1
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
2
|
Farhoudi L, Maryam Hosseinikhah S, Vahdat-Lasemi F, Sukhorukov VN, Kesharwani P, Sahebkar A. Polymeric micelles paving the Way: Recent breakthroughs in camptothecin delivery for enhanced chemotherapy. Int J Pharm 2024; 659:124292. [PMID: 38823466 DOI: 10.1016/j.ijpharm.2024.124292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Camptothecin, a natural alkaloid, was first isolated from the bark and stem of the Camptotheca acuminate tree in China. It, along with its analogs, has demonstrated potent anti-cancer activity in preclinical studies, particularly against solid tumors such as lung, breast, ovarian, and colon cancer. Despite its promising anti-cancer activity, the application of camptothecin is limited due to its poor solubility, toxicity, and limited biodistribution. Nanotechnology-based drug delivery systems have been used to overcome limited bioavailability and ensure greater biodistribution after administration. Additionally, various drug delivery systems, particularly polymeric micelles, have been investigated to enhance the solubility, stability, and efficacy of camptothecin. Polymeric micelles offer a promising approach for the delivery of camptothecin. Polymeric micelles possess a core-shell structure, with a typical hydrophobic core, which exhibits a high capacity to incorporate hydrophobic drugs. The structure of polymeric micelles can be engineered to have a high drug loading capacity, thereby enabling them to carry a large amount of hydrophobic drug within their core. The shell portion of polymeric micelles is composed of hydrophilic polymers Furthermore, the hydrophilic segment of polymeric micelles plays an important role in protecting against the reticuloendothelial system (RES). This review provides a discussion on recent research and developments in the delivery of camptothecin using polymeric micelles for the treatment of cancers.
Collapse
Affiliation(s)
- Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Vahdat-Lasemi
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Liposome Formulation for Tumor-Targeted Drug Delivery Using Radiation Therapy. Int J Mol Sci 2022; 23:ijms231911662. [PMID: 36232973 PMCID: PMC9569741 DOI: 10.3390/ijms231911662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Targeted delivery of drugs or other therapeutic agents through internal or external triggers has been used to control and accelerate the release from liposomal carriers in a number of studies, but relatively few utilize energy of therapeutic X-rays as a trigger. We have synthesized liposomes that are triggered by ionizing radiation (RTLs) to release their therapeutic payload. These liposomes are composed of natural egg phosphatidylethanolamine (PE), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, and 1,2-disteroyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG-2000), and the mean size of the RTL was in the range of 114 to 133 nm, as measured by nanoparticle tracking analysis (NTA). The trigger mechanism is the organic halogen, chloral hydrate, which is known to generate free protons upon exposure to ionizing radiation. Once protons are liberated, a drop in internal pH of the liposome promotes destabilization of the lipid bilayer and escape of the liposomal contents. In proof of principle studies, we assessed RTL radiation-release of fluorescent tracers upon exposure to a low pH extracellular environment or exposure to X-ray irradiation. Biodistribution imaging before and after irradiation demonstrated a preferential uptake and release of the liposomes and their cargo at the site of local tumor irradiation. Finally, a potent metabolite of the commonly used chemotherapy irinotecan, SN-38, was loaded into RTL along with near infrared (NIR) fluorescent dyes for imaging studies and measuring tumor cell cytotoxicity alone or combined with radiation exposure, in vitro and in vivo. Fully loaded RTLs were found to increase tumor cell killing with radiation in vitro and enhance tumor growth delay in vivo after three IV injections combined with three, 5 Gy local tumor radiation exposures compared to either treatment modality alone.
Collapse
|
4
|
Mi P, Miyata K, Kataoka K, Cabral H. Clinical Translation of Self‐Assembled Cancer Nanomedicines. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000159] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center West China Hospital, Sichuan University No. 17 People's South Road Chengdu 610041 China
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kazunori Kataoka
- Institute for Future Initiatives The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐0033 Japan
- Innovation Center of NanoMedicine Kawasaki Institute of Industrial Promotion 3‐25‐14, Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo, Bunkyo‐ku Tokyo 113‐8656 Japan
| |
Collapse
|
5
|
Arshad U, Sutton PA, Ashford MB, Treacher KE, Liptrott NJ, Rannard SP, Goldring CE, Owen A. Critical considerations for targeting colorectal liver metastases with nanotechnology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1588. [PMID: 31566913 PMCID: PMC7027529 DOI: 10.1002/wnan.1588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Colorectal cancer remains a significant cause of morbidity and mortality worldwide. Half of all patients develop liver metastases, presenting unique challenges for their treatment. The shortcomings of conventional chemotherapy has encouraged the use of nanomedicines; the application of nanotechnology in the diagnosis and treatment of disease. In spite of technological improvements in nanotechnology, the complexity of biological systems hinders the prospect of nanomedicines being applied in cancer therapy at the present time. This review highlights current biological barriers and discusses aspects of tumor biology together with the physicochemical features of the nanocarrier, that need to be considered in order to develop effective nanotherapeutics for colorectal cancer patients with liver metastases. It becomes clear that incorporating an interdisciplinary approach when developing nanomedicines should assure appropriate disease-driven design and that this will form a critical step in improving their clinical translation. This article is characterized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Paul A. Sutton
- Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | - Marianne B. Ashford
- AstraZeneca, Advanced Drug Delivery, Pharmaceutical Sciences, R&DMacclesfieldUK
| | - Kevin E. Treacher
- AstraZeneca, Pharmaceutical Technology and DevelopmentMacclesfieldUK
| | - Neill J. Liptrott
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Steve P. Rannard
- Department of Chemistry, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical PharmacologyUniversity of LiverpoolLiverpoolUK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Materials Innovation FactoryUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
6
|
Chen F, Cai Y, Huang L, Chen Y, Luo X. Synthesis of a SN38 prodrug grafted to amphiphilic phosphorylcholine polymers and their prodrug miceller properties. NEW J CHEM 2019. [DOI: 10.1039/c8nj04908d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer prodrug micelles, combining the advantages of prodrugs and polymer micelles, can greatly improve the solubility, permeability and stability of drugs.
Collapse
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yuanyuan Cai
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Lei Huang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yuanwei Chen
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xianglin Luo
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
- State Key Lab of Polymer Materials Engineering
| |
Collapse
|
7
|
Ri M, Suzuki K, Iida S, Hatake K, Chou T, Taniwaki M, Watanabe N, Tsukamoto T. A Phase I/II Study for Dose-finding, and to Investigate the Safety, Pharmacokinetics and Preliminary Efficacy of NK012, an SN-38-Incorporating Macromolecular Polymeric Micelle, in Patients with Multiple Myeloma. Intern Med 2018; 57:939-946. [PMID: 29225263 PMCID: PMC5919849 DOI: 10.2169/internalmedicine.9567-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective Multiple myeloma (MM) is the second most common hematological cancer. An attempt to treat MM using a topoisomerase I inhibitor was made based on our previous non-clinical studies suggesting the usefulness of an SN-38 derivative. Our aim was to conduct a phase I/II study of NK012, a micelle-forming SN-38 conjugate, in patients with relapsed/refractory multiple myeloma (RRMM). Methods NK012 was administered at doses of 12-24 mg/m2 and the safety, pharmacokinetics and preliminary efficacy were evaluated. Results Neutropenia was the most common grade 3 or 4 adverse drug reaction. Grade 4 neutropenia accounted for the majority of dose-limiting toxicities and only appeared at a dose of 24 mg/m2. The maximum concentrations and the area under the concentration-time curves from time zero to infinity for both NK012 and its active metabolite SN-38 increased in a dose-dependent manner. The best overall response was stable disease, which was achieved in 12 out of 16 patients. Conclusion The recommended dose of NK012 monotherapy for RRMM patients was concluded to be 20 mg/m2. However, this phase I/II study was terminated at the end of the phase I stage because no patients showed an objective response. Additional clinical studies of combination therapy with NK012 and other agents are warranted.
Collapse
Affiliation(s)
- Masaki Ri
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Kenshi Suzuki
- Department of Hematology, Japanese Red Cross Medical Center, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Kiyohiko Hatake
- Department of Hematology and Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Japan
| | - Takaaki Chou
- Department of Internal Medicine, Niigata Cancer Center Hospital, Japan
| | - Masafumi Taniwaki
- Center for Molecular Diagnostics and Therapeutics, Kyoto Prefectural University of Medicine, Japan
| | | | | |
Collapse
|
8
|
Intraarterial Therapy Using Micellar Nanoparticles Incorporating SN-38 in a Rabbit Liver Tumor Model. J Vasc Interv Radiol 2017; 28:457-464. [DOI: 10.1016/j.jvir.2016.10.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022] Open
|
9
|
Na JH, Koo H, Lee S, Han SJ, Lee KE, Kim S, Lee H, Lee S, Choi K, Kwon IC, Kim K. Precise Targeting of Liver Tumor Using Glycol Chitosan Nanoparticles: Mechanisms, Key Factors, and Their Implications. Mol Pharm 2016; 13:3700-3711. [DOI: 10.1021/acs.molpharmaceut.6b00507] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jin Hee Na
- Center for Theragnosis,
Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
- The Center
for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| | - Heebeom Koo
- Department of Medical Lifescience, College
of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sangmin Lee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
- The Center
for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| | - Seung Jin Han
- Center for Theragnosis,
Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Kyung Eun Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Sunjin Kim
- Department of Chemistry and Institute for NanoCentury
and BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry and Institute for NanoCentury
and BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Seulki Lee
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
- The Center
for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States
| | - Kuiwon Choi
- Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E7.1, 66123 Saarbrücken, Germany
| | - Ick Chan Kwon
- Center for Theragnosis,
Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
- KU-KIST School, Korea University, 1 Anam-dong, Seongbuk-gu, Seoul 136-701, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis,
Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea
| |
Collapse
|
10
|
Lu L, Zheng Y, Weng S, Zhu W, Chen J, Zhang X, Lee RJ, Yu B, Jia H, Qin L. Complete regression of xenograft tumors using biodegradable mPEG-PLA-SN38 block copolymer micelles. Colloids Surf B Biointerfaces 2016; 142:417-423. [DOI: 10.1016/j.colsurfb.2016.02.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/27/2015] [Accepted: 02/16/2016] [Indexed: 01/14/2023]
|
11
|
Burris HA, Infante JR, Anthony Greco F, Thompson DS, Barton JH, Bendell JC, Nambu Y, Watanabe N, Jones SF. A phase I dose escalation study of NK012, an SN-38 incorporating macromolecular polymeric micelle. Cancer Chemother Pharmacol 2016; 77:1079-86. [DOI: 10.1007/s00280-016-2986-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
|
12
|
Li J, Yang H, Zhang Y, Jiang X, Guo Y, An S, Ma H, He X, Jiang C. Choline Derivate-Modified Doxorubicin Loaded Micelle for Glioma Therapy. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21589-21601. [PMID: 26356793 DOI: 10.1021/acsami.5b07045] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ligand-mediated polymeric micelles have enormous potential for improving the efficacy of glioma therapy. Linear-dendritic drug-polymer conjugates composed of doxorubicin (DOX) and polyethylene glycol (PEG) were synthesized with or without modification of choline derivate (CD). The resulting MeO-PEG-DOX8 and CD-PEG-DOX8 could self-assemble into polymeric micelles with a nanosized diameter around 30 nm and a high drug loading content up to 40.6 and 32.3%, respectively. The optimized formulation 20% CD-PEG-DOX8 micelles had superior cellular uptake and antitumor activity against MeO-PEG-DOX8 micelles. The subcellular distribution using confocal study revealed that 20% CD-PEG-DOX8 micelles preferentially accumulated in the mitochondria. Pharmacokinetic study showed area under the plasma concentration-time curve (AUC0-t) and Cmax for 20% CD-PEG-DOX8 micelles and DOX solution were 1336.58 ± 179.43 mg/L·h, 96.35 ± 3.32 mg/L and 1.40 ± 0.19 mg/L·h, 1.15 ± 0.25 mg/L, respectively. Biodistribution study showed the DOX concentration of 20% CD-PEG-DOX8 micelles treated group at 48 h was 2.37-fold higher than that of MeO-PEG-DOX8 micelles treated group at 48 h and was 24 fold-higher than that of DOX solution treated group at 24 h. CD-PEG-DOX8 micelles (20%) were well tolerated with reduced cardiotoxicity, as evaluated in the body weight change and HE staining studies, while they induced most significant antitumor activity with longest media survival time in an orthotopic mouse model of U87-luci glioblastoma model as displayed in the bioluminescence imaging and survival curve studies. Our findings consequently indicated that 20% CD-PEG-DOX8 micelles are promising drug delivery system for glioma chemotherapy.
Collapse
Affiliation(s)
- Jianfeng Li
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Huiying Yang
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Yujie Zhang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Xutao Jiang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Yubo Guo
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Sai An
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Haojun Ma
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Xi He
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University 826 Zhangheng Road, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University , Shanghai 201203, China
| |
Collapse
|
13
|
Sakai-Kato K, Nanjo K, Kusuhara H, Nishiyama N, Kataoka K, Kawanishi T, Okuda H, Goda Y. Effect of Knockout of Mdr1a and Mdr1b ABCB1 Genes on the Systemic Exposure of a Doxorubicin-Conjugated Block Copolymer in Mice. Mol Pharm 2015; 12:3175-83. [PMID: 26194248 DOI: 10.1021/acs.molpharmaceut.5b00234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We previously elucidated that ATP-binding cassette subfamily B member 1 (ABCB1) mediates the efflux of doxorubicin-conjugated block copolymers from HeLa cells. Here, we investigated the role of ABCB1 in the in vivo behavior of a doxorubicin-conjugated polymer in Mdr1a/1b(-/-) mice. The area under the curve for intravenously administered polymer in Mdr1a/1b(-/-) mice was 2.2-fold greater than that in wild-type mice. The polymer was mostly distributed in the liver followed by spleen and less so in the brain, heart, kidney, and lung. The amount of polymer excreted in the urine was significantly decreased in Mdr1a/1b(-/-) mice. The amounts of polymers excreted in the feces were similar in both groups despite the higher systemic exposure in Mdr1a/1b(-/-) mice. Confocal microscopy images showed polymer localized in CD68(+) macrophages in the liver. These results show that knockout of ABCB1 prolonged systemic exposure of the doxorubicin-conjugated polymer in mice. Our results suggest that ABCB1 mediated the excretion of doxorubicin-conjugated polymer in urine and feces. Our results provide valuable information about the behavior of block copolymers in vivo, which is important for evaluating the pharmacokinetics of active substances conjugated to block copolymers or the accumulation of block copolymers in vivo.
Collapse
Affiliation(s)
- Kumiko Sakai-Kato
- Division of Drugs, National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Kunie Nanjo
- Division of Drugs, National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology , R1-11, 4259 Nagatsuda, Midori, Yokohama 226-8503, Japan
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Toru Kawanishi
- National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Haruhiro Okuda
- National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | - Yukihiro Goda
- Division of Drugs, National Institute of Health Sciences , 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| |
Collapse
|
14
|
Madden AJ, Rawal S, Sandison K, Schell R, Schorzman A, Deal A, Feng L, Ma P, Mumper R, DeSimone J, Zamboni WC. Evaluation of the efficiency of tumor and tissue delivery of carrier-mediated agents (CMA) and small molecule (SM) agents in mice using a novel pharmacokinetic (PK) metric: relative distribution index over time (RDI-OT). JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2014; 16:2662. [PMID: 26392803 PMCID: PMC4574509 DOI: 10.1007/s11051-014-2662-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The pharmacokinetics (PK) of carrier-mediated agents (CMA) is dependent upon the carrier system. As a result, CMA PK differs greatly from the PK of small molecule (SM) drugs. Advantages of CMAs over SMs include prolonged circulation time in plasma, increased delivery to tumors, increased antitumor response, and decreased toxicity. In theory, CMAs provide greater tumor drug delivery than SMs due to their prolonged plasma circulation time. We sought to create a novel PK metric to evaluate the efficiency of tumor and tissue delivery of CMAs and SMs. We conducted a study evaluating the plasma, tumor, liver, and spleen PK of CMAs and SMs in mice bearing subcutaneous flank tumors using standard PK parameters and a novel PK metric entitled relative distribution over time (RDI-OT), which measures efficiency of delivery. RDI-OT is defined as the ratio of tissue drug concentration to plasma drug concentration at each time point. The standard concentration versus time area under the curve values (AUC) of CMAs were higher in all tissues and plasma compared with SMs. However, 8 of 17 SMs had greater tumor RDI-OT AUC0-last values than their CMA comparators and all SMs had greater tumor RDI-OT AUC0-6 h values than their CMA comparators. Our results indicate that in mice bearing flank tumor xenografts, SMs distribute into tumor more efficiently than CMAs. Further research in additional tumor models that may more closely resemble tumors seen in patients is needed to determine if our results are consistent in different model systems.
Collapse
Affiliation(s)
- Andrew J Madden
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC 27599-7361, USA
| | - Sumit Rawal
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC 27599-7361, USA
| | - Katie Sandison
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC 27599-7361, USA
| | - Ryan Schell
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC 27599-7361, USA
| | - Allison Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC 27599-7361, USA
| | - Allison Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Lan Feng
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Ping Ma
- Center for Nanotechnology in Drug Delivery, Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Russell Mumper
- UNC Eshelman School of Pharmacy, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Joseph DeSimone
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, 120 Mason Farm Road, Suite 1013, CB 7361, Chapel Hill, NC 27599-7361, USA
| |
Collapse
|
15
|
O'Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Non-invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol 2014; 169:719-35. [PMID: 23488622 DOI: 10.1111/bph.12155] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 01/02/2013] [Accepted: 02/10/2013] [Indexed: 12/18/2022] Open
Abstract
Molecular and non-invasive imaging are rapidly emerging fields in preclinical cancer drug discovery. This is driven by the need to develop more efficacious and safer treatments, the advent of molecular-targeted therapeutics, and the requirements to reduce and refine current preclinical in vivo models. Such bioimaging strategies include MRI, PET, single positron emission computed tomography, ultrasound, and optical approaches such as bioluminescence and fluorescence imaging. These molecular imaging modalities have several advantages over traditional screening methods, not least the ability to quantitatively monitor pharmacodynamic changes at the cellular and molecular level in living animals non-invasively in real time. This review aims to provide an overview of non-invasive molecular imaging techniques, highlighting the strengths, limitations and versatility of these approaches in preclinical cancer drug discovery and development.
Collapse
Affiliation(s)
- A C O'Farrell
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
16
|
Vangara KK, Ali HI, Lu D, Liu JL, Kolluru S, Palakurthi S. SN-38-cyclodextrin complexation and its influence on the solubility, stability, and in vitro anticancer activity against ovarian cancer. AAPS PharmSciTech 2014; 15:472-82. [PMID: 24477982 DOI: 10.1208/s12249-013-0068-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/06/2013] [Indexed: 11/30/2022] Open
Abstract
SN-38, an active metabolite of irinotecan, is up to 1,000-fold more potent than irinotecan. But the clinical use of SN-38 is limited by its extreme hydrophobicity and instability at physiological pH. To enhance solubility and stability, SN-38 was complexed with different cyclodextrins (CDs), namely, sodium sulfobutylether β-cyclodextrin (SBEβCD), hydroxypropyl β-cyclodextrin, randomly methylated β-cyclodextrin, and methyl β-cyclodextrin, and their influence on SN-38 solubility, stability, and in vitro cytotoxicity was studied against ovarian cancer cell lines (A2780 and 2008). Phase solubility studies were conducted to understand the pattern of SN-38 solubilization. SN-38-βCD complexes were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), and Fourier transform infrared (FTIR). Stability of SN-38-SBEβCD complex in pH 7.4 phosphate-buffered saline was evaluated and compared against free SN-38. Phase solubility studies revealed that SN-38 solubility increased linearly as a function of CD concentration and the linearity was characteristic of an AP-type system. Aqueous solubility of SN-38 was enhanced by about 30-1,400 times by CD complexation. DSC, XRPD, and FTIR studies confirmed the formation of inclusion complexes, and stability studies revealed that cyclodextrin complexation significantly increased the hydrolytic stability of SN-38 at physiological pH 7.4. Cytotoxicity of SN-38-SBEβCD complex was significantly higher than SN-38 and irinotecan in both A2780 and 2008 cell lines. Results suggest that SBEβCD encapsulated SN-38 deep into the cavity forming stable inclusion complex and as a result increased the solubility, stability, and cytotoxicity of SN-38. It may be concluded that preparation of inclusion complexes with SBEβCD is a suitable approach to overcome the solubility and stability problems of SN-38 for future clinical applications.
Collapse
|
17
|
Marked antitumor effect of NK012, a SN-38-incorporating micelle formulation, in a newly developed mouse model of liver metastasis resulting from gastric cancer. Ther Deliv 2014; 5:129-38. [PMID: 24483192 DOI: 10.4155/tde.13.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Gastric cancer with liver metastasis (LM) is associated with poor prognosis due to rapid progression. It is, therefore, important to develop a quantitative and highly reproducible animal model of LM using human gastric cancer cells. METHODS Cells of a human gastric cancer cell line, HSC-57, were injected into the portal vein to produce LMs. Cells from some of these metastatic foci were expanded in vitro and subsequently implanted into the portal veins of mice. This procedure was repeated nine times. The antitumor effects of CPT-11 and NK012 were compared using the LM model. RESULTS The potent metastatic clone 57L9 was obtained. NK012 exerted a stronger antitumor effect than CPT-11 against 57L9 cells integrated with the luciferase gene (57L9Luc). The survival rates on day 131 in the 57L9Luc mouse model were 100% and 0% for the NK012 and CPT-11 groups, respectively. CONCLUSION This 57L9Luc LM model was found to be useful for monitoring the responses to NK012 and CPT-11.
Collapse
|
18
|
Yamamoto Y, Hyodo I, Takigahira M, Koga Y, Yasunaga M, Harada M, Hayashi T, Kato Y, Matsumura Y. Effect of combined treatment with the epirubicin-incorporating micelles (NC-6300) and 1,2-diaminocyclohexane platinum (II)-incorporating micelles (NC-4016) on a human gastric cancer model. Int J Cancer 2013; 135:214-23. [DOI: 10.1002/ijc.28651] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Yoshiyuki Yamamoto
- Division of Developmental Therapeutics; Research Center for Innovative Oncology, National Cancer Center Hospital East; Kashiwa Chiba Japan
- Department of Gastroenterology and Hepatology; Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba, Ibaraki Japan
| | - Ichinosuke Hyodo
- Department of Gastroenterology and Hepatology; Institute of Clinical Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba; Tsukuba, Ibaraki Japan
| | - Misato Takigahira
- Division of Developmental Therapeutics; Research Center for Innovative Oncology, National Cancer Center Hospital East; Kashiwa Chiba Japan
| | - Yoshikatsu Koga
- Division of Developmental Therapeutics; Research Center for Innovative Oncology, National Cancer Center Hospital East; Kashiwa Chiba Japan
| | - Masahiro Yasunaga
- Division of Developmental Therapeutics; Research Center for Innovative Oncology, National Cancer Center Hospital East; Kashiwa Chiba Japan
| | | | | | - Yasuki Kato
- Research Division; NanoCarrier Co., Ltd; Kashiwa, Chiba Japan
| | - Yasuhiro Matsumura
- Division of Developmental Therapeutics; Research Center for Innovative Oncology, National Cancer Center Hospital East; Kashiwa Chiba Japan
| |
Collapse
|
19
|
Sun Q, Wang J, Radosz M, Shen Y. Polymer-Based Prodrugs for Cancer Chemotherapy. FUNCTIONAL POLYMERS FOR NANOMEDICINE 2013. [DOI: 10.1039/9781849737388-00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qihang Sun
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY
| | - Jinqiang Wang
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang UniversityHangzhou 310027P. R. China
| | - Maciej Radosz
- Department of Chemical and Petroleum Engineering, Soft Materials Laboratory, University of WyomingLaramieWY
| | - Youqing Shen
- Center for Bionanoengineering and State Key Laboratory of Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang UniversityHangzhou 310027P. R. China
| |
Collapse
|
20
|
Wang Y, Guo M, Lu Y, Ding LY, Ron WT, Liu YQ, Song FF, Yu SQ. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro. NANOTECHNOLOGY 2012; 23:495103. [PMID: 23149859 DOI: 10.1088/0957-4484/23/49/495103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work might provide a new insight into the design of pharmacologically inactive excipients that can serve as P-gp modulators instead of drugs that are P-gp inhibitors.
Collapse
Affiliation(s)
- Ying Wang
- Jiangsu Key Laboratory for Supramolecular Medicinal Materials and Applications, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; Where is the missing link? J Control Release 2012; 164:265-75. [PMID: 22800576 DOI: 10.1016/j.jconrel.2012.07.013] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/29/2012] [Accepted: 07/08/2012] [Indexed: 12/26/2022]
Abstract
Anticancer nanomedicine was coined to describe anticancer delivery systems such as polymer conjugates, liposomes, micelles, and metal nanoparticles. These anticancer delivery platforms have been developed with the enhanced permeability and retention (EPR) effect as a central mechanism for tumor targeting. EPR based nanomedicine has demonstrated, beyond doubt, to selectively target tumor tissues in animal models. However, over the last two decades, only nine anticancer agents utilizing this targeting strategy have been approved for clinical use. In this review, we systematically analyze various aspects that explain the limited clinical progress yet achieved. The influence of nanomedicine physicochemical characteristics, animal tumor models, and variations in tumor biology, on EPR based tumor targeting is closely examined. Furthermore, we reviewed results from over one hundred publications to construct patterns of factors that can influence the transition of EPR based anticancer nanomedicine to the clinic.
Collapse
Affiliation(s)
- Sebastien Taurin
- Department of Pharmacology & Toxicology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
22
|
Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release 2012; 159:312-23. [PMID: 22285551 DOI: 10.1016/j.jconrel.2011.12.012] [Citation(s) in RCA: 401] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 12/06/2011] [Indexed: 10/14/2022]
Abstract
Polymeric micelles (PM) system, as an efficient drug carrier, has received growing scientific attention in recent years owing to its solubilization, selective targeting, P-glycoprotein inhibition and altered drug internalization route and subcellular localization properties. Seven PM formulations of anti-tumor drugs being evaluated in clinical trials are reviewed in this paper, in terms of formulation study, in vitro cytotoxicity, in vivo pharmacokinetics, anti-tumor efficacy and safety as well as clinical trials, to shed new light on the discovery of novel PM formulations. In these seven PM formulations, PM system was employed to overcome the issues of low water solubility, high toxicity and (or) multidrug resistance accompanied with the conventional formulation, which greatly hampered their clinical application. Those promising preclinical and clinical results combined with rapid advancement and intense multidisciplinary collaboration enable the extension of the PM system to traditional Chinese medicine, imaging agents, gene and combination agent deliveries as well as some other administration routes, which facilitate the clinical translation of the PM drug delivery system.
Collapse
Affiliation(s)
- Jian Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | | | | | | | | |
Collapse
|