1
|
Lin C, Sniezek CM, McGann CD, Karki R, Giglio RM, Garcia BA, McFaline-Figeroa JL, Schweppe DK. Defining the heterogeneous molecular landscape of lung cancer cell responses to epigenetic inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.592075. [PMID: 38853901 PMCID: PMC11160595 DOI: 10.1101/2024.05.23.592075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Epigenetic inhibitors exhibit powerful antiproliferative and anticancer activities. However, cellular responses to small-molecule epigenetic inhibition are heterogenous and dependent on factors such as the genetic background, metabolic state, and on-/off-target engagement of individual small-molecule compounds. The molecular study of the extent of this heterogeneity often measures changes in a single cell line or using a small number of compounds. To more comprehensively profile the effects of small-molecule perturbations and their influence on these heterogeneous cellular responses, we present a molecular resource based on the quantification of chromatin, proteome, and transcriptome remodeling due to histone deacetylase inhibitors (HDACi) in non-isogenic cell lines. Through quantitative molecular profiling of 10,621 proteins, these data reveal coordinated molecular remodeling of HDACi treated cancer cells. HDACi-regulated proteins differ greatly across cell lines with consistent (JUN, MAP2K3, CDKN1A) and divergent (CCND3, ASF1B, BRD7) cell-state effectors. Together these data provide valuable insight into cell-type driven and heterogeneous responses that must be taken into consideration when monitoring molecular perturbations in culture models.
Collapse
Affiliation(s)
- Chuwei Lin
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | | | - Rashmi Karki
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ross M. Giglio
- Biomedical Engineer, Columbia University, New York, NY 10027, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Devin K. Schweppe
- Genome Sciences, University of Washington, Seattle, WA 98105, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Ganaiem M, Gildor ND, Shazman S, Karmon G, Ivashko-Pachima Y, Gozes I. NAP (Davunetide): The Neuroprotective ADNP Drug Candidate Penetrates Cell Nuclei Explaining Pleiotropic Mechanisms. Cells 2023; 12:2251. [PMID: 37759476 PMCID: PMC10527813 DOI: 10.3390/cells12182251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Recently, we showed aberrant nuclear/cytoplasmic boundaries/activity-dependent neuroprotective protein (ADNP) distribution in ADNP-mutated cells. This malformation was corrected upon neuronal differentiation by the ADNP-derived fragment drug candidate NAP (davunetide). Here, we investigated the mechanism of NAP nuclear protection. (2) Methods: CRISPR/Cas9 DNA-editing established N1E-115 neuroblastoma cell lines that express two different green fluorescent proteins (GFPs)-labeled mutated ADNP variants (p.Tyr718* and p.Ser403*). Cells were exposed to NAP conjugated to Cy5, followed by live imaging. Cells were further characterized using quantitative morphology/immunocytochemistry/RNA and protein quantifications. (3) Results: NAP rapidly distributed in the cytoplasm and was also seen in the nucleus. Furthermore, reduced microtubule content was observed in the ADNP-mutated cell lines. In parallel, disrupting microtubules by zinc or nocodazole intoxication mimicked ADNP mutation phenotypes and resulted in aberrant nuclear-cytoplasmic boundaries, which were rapidly corrected by NAP treatment. No NAP effects were noted on ADNP levels. Ketamine, used as a control, was ineffective, but both NAP and ketamine exhibited direct interactions with ADNP, as observed via in silico docking. (4) Conclusions: Through a microtubule-linked mechanism, NAP rapidly localized to the cytoplasmic and nuclear compartments, ameliorating mutated ADNP-related deficiencies. These novel findings explain previously published gene expression results and broaden NAP (davunetide) utilization in research and clinical development.
Collapse
Affiliation(s)
- Maram Ganaiem
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Nina D. Gildor
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Raanana 4353107, Israel;
- Department of Information Systems, The Max Stern Yezreel Valley College, Yezreel Valley, Afula 1930600, Israel
| | - Gidon Karmon
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Yanina Ivashko-Pachima
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (M.G.); (N.D.G.); (G.K.); (Y.I.-P.)
| |
Collapse
|
3
|
Wang X, Peng H, Zhang G, Li Z, Du Z, Peng B, Cao P. ADNP is associated with immune infiltration and radiosensitivity in hepatocellular carcinoma for predicting the prognosis. BMC Med Genomics 2023; 16:178. [PMID: 37525242 PMCID: PMC10391866 DOI: 10.1186/s12920-023-01592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most lethal diseases due to its high faculty of invasiveness and metastasis. Activity-dependent neuroprotective protein (ADNP) has been regarded as an oncogene in bladder cancer and ovarian cancer. However, the role of ADNP in the regulation of tumor immune response, development, and treatment resistance in HCC remains unknown and is worth exploring. METHODS The correlation between ADNP and prognosis, immune cell infiltration, immune checkpoints, chemokines, tumor mutation burden, microsatellite instability, and genomic mutation of pan-cancer cohorts in The Cancer Genome Atlas was analyzed. ADNP expression in HCC cell lines, HCC and the adjacent normal tissues was measured by western blotting and immunochemistry. Nomogram was constructed to predict the survival of patients with HCC based on the ADNP expression and significant clinical characteristics. The potential biological functions and impacts on radiotherapy of ADNP in HCC cell lines were verified by vitro experiments. RESULTS ADNP was upregulated in most cancers and patients with elevated ADNP expression were related to poor survival in several types of cancers including HCC. Functional enrichment analysis showed ADNP participated in the pathways correlated with coagulation cascades and DNA double strand break repair. Further, ADNP exhibited a negative correlation with the immune score, stromal score, estimated score, and chemokines, and a positive correlation with cancer-associated fibroblasts, myeloid-derived suppressor cells, neutrophils, regulatory T cells, and endothelial cells. Immunochemistry and western blotting results demonstrated ADNP was up-regulated in HCC. Vitro experiments verified that suppressing the ADNP expression significantly inhibited the proliferation, invasion and migration and elevated the radiosensitivity via decreasing DNA damage repair in HCC. CONCLUSION ADNP might play an oncogene and immunosuppression role in tumor immune infiltration and response, thus influencing the prognosis. Its downregulation could attenuate the proliferation, invasion, migration, radioresistance of HCC. Our results indicated the potential of ADNP as a promising biomarker to predict the survival of HCC patients, providing a theoretical basis for novel integrative strategies.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Oncology, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Honghua Peng
- Department of Oncology, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Ganghua Zhang
- Department of Oncology, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Zeyuan Li
- Department of General Practice, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Zhangyan Du
- Department of Oncology, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Bin Peng
- Department of Oncology, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Peiguo Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Iyer AS, Shaik MR, Raufman JP, Xie G. The Roles of Zinc Finger Proteins in Colorectal Cancer. Int J Mol Sci 2023; 24:10249. [PMID: 37373394 DOI: 10.3390/ijms241210249] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Despite colorectal cancer remaining a leading worldwide cause of cancer-related death, there remains a paucity of effective treatments for advanced disease. The molecular mechanisms underlying the development of colorectal cancer include altered cell signaling and cell cycle regulation that may result from epigenetic modifications of gene expression and function. Acting as important transcriptional regulators of normal biological processes, zinc finger proteins also play key roles in regulating the cellular mechanisms underlying colorectal neoplasia. These actions impact cell differentiation and proliferation, epithelial-mesenchymal transition, apoptosis, homeostasis, senescence, and maintenance of stemness. With the goal of highlighting promising points of therapeutic intervention, we review the oncogenic and tumor suppressor roles of zinc finger proteins with respect to colorectal cancer tumorigenesis and progression.
Collapse
Affiliation(s)
- Aishwarya S Iyer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammed Rifat Shaik
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, MD 21201, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Guofeng Xie
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- VA Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Xu Y, He L, Liu S, Zhang C, Ai Y. Intraoperative intravenous low-dose esketamine improves quality of early recovery after laparoscopic radical resection of colorectal cancer: A prospective, randomized controlled trial. PLoS One 2023; 18:e0286590. [PMID: 37267303 DOI: 10.1371/journal.pone.0286590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/10/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Esketamine has higher potency, stronger receptor affinity, a stronger analgesic effect, a higher in vivo clearance rate, and a lower incidence of adverse reactions when compared to ketamine. However, there have been few ketamine studies to assess patient-centered, overall recovery outcomes from the perspective of patients with colorectal cancer. METHODS This was a prospective, randomized controlled trial. Ninety-two patients undergoing laparoscopic radical resection of colorectal cancer were randomly assigned to either the esketamine (K group) or non-eskatamine (C group) group. After anesthesia induction, a loading dose of 0.25 mg/kg was administered, followed by continuous infusion at a rate of 0.12 mg.kg-1.h-1 until closure of surgical incisions in the K group. In the C group, an equivalent volume of normal saline was infused. The primary outcome was quality of recovery at 24 h after surgery, as measured by the Quality of Recovery-15 (QoR-15) scale. The QoR-15 was evaluated at three timepoints: before (Tbefore), 24 h (T24h) and 72 h (T72h) after surgery. MAIN RESULTS A total of 88 patients completed this study. The total QoR-15 scores in K group (n = 45) were higher than in the C group (n = 43) at 24 h: 112.33 ± 8.79 vs. 103.93 ± 9.03 (P = 0.000) and at 72 h: 118.73 ± 7.82 vs. 114.79 ± 7.98 (P = 0.022). However, the differences between the two groups only had clinical significance at 24 h after surgery. Among the five dimensions of the QoR-15, physical comfort (P = 0.003), emotional state (P = 0.000), and physical independence (P = 0.000) were significantly higher at 24 h in the K group, and physical comfort (P = 0.048) was higher at 72 h in the K group. CONCLUSIONS This study found that intraoperative intravenous low-dose esketamine could improve the early postoperative quality of recovery in patients undergoing laparoscopic radical resection of colorectal cancer from the perspective of patients.
Collapse
Affiliation(s)
- Ying Xu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Long He
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shaoxuan Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chaofan Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanqiu Ai
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
7
|
Kolevzon A, Levy T, Barkley S, Bedrosian-Sermone S, Davis M, Foss-Feig J, Halpern D, Keller K, Kostic A, Layton C, Lee R, Lerman B, Might M, Sandin S, Siper PM, Sloofman LG, Walker H, Zweifach J, Buxbaum JD. An open-label study evaluating the safety, behavioral, and electrophysiological outcomes of low-dose ketamine in children with ADNP syndrome. HGG ADVANCES 2022; 3:100138. [PMID: 36119806 PMCID: PMC9471202 DOI: 10.1016/j.xhgg.2022.100138] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) syndrome is a rare genetic condition associated with intellectual disability and autism spectrum disorder. Preclinical evidence suggests that low-dose ketamine may induce expression of ADNP and that neuroprotective effects of ketamine may be mediated by ADNP. The goal of the proposed research was to evaluate the safety, tolerability, and behavioral outcomes of low-dose ketamine in children with ADNP syndrome. We also sought to explore the feasibility of using electrophysiological markers of auditory steady-state response and computerized eye tracking to assess biomarker sensitivity to treatment. This study utilized a single-dose (0.5 mg/kg), open-label design, with ketamine infused intravenously over 40 min. Ten children with ADNP syndrome ages 6 to 12 years were enrolled. Ketamine was generally well tolerated, and there were no serious adverse events. The most common adverse events were elation/silliness (50%), fatigue (40%), and increased aggression (40%). Using parent-report instruments to assess treatment effects, ketamine was associated with nominally significant improvement in a wide array of domains, including social behavior, attention deficit and hyperactivity, restricted and repetitive behaviors, and sensory sensitivities, a week after administration. Results derived from clinician-rated assessments aligned with findings from the parent reports. Overall, nominal improvement was evident based on the Clinical Global Impressions - Improvement scale, in addition to clinician-based scales reflecting key domains of social communication, attention deficit and hyperactivity, restricted and repetitive behaviors, speech, thinking, and learning, activities of daily living, and sensory sensitivities. Results also highlight the potential utility of electrophysiological measurement of auditory steady-state response and eye-tracking to index change with ketamine treatment. Findings are intended to be hypothesis generating and provide preliminary support for the safety and efficacy of ketamine in ADNP syndrome in addition to identifying useful endpoints for a ketamine clinical development program. However, results must be interpreted with caution given limitations of this study, most importantly the small sample size and absence of a placebo-control group.
Collapse
|
8
|
Osia B, Alsulaiman T, Jackson T, Kramara J, Oliveira S, Malkova A. Cancer cells are highly susceptible to accumulation of templated insertions linked to MMBIR. Nucleic Acids Res 2021; 49:8714-8731. [PMID: 34379776 PMCID: PMC8421209 DOI: 10.1093/nar/gkab685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
Microhomology-mediated break-induced replication (MMBIR) is a DNA repair pathway initiated by polymerase template switching at microhomology, which can produce templated insertions that initiate chromosomal rearrangements leading to neurological and metabolic diseases, and promote complex genomic rearrangements (CGRs) found in cancer. Yet, how often templated insertions accumulate from processes like MMBIR in genomes is poorly understood due to difficulty in directly identifying these events by whole genome sequencing (WGS). Here, by using our newly developed MMBSearch software, we directly detect such templated insertions (MMB-TIs) in human genomes and report substantial differences in frequency and complexity of MMB-TI events between normal and cancer cells. Through analysis of 71 cancer genomes from The Cancer Genome Atlas (TCGA), we observed that MMB-TIs readily accumulate de novo across several cancer types, with particularly high accumulation in some breast and lung cancers. By contrast, MMB-TIs appear only as germline variants in normal human fibroblast cells, and do not accumulate as de novo somatic mutations. Finally, we performed WGS on a lung adenocarcinoma patient case and confirmed MMB-TI-initiated chromosome fusions that disrupted potential tumor suppressors and induced chromothripsis-like CGRs. Based on our findings we propose that MMB-TIs represent a trigger for widespread genomic instability and tumor evolution.
Collapse
Affiliation(s)
- Beth Osia
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Thamer Alsulaiman
- Department of Computer Science, University of Iowa, Iowa City, IA 52245, USA
| | - Tyler Jackson
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Juraj Kramara
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| | - Suely Oliveira
- Department of Computer Science, University of Iowa, Iowa City, IA 52245, USA
| | - Anna Malkova
- Department of Biology, University of Iowa, Iowa City, IA 52245, USA
| |
Collapse
|
9
|
Xie Y, Zhu S, Zang J, Wu G, Wen Y, Liang Y, Long Y, Guo W, Zang C, Hu X, Fan G, Xiang S, Zhang J. ADNP prompts the cisplatin-resistance of bladder cancer via TGF-β-mediated epithelial-mesenchymal transition (EMT) pathway. J Cancer 2021; 12:5114-5124. [PMID: 34335928 PMCID: PMC8317519 DOI: 10.7150/jca.58049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) is vital for embryonic development and brain formation. Besides, the upregulated expression of ADNP enhances tumorigenesis in some human tumors like bladder cancer (BC). However, the potential roles of ADNP in drug resistance and the related mechanisms in BC is unknown. We performed this study to elucidate the influence of ADNP in the chemoresistance of BC and tried to explore the underlying molecular mechanism. The expressions of ADNP in BC from progression and non-progression patient specimens were measured by quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). In vitro experiments including colony formation, cell counting kit-8 (CCK-8), wound healing, and in vivo tumorigenesis assay were performed to explore the effects of ADNP on chemoresistance of BC. The impacts of ADNP on TGF-β/Smad signaling pathways were explored by western blot. Our results showed that the expression of ADNP mRNA and protein were significantly upregulated in BC tissues of the patients who suffered tumor-progression via RT-PCR and western blot. Cox regression survival analysis revealed that patients with high ADNP expression closely linked to shorter tumor-free survival. ADNP downregulation in BC showed more sensitive to cisplatin in vivo, while ADNP overexpression showed the opposite results. Additionally, we confirmed that ADNP promoted cell migration and EMT, thereby inducing cisplatin resistance, which may be related to TGF-β / Smad signaling pathway.
Collapse
Affiliation(s)
- Yu Xie
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, 410081 Changsha, China.,Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, 410013 Changsha, China
| | - Shuai Zhu
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, 410013 Changsha, China
| | - Jinglei Zang
- Changsha Health Vocational College, 410600 Changsha, China
| | - Guanlin Wu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 200433 Shanghai, China
| | - Yuheng Wen
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, 410013 Changsha, China
| | - Yu Liang
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, 410013 Changsha, China.,Pingxiang Maternal and Child Care Hospital, 337000 Pingxiang, China
| | - Ying Long
- Clinical Translational Research Center, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, 410013 Changsha, China
| | - Weiming Guo
- The 2nd Affiliated Hospital of South China University, 421001 Hengyang, China
| | - Chuanbing Zang
- Medizinische Klinik m. S. Hämatologie u. Onkologie, Campus Bejamin Franklin, Unviersitätsmedizin Berlin Charité, 12203 Berlin, Germany
| | - Xiang Hu
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, 410081 Changsha, China
| | - Gang Fan
- Department of Urology, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, 410013 Changsha, China.,Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital; the 6th Affiliated Hospital of Shenzhen University Health Science Center, 518060 Shenzhen, China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, 410081 Changsha, China
| | - Jian Zhang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, Hunan Normal University, 410081 Changsha, China
| |
Collapse
|
10
|
Gu Q, Kanungo J. Effect of ketamine on gene expression in zebrafish embryos. J Appl Toxicol 2021; 41:2083-2089. [PMID: 34002392 DOI: 10.1002/jat.4199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 01/21/2023]
Abstract
Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist. Used as an anesthetic, potential neurotoxic and cardiotoxic effects of ketamine in animal models have been reported. The underlying mechanisms of ketamine-induced toxicity are not clear. The zebrafish is an ideal model for toxicity assays because of its predictive capability in chemical testing, which compares well with that of mammalian models. To gain insight into potential mechanisms of ketamine effects, we performed real-time quantitative polymerase chain reaction-based gene expression array analyses. Gene expression analysis was conducted for multiple genes (a total of 84) related to 10 major signaling pathways including the transforming growth factor β (TGFβ), Wingless and Int-1 (Wnt), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), Janus kinase/signal transducers and activators of transcription (JAK/STAT), p53, Notch, Hedgehog, peroxisome proliferator-activated receptor (PPAR), oxidative stress, and hypoxia pathways. Our results show that ketamine altered the expression of specific genes related to hypoxia, p53, Wnt, Notch, TGFβ, PPAR, and oxidative stress pathways. Thus, we can further focus on these specific pathways to elucidate the mechanisms by which ketamine elicits a toxic response.
Collapse
Affiliation(s)
- Qiang Gu
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
11
|
Li X, Duan Y, Hao Y. Identification of super enhancer-associated key genes for prognosis of germinal center B-cell type diffuse large B-cell lymphoma by integrated analysis. BMC Med Genomics 2021; 14:69. [PMID: 33663517 PMCID: PMC7934469 DOI: 10.1186/s12920-021-00916-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/21/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The pathogenesis of germinal center B-cell type diffuse large B-cell lymphoma (GCB-DLBCL) is not fully elucidated. This study aims to explore the regulation of super enhancers (SEs) on GCB-DLBCL by identifying specific SE-target gene. METHODS Weighted gene co-expression network analysis (WGCNA) was used to screen modules associated with GCB subtype. Functional analysis was performed by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. H3K27ac peaks were used to identify SEs. Overall survival analysis was performed using Kaplan-Meier curve with log-rank and Breslow test. The effect of ADNP, ANKRD28 and RTN4IP1 knockdown on Karpas 422 and SUDHL-4 cells proliferation was analyzed by CCK-8. Karpas 422 and SUDHL-4 cells were treated with bromodomain and extra-terminal domain (BET) inhibitor JQ1, and the expression of ADNP, ANKRD28 and RTN4IP1was measured by qRT-PCR. RESULTS A total of 26 modules were screened in DLBCL. Turquoise module was closely related to GCB-DLBCL, and its eigengenes were mainly related to autophagy. There were 971 SEs in Karpas 422 cell and 1088 SEs in SUDHL-4 cell. Function of the nearest genes of overall SEs were related to cancer. Six SE-related genes associated with GCB-DLBCL were identified as prognostic markers. Knockdown of ADNP, ANKRD28 and RTN4IP1 inhibited the proliferation of Karpas 422 and SUDHL-4 cells. JQ1 treatment suppressed ADNP, ANKRD28 and RTN4IP1 expression in Karpas 422 and SUDHL-4 cells. CONCLUSIONS A total of 6 SE-related genes associated with GCB-DLBCL overall survival were identified in this study. These results will serve as a theoretical basis for further study of gene regulation and function of GCB-DLBCL.
Collapse
Affiliation(s)
- Xi Li
- Department of Lymphoma, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, People's Republic of China
| | - Yan Duan
- Department of Critical Care Medicine, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, People's Republic of China
| | - Yuxia Hao
- Department of Gastroenterology, Shanxi Provincial People's Hospital, 29 shuangtasi Rd, Taiyuan, 030012, People's Republic of China.
| |
Collapse
|
12
|
Thakur G, Kumar R, Kim SB, Lee SY, Lee SL, Rho GJ. Therapeutic Status and Available Strategies in Pancreatic Ductal Adenocarcinoma. Biomedicines 2021; 9:biomedicines9020178. [PMID: 33670230 PMCID: PMC7916947 DOI: 10.3390/biomedicines9020178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
One of the most severe and devastating cancer is pancreatic cancer. Pancreatic ductal adenocarcinoma (PDAC) is one of the major pancreatic exocrine cancer with a poor prognosis and growing prevalence. It is the most deadly disease, with an overall five-year survival rate of 6% to 10%. According to various reports, it has been demonstrated that pancreatic cancer stem cells (PCSCs) are the main factor responsible for the tumor development, proliferation, resistance to anti-cancer drugs, and recurrence of tumors after surgery. PCSCs have encouraged new therapeutic methods to be explored that can specifically target cancer cells. Furthermore, stem cells, especially mesenchymal stem cells (MSCs), are known as influential anti-cancer agents as they function through anti-inflammatory, paracrine, cytokines, and chemokine's action. The properties of MSCs, such as migration to the site of infection and host immune cell activation by its secretome, seem to control the microenvironment of the pancreatic tumor. MSCs secretome exhibits similar therapeutic advantages as a conventional cell-based therapy. Moreover, the potential for drug delivery could be enhanced by engineered MSCs to increase drug bioactivity and absorption at the tumor site. In this review, we have discussed available therapeutic strategies, treatment hurdles, and the role of different factors such as PCSCs, cysteine, GPCR, PKM2, signaling pathways, immunotherapy, and NK-based therapy in pancreatic cancer.
Collapse
Affiliation(s)
- Gitika Thakur
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Raj Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173 234, Himachal Pradesh, India;
| | - Saet-Byul Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yeob Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea; (G.T.); (S.-B.K.); (S.-Y.L.); (S.-L.L.)
- Correspondence:
| |
Collapse
|
13
|
Zhu S, Xu Z, Zeng Y, Long Y, Fan G, Ding Q, Wen Y, Cao J, Dai T, Han W, Xie Y. ADNP Upregulation Promotes Bladder Cancer Cell Proliferation via the AKT Pathway. Front Oncol 2020; 10:491129. [PMID: 33240802 PMCID: PMC7680929 DOI: 10.3389/fonc.2020.491129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/18/2020] [Indexed: 01/09/2023] Open
Abstract
Background Activity-dependent neuroprotective protein (ADNP), which is involved in embryonic development and neurogenesis, has been proven to be upregulated in some human tumors. However, its role in bladder cancer (BC) has never been studied. Objective We aimed to investigate the mechanisms by which ADNP promotes the progression of BC. Methods ADNP expressions in BC cell lines and paired BC and adjacent normal tissues were measured by quantitative real-time PCR (qRT-PCR), Western blot, and immunohistochemistry. Colony formation, Cell Counting Kit-8 (CCK-8), trypan blue exclusion assay, flow cytometry, and nude mice tumorigenesis assay were performed to explore the effects of ADNP on growth of BC in vivo and in vitro. The impacts of ADNP on AKT signaling pathways were measured by Western blot. Results The expression of ADNP mRNA and protein was significantly upregulated in BC tissues compared with adjacent normal tissues. Immunohistochemical analysis of 221 BC and 51 adjacent normal tissue paraffin sections indicated that ADNP expression was significantly associated with histological classification and pathological T and N stages. Survival analysis revealed that patients with high ADNP expression have worse prognosis with respect to overall survival and progression-free disease. ADNP knockdown markedly delayed propagation of BC in vitro and the development of BC in vivo. ADNP overexpression showed the opposite effect. In addition, ADNP can markedly promote G1-S cell cycle transition in BC cells. On the molecular level, we confirmed that ADNP mediated acceleration of G1-S transition was associated with activation of the AKT pathways in BC. Conclusion ADNP is overexpressed in BC and promotes BC growth partly through AKT pathways. ADNP is crucial in predicting the outcome of BC patients and may be a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Shuai Zhu
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Zhenzhou Xu
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Yong Zeng
- Clinical Translational Research Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Ying Long
- Clinical Translational Research Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qi Ding
- Clinical Translational Research Center, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Yuheng Wen
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Jian Cao
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Tao Dai
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Weiqing Han
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Yu Xie
- Department of Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| |
Collapse
|
14
|
Abstract
Advanced colorectal cancer (CRC) is a significant cause of cancer mortality, with a poor prognosis. Here, we identified a novel prognostic signature for predicting survival of advanced CRC. Advanced CRC data were used (training set: n = 267 and validation set: n = 264). The survival analyses were investigated. The functional analysis of the prognostic signature was examined. In this study, our 15-gene signature was established and was an independent prognostic factor of advanced CRC. Stratification analyses also showed that this signature was still powerful for survival prediction in each stratum of age, gender, stage, and metastasis status. In mechanism, our signature involved in DNA replication, DNA damage, and cell cycle. Therefore, our findings suggested that this 15-gene signature has prognostic and predictive value in advanced CRC, which could be further used in personalized therapy for advanced CRC.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, Haidian, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, Haidian, China
| |
Collapse
|
15
|
Karagoz K, Mehta GA, Khella CA, Khanna P, Gatza ML. Integrative proteogenomic analyses of human tumours identifies ADNP as a novel oncogenic mediator of cell cycle progression in high-grade serous ovarian cancer with poor prognosis. EBioMedicine 2019; 50:191-202. [PMID: 31767542 PMCID: PMC6921307 DOI: 10.1016/j.ebiom.2019.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
Background Despite toxic side effects and limited durable response, the current standard-of-care treatment for high grade serous ovarian cancer (HGSOC) remains platinum/taxane-based chemotherapy. Given that the overall prognosis has not improved drastically over the past several decades, there is a critical need to understand the underlying mechanisms that lead to tumour development and progression. Methods We utilized an integrative proteogenomic analysis of HGSOC tumours applying a poor prognosis gene expression signature (PPS) as a conceptual framework to analyse orthogonal genomic and proteomic data from the TCGA (n = 488) and CPTAC (n = 169) studies. Genes identified through in silico analyses were assessed in vitro studies to demonstrate their impact on proliferation and cell cycle progression. Findings These analyses identified DNA amplification and overexpression of the transcription factor ADNP (Activity Dependent Neuroprotector Homeobox) in poorly prognostic tumours. Validation studies confirmed the prognostic capacity of ADNP and suggested an oncogenic role for this protein given the association between ADNP expression and pro-proliferative signalling. In vitro studies confirmed ADNP as a novel and essential mediator of cell proliferation through dysregulation of cell cycle checkpoints. Interpretation We identified ADNP as being amplified and overexpressed in poor prognosis HGSOC in silico analyses and demonstrated that ADNP is a novel and essential oncogene in HGSOC which mediates proliferation through dysregulation of cell cycle checkpoints in vitro. Funding The National Cancer Institute of the National Institutes of Health, the V Foundation for Cancer Research and the New Jersey Commission for Cancer Research.
Collapse
Affiliation(s)
- Kubra Karagoz
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States; Department of Radiation Oncology, Robert Wood Johnson Medical School, United States; Rutgers, The State University of New Jersey, New Brunswick NJ, United States
| | - Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States; Department of Radiation Oncology, Robert Wood Johnson Medical School, United States; Rutgers, The State University of New Jersey, New Brunswick NJ, United States
| | - Christen A Khella
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States; Department of Radiation Oncology, Robert Wood Johnson Medical School, United States; Rutgers, The State University of New Jersey, New Brunswick NJ, United States
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States; Department of Radiation Oncology, Robert Wood Johnson Medical School, United States; Rutgers, The State University of New Jersey, New Brunswick NJ, United States
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States; Department of Radiation Oncology, Robert Wood Johnson Medical School, United States; Rutgers, The State University of New Jersey, New Brunswick NJ, United States.
| |
Collapse
|
16
|
Luo J, Liu K, Yao Y, Sun Q, Zheng X, Zhu B, Zhang Q, Xu L, Shen Y, Ren B. DMBX1 promotes tumor proliferation and regulates cell cycle progression via repressing OTX2-mediated transcription of p21 in lung adenocarcinoma cell. Cancer Lett 2019; 453:45-56. [DOI: 10.1016/j.canlet.2019.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
|
17
|
Kośla K, Orzechowska M, Jędroszka D, Baryła I, Bednarek AK, Płuciennik E. A Novel Set of WNT Pathway Effectors as a Predictive Marker of Uterine Corpus Endometrial Carcinoma-Study Based on Weighted Co-expression Matrices. Front Oncol 2019; 9:360. [PMID: 31134156 PMCID: PMC6524344 DOI: 10.3389/fonc.2019.00360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Uterine corpus endometrial carcinomas (UCEC) are clinically divided into two subgroups-endometrioid endometrial carcinoma (EEC) or non-endometrioid endometrial carcinoma (NEEC). The first group shows relatively better prognosis. However, the discrimination seems to be insufficient due to the fact that in the mildest EEC are patients with poor treatment response and bad prognosis. Our aim was to examine the molecular background of such phenomenon and whether gene expression patterns might be of importance for the clinic. We focused our analysis on WNT pathway target genes since it is one of the main regulators of endometrial proliferation and differentiation. In silico analysis of TCGA data, including Weighted Co-expression Network Analysis, Principle Component Analysis, and Multiple Factor Analysis, allows to select 28 genes that serve as a predictive markers for UCEC patients. Our study revealed that there is a subgroup of the endometrioid cases that molecularly resembles mixed/serous groups. This may explain the reason for existence of subgroup of patients, that although clinically diagnosed with the mildest endometrioid UCEC type, yet present failure in treatment and aggressive course of the disease. Our study suggests that worse outcome in these patients may be based on a disruption of proper WNT signalling pathway resulting in deregulation of its effector genes. Moreover, we showed that mixed group consisting of tumours containing both endometrioid and serous types of cells, has serous expression profile of WNT targets. The proposed gene set allows to predict progression of the disease trough dividing patients into groups of low or high grade with 70.8% sensitivity and 88.6% specificity (AUC = 0.837) as well as could predict patient prognosis associated with UCEC subtype with 70.1% sensitivity and 86.2% specificity (AUC = 0.855). Relatively small number of implicated genes makes it highly applicable and possibly clinically simple and useful tool.
Collapse
Affiliation(s)
- Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| | | | - Dorota Jędroszka
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| | - Izabela Baryła
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódz, Łódz, Poland
| |
Collapse
|
18
|
Feng Y, Li Y, Li L, Wang X, Chen Z. Identification of specific modules and significant genes associated with colon cancer by weighted gene co‑expression network analysis. Mol Med Rep 2019; 20:693-700. [PMID: 31180534 DOI: 10.3892/mmr.2019.10295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/12/2019] [Indexed: 11/06/2022] Open
Abstract
Colon cancer is one of the most commonly diagnosed malignancies and is a leading cause of cancer‑associated mortality. The aim of the present study was to investigate the molecular mechanisms underlying colon cancer and identify potentially significant genes associated with the disease using weighted gene co‑expression network analysis (WGCNA). The test datasets used were downloaded from The Cancer Genome Atlas (TCGA) database. WGCNA was applied to analyze microarray data obtained from colon adenocarcinoma samples to identify significant modules and highly associated genes. A gene co‑expression network was constructed and different gene modules were selected. Functional and pathway enrichment analyses were performed to investigate the molecular mechanisms of colon cancer. In addition, highly connected hub genes associated with the most significant module were selected for further analysis. Nine specific modules associated with colon cancer were identified, of which the turquoise module was observed to exhibit the greatest association with the disease. Pathway enrichment analysis of the turquoise module suggested that genes in the turquoise module were associated with 'RNA polymerase' and 'purine metabolism'. Furthermore, gene ontology enrichment analysis revealed the top 30 hub genes with a higher degree in the turquoise module, such as σ‑non‑opioid intracellular receptor 1, transmembrane protein 147 TMEM147) and carbamoyl‑phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase, were predominantly enriched in the biological processes 'translation' and 'gene expression'. Experimental verification demonstrated that the expression of TMEM147 in colon cancer was significantly increased compared with the control. Therefore, the results suggested that genes associated with RNA polymerase and the purine metabolic pathways may be substantially involved in the pathogenesis of colon cancer. Furthermore, TMEM147 may represent a biomarker for colon cancer.
Collapse
Affiliation(s)
- Ye Feng
- Department of Gastrointestinal Colorectal and Anal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yanbo Li
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lin Li
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuefeng Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhi Chen
- Department of Nephrology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
19
|
Zhu Z, Zhang Y, Zhang Y, Zhang H, Liu W, Zhang N, Zhang X, Zhou G, Wu L, Hua K, Ding J. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate growth of VK2 vaginal epithelial cells through MicroRNAs in vitro. Hum Reprod 2019; 34:248-260. [PMID: 30576496 DOI: 10.1093/humrep/dey344] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Could human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Ex) accelerate vaginal epithelium cell (VK2) growth? SUMMARY ANSWER HucMSC-Ex play a significant role in promoting proliferation of VK2 cells by accelerating the cell cycle and inhibiting apoptosis through exosomal microRNAs in vitro. WHAT IS KNOWN ALREADY Numerous studies have reported that MSC-Ex play an important role in tissue injury repair. STUDY DESIGN, SIZE, DURATION hucMSC and exosomes isolated from their conditioned medium were used to treat a vaginal epithelial cell line (VK2). Normal human fibroblasts (HFF-1) were used as negative control to hucMSC. PARTICIPANTS/MATERIALS, SETTING, METHODS VK2 cells were co-cultured with hucMSC whose paracrine effect on the viability, cell cycle and cell apoptosis of VK2 vaginal epithelial cells was further assessed by the CCK-8 assay and flow cytometry. HucMSC-Ex isolated from culture medium by ultracentrifuge were characterized by transmission electron microscopy, nanoparticle tracking analysis and Western blot. HucMSC-Ex at different concentrations and HFF-1 exosomes were used to treat VK2 cells. High-throughput RNA sequencing was utilized to reveal the profile of microRNAs in hucMSC, hucMSC-Ex, HFF-1 and HFF-1 exosomes and GO analysis was applied to demonstrate their functions. To evaluate the function of these specific microRNAs in hucMSC-Ex, VK2 cells were treated with RNA-interfered-hucMSC-Ex (RNAi-hucMSC-Ex) and their proliferation was measured by Label-free Real-time Cellular Analysis System. MAIN RESULTS AND THE ROLE OF CHANCE The study showed that hucMSC stimulate VK2 cell growth possibly through a paracrine route by promoting cell cycle and inhibiting apoptosis. Compared with control and low dose groups, hucMSC-Ex of high concentration (more than 1000 ng/ml) significantly increased VK2's growth after treatment in a dose-depended manner (P < 0.05). HucMSC-Ex raised the proportion of cells in S-phase and reduced the percentage of apoptotic cells in VK2 cells in comparison with the HFF-1 exosomes and control groups (P < 0.05). microRNAs, including miR-100 (16.92%), miR-146a (9.21%), miR-21 (6.67%), miR-221 (6.39%) and miR-143 (4.63%), were found to be specifically enriched (P < 0.05) in hucMSC-Ex and their functions concentrated on cell cycle, development and differentiation. Collectively, our findings indicate that hucMSC-Ex may play a significant role in accelerating VK2's proliferation by promoting cell cycle and inhibiting apoptosis through exosomal microRNAs in vitro. LARGE-SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Our study did not confirm the function of hucMSC-Ex or specifically enriched exosomal microRNAs in vivo. miR-100 and miR-146a are well-known immunomodulatory miRNAs that participate in the regulation of inflammatory disorders and may enhance the therapeutic effect of hucMSC-Ex by promoting the surgical injury repair after vaginal reconstruction. But whether it acts through anti-inflammatory responses needs further study. WIDER IMPLICATIONS OF THE FINDINGS This finding supports the potential use of hucMSC-Ex as a cell-free therapy of Meyer-Rokitansky-Küster-Hauser syndrome (MRKHS) after vaginoplasty. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Chinese National Nature Sciences Foundation (grant number 91440107, 81471416 and 81771524) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19040102). All authors state that there is no conflict of interest to disclose.
Collapse
Affiliation(s)
- Zhongyi Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yijing Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Shanghai Ji Ai Genetics & IVF Institute, Shanghai, China
| | - Yiqun Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongdao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xiaodan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Guannan Zhou
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jingxin Ding
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
20
|
Di Carlo C, Brandi J, Cecconi D. Pancreatic cancer stem cells: Perspectives on potential therapeutic approaches of pancreatic ductal adenocarcinoma. World J Stem Cells 2018; 10:172-182. [PMID: 30631392 PMCID: PMC6325076 DOI: 10.4252/wjsc.v10.i11.172] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive solid tumours of the pancreas, characterised by a five-year survival rate less than 8%. Recent reports that pancreatic cancer stem cells (PCSCs) contribute to the tumorigenesis, progression, and chemoresistance of pancreatic cancer have prompted the investigation of new therapeutic approaches able to directly target PCSCs. In the present paper the non-cancer related drugs that have been proposed to target CSCs that could potentially combat pancreatic cancer are reviewed and evaluated. The role of some pathways and deregulated proteins in PCSCs as new therapeutic targets are also discussed with a focus on selected specific inhibitors. Finally, advances in the development of nanoparticles for targeting PCSCs and site-specific drug delivery are highlighted, and their limitations considered.
Collapse
Affiliation(s)
- Claudia Di Carlo
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy
| | - Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy.
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy
| |
Collapse
|
21
|
Yue B, Liu C, Sun H, Liu M, Song C, Cui R, Qiu S, Zhong M. A Positive Feed-Forward Loop between LncRNA-CYTOR and Wnt/β-Catenin Signaling Promotes Metastasis of Colon Cancer. Mol Ther 2018; 26:1287-1298. [PMID: 29606502 DOI: 10.1016/j.ymthe.2018.02.024] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/13/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
We previously demonstrated that long non-coding RNA cytoskeleton regulator RNA (CYTOR), also known as Linc00152, was significantly overexpressed in colon cancer and conferred resistance to oxaliplatin-induced apoptosis. At the same time, elevated CYTOR expression was also reported in gastric cancer and exerted influences on epithelial-mesenchymal transition (EMT) markers. However, the precise mechanism by which CYTOR promotes the EMT phenotype and cancer metastasis remains poorly understood. Here, we showed that loss of epithelial characteristics and simultaneous gain of mesenchymal features correlated with CYTOR expression. Knockdown of CYTOR attenuated colon cancer cell migration and invasion. Conversely, ectopic expression of CYTOR induced an EMT program and enhanced metastatic properties of colon cancer cells. Mechanistically, the binding of CYTOR to cytoplasmic β-catenin impeded casein kinase 1 (CK1)-induced β-catenin phosphorylation that enabled it to accumulate and translocate to the nucleus. Reciprocally, β-catenin/TCF complex enhanced the transcription activity of CYTOR in nucleus, thus forming a positive feed-forward circuit. Moreover, elevated CYTOR, alone or combined with overexpression of nuclear β-catenin, was predictive of poor prognosis. Our findings suggest that CYTOR promotes colon cancer EMT and metastasis by interacting with β-catenin, and the positive feed-forward circuit of CYTOR-β-catenin might be a useful therapeutic target in antimetastatic strategy.
Collapse
Affiliation(s)
- Ben Yue
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huimin Sun
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Mengru Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Ran Cui
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shenglong Qiu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China.
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
22
|
Repurposing Established Compounds to Target Pancreatic Cancer Stem Cells (CSCs). Med Sci (Basel) 2017; 5:medsci5020014. [PMID: 29099030 PMCID: PMC5635789 DOI: 10.3390/medsci5020014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/11/2017] [Accepted: 06/11/2017] [Indexed: 02/08/2023] Open
Abstract
The diagnosis of pancreatic ductal adenocarcinoma (PDAC) carries a dismal prognosis, in particular, when patients present with unresectable disease. While significant progress has been made in understanding the biology of PDAC, this knowledge has not translated into a clear clinical benefit and current chemotherapeutic strategies only offer a modest improvement in overall survival. Accordingly, novel approaches are desperately needed. One hypothesis that could—at least in part—explain the desolate response of PDAC to chemotherapy is the so-called cancer stem cell (CSC) concept, which attributes specific traits, such as chemoresistance, metastatic potential and a distinct metabolism to a small cellular subpopulation of the whole tumor. At the same time, however, some of these attributes could make CSCs more permissive for novel therapeutic strategies with compounds that are already in clinical use. Most recently, several publications have tried to enlighten the field with the idea of repurposing established drugs for antineoplastic use. As such, recycling drugs could present an intriguing and fast-track method with new therapeutic paradigms in anti-cancer and anti-CSC treatments. Here, we aim to summarize important aspects and novel findings of this emerging field.
Collapse
|