. [PMID: 25045421 DOI: 10.4172/1948-5956.1000170] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cisplatin is one of the most widely used anti-cancer drugs due to its ability to damage DNA and induce apoptosis. However, increasing reports of side effects and drug resistance indicate the limitation of cisplatin in cancer therapeutics. Recent studies showed that inhibition of gap junctions diminishes the cytotoxic effect and contributes to drug resistance. Therefore, identification of molecules that counteract gap junctional inhibition without decreasing the anti-cancer effect of cisplatin could be used in combinational treatment, potentiating cisplatin efficacy and preventing resistance. This study investigates the effects of combinational treatment of cisplatin and PQ1, a gap junction enhancer, in T47D breast cancer cells. Our results showed that combinational treatment of PQ1 and cisplatin increased gap junctional intercellular communication (GJIC) as well as expressions of connexins (Cx26, Cx32 and Cx43), and subsequently decreased cell viability. Ki67, a proliferation marker, was decreased by 75% with combinational treatment. Expressions of pro-apoptotic factors (cleaved caspase-3/-8/-9 and bax) were increased by the combinational treatment with PQ1 and cisplatin; whereas, the pro-survival factor, bcl-2, was decreased by the combinational treatment. Our study demonstrates for the first time that the combinational treatment with gap junction enhancers can counteract cisplatin induced inhibition of gap junctional intercellular communication and reduction of connexin expression, thereby increasing the efficacy of cisplatin in cancer cells.
Collapse
Affiliation(s)
- Ying Ding
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, USA
| | - Thu Annelise Nguyen
- Department of Diagnostic Medicine/ Pathobiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
47
|
Hong X, Wang Q, Yang Y, Zheng S, Tong X, Zhang S, Tao L, Harris AL. Gap junctions propagate opposite effects in normal and tumor testicular cells in response to cisplatin. Cancer Lett 2011; 317:165-71. [PMID: 22115964 DOI: 10.1016/j.canlet.2011.11.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/16/2011] [Accepted: 11/16/2011] [Indexed: 01/15/2023]
Abstract
Gap junctions propagate toxic effects among tumor cells during chemotherapy, but could also enhance killing of normal cells by the same mechanism. We show that the effect of gap junctional intercellular communication (GJIC) on cisplatin toxicity differs between normal and tumor testicular cells. Downregulation of GJIC by each of several different manipulations (no cell contact, pharmacological inhibition, siRNA suppression) decreased cisplatin cytoxicity in tumor cells but enhanced it in normal cells. Enhanced toxicity due to GJIC downregulation in normal cells correlated with increased DNA interstrand crosslinks. Thus, GJIC protects normal cells from cisplatin toxicity while enhancing it in tumor cells, suggesting that enhancement/maintenance of GJIC increases therapeutic efficacy while decreasing off-target toxicity.
Collapse
Affiliation(s)
- Xiaoting Hong
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu B, Wang G, Yang J, Pan X, Yang Z, Zang L. Berberine inhibits human hepatoma cell invasion without cytotoxicity in healthy hepatocytes. PLoS One 2011; 6:e21416. [PMID: 21738655 PMCID: PMC3123339 DOI: 10.1371/journal.pone.0021416] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 06/01/2011] [Indexed: 12/04/2022] Open
Abstract
Conventional chemotherapy fails to cure metastatic hepatoma mainly due to its high hepatotoxicity. Many plant-derived agents have been accepted to effectively inhibit hepatoma cell invasion. However, the investigation that whether effectual plant-derived agents against invasive hepatoma cells exert unexpected cytotoxicity in healthy hepatocytes has been ignored. This study demonstrated that berberine exhibited significant cytotoxicity in HepG2 cells mainly through upregulation of reactive oxygen species (ROS) production but was ineffective in normal Chang liver cells. Berberine exerted anti-invasive effect on HepG2 cells through suppression of matrix metalloproteinase-9 (MMP-9) expression. Moreover, berberine could significantly inhibit the activity of PI3K-AKT and ERK pathways. Combination treatment of ERK pathway inhibitor PD98059 or AKT pathway inhibitor LY294002 and berberine could result in a synergistic reduction on MMP-9 expression along with an inhibition of cell invasion. Enhancement of ROS production by berberine had no influence on its suppressive effects on the activity of PI3K-AKT and ERK pathways, as well as MMP-9 expression and HepG2 cell invasion. In conclusion, our results suggest that berberine may be a potential alternative against invasive hepatoma cells through PI3K-AKT and ERK pathways-dependent downregulation of MMP-9 expression. This study also provides a previously neglected insight into the investigation of plant-derived agents-based therapy against tumor invasion with the consideration of damage to healthy cells.
Collapse
Affiliation(s)
- Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Genshu Wang
- Department of Liver Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Xuediao Pan
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhicheng Yang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Linquan Zang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| |
Collapse
|
49
|
Zhao Y, Liu B, Wang Q, Yuan D, Yang Y, Hong X, Wang X, Tao L. Propofol depresses the cytotoxicity of X-ray irradiation through inhibition of gap junctions. Anesth Analg 2011; 112:1088-95. [PMID: 21415436 DOI: 10.1213/ane.0b013e31820f288e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND General anesthetics (e.g., propofol) influence the therapeutic activity of intraoperative radiotherapy but the mechanism of the effects is largely unknown. It has been reported that propofol inhibits gap junction (GJ) function briefly, and a functional GJ enhances the efficacy of radiotherapy in some cancer cells. Yet the mechanisms underlying the inhibition of GJ function by propofol and the influence of propofol on therapeutic activity of intraoperative radiotherapy are unknown. METHODS The role of propofol at clinically relevant concentrations in the modulation of radiograph-induced cytotoxicity in HeLa cells transfected with connexin 32 (Cx32) plasmid was explored by manipulation of connexin expression, GJ presence, and function. GJ function, Cx32 protein level, and Cx32 mRNA expression were determined by "Parachute" dye-coupling assay, Western blotting, and reverse transcriptase-polymerase chain reaction, respectively. RESULTS Propofol significantly reduced radiograph-induced cytotoxicity only in the presence of functional GJ. Four-hour propofol exposure inhibited GJ function mainly by diminution of Cx32 protein levels but without influence on Cx32 mRNA expression. CONCLUSIONS These results suggest that propofol inhibits the function of the GJ through the reduction of Cx32 protein levels by a transcription-independent mechanism. They further indicate that propofol depresses the cytotoxicity of radiograph irradiation through inhibition of GJ activity.
Collapse
Affiliation(s)
- Yuping Zhao
- Department of Anaesthesia, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Q, You T, Yuan D, Han X, Hong X, He B, Wang L, Tong X, Tao L, Harris AL. Cisplatin and oxaliplatin inhibit gap junctional communication by direct action and by reduction of connexin expression, thereby counteracting cytotoxic efficacy. J Pharmacol Exp Ther 2010; 333:903-11. [PMID: 20215407 DOI: 10.1124/jpet.109.165274] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cisplatin [cis-diamminedichloroplatinum(II)]/oxaliplatin [1,2-diamminocyclohexane(trans-1)oxolatoplatinum(II)] toxicity is enhanced by functional gap junctions between treated cells, implying that inhibition of gap junctions may decrease cytotoxic activity of these platinum-based agents. This study investigates the effect of gap junction modulation by cisplatin/oxaliplatin on cytotoxicity in a transformed cell line. The effects were explored using junctional channels expressed in transfected HeLa cells and purified hemichannels. Junctional channels showed a rapid, dose-dependent decrease in dye coupling with exposure to cisplatin/oxaliplatin. With longer exposure, both compounds also decreased connexin expression. Both compounds inhibit the activity of purified connexin hemichannels, over the same concentration range that they inhibit junctional dye permeability, demonstrating that inhibition occurs by direct interaction of the drugs with connexin protein. Cisplatin/oxaliplatin reduced the clonogenic survival of HeLa cells at low density and high density in a dose-dependent manner, but to a greater degree at high density, consistent with a positive effect of gap junctional intercellular communication (GJIC) on cytotoxicity. Reduction of GJIC by genetic or pharmacological means decreased cisplatin/oxaliplatin toxicity. At low cisplatin/oxaliplatin concentrations, where effects on connexin channels are minimal, the toxicity increased with increased cell density. However, higher concentrations strongly inhibited GJIC, and this counteracted the enhancing effect of greater cell density on toxicity. The present results indicate that inhibition of GJIC by cisplatin/oxaliplatin decreases their cytotoxicity. Direct inhibition of GJIC and reduction of connexin expression by cisplatin/oxaliplatin may thereby compromise the effectiveness of these compounds and be a factor in the development of resistance to this class of chemotherapeutic agents.
Collapse
Affiliation(s)
- Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|