1
|
Duenas-Gonzalez A, Gonzalez-Fierro A, Bornstein-Quevedo L, Gutierrez-Delgado F, Kast RE, Chavez-Blanco A, Dominguez-Gomez G, Candelaria M, Romo-Pérez A, Correa-Basurto J, Lizano M, Perez-de la Cruz V, Robles-Bañuelos B, Nuñez-Corona D, Martinez-Perez E, Verastegui E. Multitargeted polypharmacotherapy for cancer treatment. theoretical concepts and proposals. Expert Rev Anticancer Ther 2024; 24:665-677. [PMID: 38913911 DOI: 10.1080/14737140.2024.2372336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION The pharmacological treatment of cancer has evolved from cytotoxic to molecular targeted therapy. The median survival gains of 124 drugs approved by the FDA from 2003 to 2021 is 2.8 months. Targeted therapy is based on the somatic mutation theory, which has some paradoxes and limitations. While efforts of targeted therapy must continue, we must study newer approaches that could advance therapy and affordability for patients. AREAS COVERED This work briefly overviews how cancer therapy has evolved from cytotoxic chemotherapy to current molecular-targeted therapy. The limitations of the one-target, one-drug approach considering cancer as a robust system and the basis for multitargeting approach with polypharmacotherapy using repurposing drugs. EXPERT OPINION Multitargeted polypharmacotherapy for cancer with repurposed drugs should be systematically investigated in preclinical and clinical studies. Remarkably, most of these proposed drugs already have a long history in the clinical setting, and their safety is known. In principle, the risk of their simultaneous administration should not be greater than that of a first-in-human phase I study as long as the protocol is developed with strict vigilance to detect early possible side effects from their potential interactions. Research on cancer therapy should go beyond the prevailing paradigm targeted therapy.
Collapse
Affiliation(s)
- Alfonso Duenas-Gonzalez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas UNAM, Mexico City, Mexico
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Aurora Gonzalez-Fierro
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Francisco Gutierrez-Delgado
- Centro de Estudios y Prevención del Cancer Tuxtla Gutiérrez, Chiapas, México; Latin American School of Oncology (ELO), México City, Mexico
| | - Richard E Kast
- Head of Faculty, Brain Study, IIAIG Study Center, Burlington, VT, USA
| | - Alma Chavez-Blanco
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Myrna Candelaria
- Departamento de Hematología, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Adriana Romo-Pérez
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| | - Marcela Lizano
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas UNAM, Mexico City, Mexico
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Veronica Perez-de la Cruz
- Neurobiochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez", Mexico City, Mexico
| | | | - David Nuñez-Corona
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Erandi Martinez-Perez
- Subdireccion de Investigación Básica, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Emma Verastegui
- Departamento de Cuidados Paliativos, Division de Cirugia, Instituto Nacional de Cancerologia, Mexico City, Mexico
| |
Collapse
|
2
|
Montoya S, Bourcier J, Noviski M, Lu H, Thompson MC, Chirino A, Jahn J, Sondhi AK, Gajewski S, Tan YS(M, Yung S, Urban A, Wang E, Han C, Mi X, Kim WJ, Sievers Q, Auger P, Bousquet H, Brathaban N, Bravo B, Gessner M, Guiducci C, Iuliano JN, Kane T, Mukerji R, Reddy PJ, Powers J, Sanchez Garcia de los Rios M, Ye J, Risso CB, Tsai D, Pardo G, Notti RQ, Pardo A, After M, Nawaratne V, Totiger TM, Pena-Velasquez C, Rhodes JM, Zelenetz AD, Alencar A, Roeker LE, Mehta S, Garippa R, Linley A, Soni RK, Skånland SS, Brown RJ, Mato AR, Hansen GM, Abdel-Wahab O, Taylor J. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 2024; 383:eadi5798. [PMID: 38301010 PMCID: PMC11103405 DOI: 10.1126/science.adi5798] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.
Collapse
Affiliation(s)
- Skye Montoya
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jessie Bourcier
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hao Lu
- Nurix Therapeutics, San Francisco, CA, USA
| | - Meghan C. Thompson
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra Chirino
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacob Jahn
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anya K. Sondhi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | - Aleksandra Urban
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Cuijuan Han
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Xiaoli Mi
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Won Jun Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quinlan Sievers
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Auger
- Nurix Therapeutics, San Francisco, CA, USA
| | | | | | | | | | | | | | - Tim Kane
- Nurix Therapeutics, San Francisco, CA, USA
| | | | | | | | | | - Jordan Ye
- Nurix Therapeutics, San Francisco, CA, USA
| | - Carla Barrientos Risso
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Tsai
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gabriel Pardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ryan Q. Notti
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY, USA
| | - Alejandro Pardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maurizio After
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vindhya Nawaratne
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tulasigeri M. Totiger
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camila Pena-Velasquez
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joanna M. Rhodes
- division of Hematology-Oncology, Department of Medicine at Zucker School of Medicine at Hofstra/Northwell, CLL Research and Treatment Center, Lake Success, NY, USA
| | - Andrew D. Zelenetz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alvaro Alencar
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lindsey E. Roeker
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core Facility, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Adam Linley
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Sigrid S. Skånland
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Anthony R. Mato
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|