1
|
Huang CL, Qi-En S, Cen XF, Ye T, Qu HS, Chen SJ, Liu D, Xia HG, Xu CF, Zhu JS. TJ0113 attenuates fibrosis in metabolic dysfunction-associated steatohepatitis by inducing mitophagy. Int Immunopharmacol 2025; 156:114678. [PMID: 40252468 DOI: 10.1016/j.intimp.2025.114678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH) fibrosis is a liver disease accompanied by inflammatory cell infiltration. There is growing evidence that insufficient mitophagy can exacerbate inflammation and liver fibrosis (LF). TJ0113 is a novel mitophagy inducer. The study aimed to explore the role of TJ0113 in ameliorating fibrosis in MASH and its mechanisms. METHODS A high-fat diet (HFD)-induced MASH mice model and a transforming growth factor (TGF)-β1-induced LX-2 cells model were used, and then they were treated with TJ0113. Changes in hepatocyte damage were observed using electron microscopy. Expression of key molecules related to mitophagy, mitochondrial damage and inflammation in liver was detected by immunofluorescence staining (IF), immunohistochemistry (IHC) and western blotting (WB). RESULT TJ0113 induces mitophagy through parkin/PINK1 and ATG5 signaling pathways and reduces lipid accumulation, inflammation and fibrosis in the liver of MASH mice. TJ0113 attenuated hepatic injury and lowered serum ALT, AST, TC and TG levels. TJ0113 reduced pro-inflammatory factors (IL-1β, IL-6, TNF-α), TGF-β1/Smad pathway activation and typical fibrosis-related molecules (α-SMA, Collagen-1) expression. In addition, NF-κB/NLRP3 signaling pathway activation after MASH was significantly attenuated by enhanced Mitophagy. We found that TJ0113 was able to effectively and safely induce mitophagy in vitro and reduce TGF-β1/Smad signaling and downstream pro-fibrotic responses in TGF-β1-treated LX-2 cells. CONCLUSION TJ0113 enhances mitophagy to inhibit lipid accumulation, inflammation and fibrosis formation in MASH, and is a candidate for MASH treatment.
Collapse
Affiliation(s)
- Chun-Lian Huang
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Shen Qi-En
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xu-Feng Cen
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Ting Ye
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Hang-Shuai Qu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China.
| | - Si-Jia Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China
| | - Dong Liu
- Hangzhou PhecdaMed Co., Ltd., Third Floor, Building 2, No. 2626. Yuhangtang Road, Yuhang District, Hangzhou 310003, China.
| | - Hong-Guang Xia
- Research Center of Clinical Pharmacy of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Cheng-Fu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Jian-Sheng Zhu
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China.
| |
Collapse
|
2
|
Takagi S, Nakajima M, Koike S, Takami M, Sugiura Y, Sakata S, Baba S, Takemoto A, Huang T, Seto Y, Saito M, Funauchi Y, Ae K, Takeuchi K, Fujita N, Katayama R. Frequent copy number gain of MCL1 is a therapeutic target for osteosarcoma. Oncogene 2025; 44:794-804. [PMID: 39663392 PMCID: PMC11913727 DOI: 10.1038/s41388-024-03251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor primarily affecting children and adolescents. The lack of progress in drug development for OS is partly due to unidentified actionable oncogenic drivers common to OS. In this study, we demonstrate that copy number gains of MCL1 frequently occur in OS, leading to vulnerability to therapies based on Mcl-1 inhibitors. Fluorescence in situ hybridization analysis of 41 specimens revealed MCL1 amplification in 46.3% of patients with OS. Genetic inhibition of MCL1 induced significant apoptosis in MCL1-amplified OS cells, and the pharmacological efficacy of Mcl-1 inhibitors was correlated with MCL1 copy numbers. Chromosome 1q21.2-3 region, where MCL1 is located, contains multiple genes related to the IGF-1R/PI3K pathway, including PIP5K1A, TARS2, OUTD7B, and ENSA, which also showed increased copy numbers in MCL1-amplified OS cells. Furthermore, combining Mcl-1 inhibitors with IGF-1R inhibitors resulted in synergistic cell death by overcoming drug tolerance conferred by the activation of IGF signaling and suppressed tumor growth in MCL1-amplified OS xenograft models. These results suggest that genomic amplification of MCL1 in the 1q21.2-3 region, which occurred in approximately half of OS patients, may serve as a predictive biomarker for the combination therapy with an Mcl-1 inhibitor and an IGF1R inhibitor.
Collapse
Affiliation(s)
- Satoshi Takagi
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Mikako Nakajima
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Sumie Koike
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Miho Takami
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Yoshiya Sugiura
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Toho University Medical Center, Sakura Hospital, Sakura, Japan
| | - Seiji Sakata
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Satoko Baba
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | - Ai Takemoto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tianyi Huang
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Seto
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Masanori Saito
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
| | - Yuki Funauchi
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Department of Orthopedic Surgery, Institute of Science Tokyo, Tokyo, Japan
| | - Keisuke Ae
- Department of Orthopedic Oncology, Cancer Institute Hospital, JFCR, Tokyo, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, JFCR, Tokyo, Japan
- Department of Pathology, Cancer Institute Hospital, JFCR, Tokyo, Japan
- Pathology Project for Molecular Targets, Cancer Institute, JFCR, Tokyo, Japan
| | | | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Panpan SI, Wei GE, Kaiming WU, Zhang R. O-GlcNAcylation of hexokinase 2 modulates mitochondrial dynamics and enhances the progression of lung cancer. Mol Cell Biochem 2025; 480:2633-2643. [PMID: 39496915 PMCID: PMC11961486 DOI: 10.1007/s11010-024-05146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024]
Abstract
Non-small cell lung cancer (NSCLC) stands as the prevailing manifestation of lung cancer, with current therapeutic modalities linked to a dismal prognosis, necessitating further advancements. Hexokinase 2 (HK2), a critical enzyme positioned on the mitochondrial membrane, exerts control over diverse biological pathways, thereby regulating cancer. Nevertheless, the precise role and mechanism of HK2 in NSCLC remain inadequately elucidated, warranting comprehensive investigation. HK2 expression in NSCLC tissues and cell lines was detected through immunohistochemistry and western blot analysis. Concurrently, shRNA assays were applied to scrutinize the impact of HK2 on cell proliferation, apoptosis, migration, and invasion processes in NSCLC cell lines, utilizing CCK8, flow cytometry, wound-healing assay, and transwell techniques. The involvement of HK2 in mitochondrial dynamics was probed through western blot analysis, mitochondrial membrane potential assay, and assessment of ROS generation. Next, the functional role of HK2 was assessed by examining its influence on xenograft tumor growth in nude mice in vivo. Further research has demonstrated that HK2 played a role in NSCLC through its O-GlcNAcylation process. The results of the study revealed that HK2 O-GlcNAcylation promoted the proliferation, migration, and invasive characteristics of NSCLC cells, while alleviating mitochondrial damage, whereas O-GlcNAcylation inactivation yielded the opposite effect. Furthermore, in vivo experiments in nude mice illustrated that HK2 O-GlcNAcylation could stimulate tumor growth in NSCLC. These results suggested that HK2 may impact mitochondrial dynamics in NSCLC through its O-GlcNAcylation, thereby contributing to the progression of NSCLC.
Collapse
Affiliation(s)
- S I Panpan
- Department of Chest Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - G E Wei
- Department of Chest Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - W U Kaiming
- Department of Chest Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China
| | - Renquan Zhang
- Department of Chest Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230031, Anhui, China.
| |
Collapse
|
4
|
Davids MS, Brander DM, Alvarado-Valero Y, Diefenbach CS, Egan DN, Dinner SN, Javidi-Sharifi N, Al Malki MM, Begna KH, Bhatt VR, Abedin S, Cook RJ, Collins MC, Roleder C, Dominguez EC, Rajagopalan P, Wiley SE, Ghalie RG, Danilov AV. A phase 1 study of the CDK9 inhibitor voruciclib in relapsed/refractory acute myeloid leukemia and B-cell malignancies. Blood Adv 2025; 9:820-832. [PMID: 39705540 PMCID: PMC11872473 DOI: 10.1182/bloodadvances.2024014633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 12/22/2024] Open
Abstract
ABSTRACT The antiapoptotic protein, myeloid cell leukemia-1 (Mcl-1), contributes to the pathophysiology of acute myeloid leukemia (AML) and certain B-cell malignancies. Tumor dependence on Mcl-1 is associated with resistance to venetoclax. Voruciclib, an oral cyclin-dependent kinase (CDK) inhibitor targeting CDK9, indirectly decreases Mcl-1 protein expression and synergizes with venetoclax in preclinical models. This dose escalation study evaluated voruciclib in patients with previously treated hematologic malignancies. Initially, voruciclib was administered daily, continuously, on a 28-day cycle (group 1). After 2 patients with prior allogeneic stem cell transplantation had a dose-limiting toxicity (DLT) of interstitial pneumonitis at 100 mg, voruciclib administration was changed to days 1 to 14 of a 28-day cycle (group 2). Forty patients, 21 with AML and 19 with B-cell malignancies, were enrolled. Patients had a median of 3 prior lines of therapy (range, 1-8). Dose escalation in group 2 was stopped at 200 mg, a dose that achieved plasma concentrations sufficient for target inhibition, without DLTs observed. The most common adverse events were diarrhea (30%), nausea (25%), anemia (22%), fatigue (22%), constipation (17%), dizziness (15%), and dyspnea (15%). In AML, 1 patient achieved a morphologic leukemia-free state, and 2 had stable disease. Voruciclib treatment led to a decrease in MCL1 messenger RNA expression, downregulation of myelocytomatosis (MYC) and NF-κB transcriptional gene sets, and reduced phosphorylation of RNA polymerase 2. Voruciclib on intermittent dosing was well tolerated, with no DLTs, paving the way for evaluation of the combination of voruciclib with venetoclax for patients with previously treated AML. This trial was registered at www.clinicaltrials.gov as #NCT03547115.
Collapse
Affiliation(s)
- Matthew S. Davids
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Danielle M. Brander
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke Cancer Institute, Durham, NC
| | - Yesid Alvarado-Valero
- Department of Leukemia, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX
| | - Catherine S. Diefenbach
- Department of Medicine, Division of Hematology and Medical Oncology, New York University Langone Perlmutter Cancer Institute, New York, NY
| | - Daniel N. Egan
- Center for Blood Disorders and Stem Cell Transplantation, Swedish Cancer Institute, Seattle, WA
| | - Shira N. Dinner
- Hematology Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL
| | | | - Monzr M. Al Malki
- Division of Leukemia, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Kebede H. Begna
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Vijaya Raj Bhatt
- Department of Internal Medicine, Division of Oncology & Hematology, The Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Sameem Abedin
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| | - Rachel J. Cook
- Center for Hematologic Malignancies, Oregon Health & Science University, Portland, OR
| | - Mary C. Collins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Carly Roleder
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Edward C. Dominguez
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | | | | | | | - Alexey V. Danilov
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| |
Collapse
|
5
|
Chen J, Chen G, Fang X, Sun J, Song J, Chen Z. Elevated MCL1 expression drives esophageal squamous cell carcinoma stemness and induces resistance to radiotherapy. J Thorac Dis 2024; 16:8684-8698. [PMID: 39831242 PMCID: PMC11740075 DOI: 10.21037/jtd-2024-2027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/21/2024] [Indexed: 01/22/2025]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) stands as the sixth most common cause of cancer-related mortality on a global scale, with a strikingly high proportion-over half-of these fatalities occurring within China. The emergence of radiation resistance in ESCC patients significantly diminishes overall survival rates, complicating treatment regimens and reducing clinical outcomes. There is an urgent need to explore the molecular mechanisms that underpin radiation resistance in ESCC, which could lead to the identification of new therapeutic targets aimed at overcoming this resistance. This study aims to elucidate the role of myeloid cell leukemia-1 (MCL1) in ESCC and its association with radioresistance, thereby providing a novel strategy for enhancing the efficacy of radiotherapy. Methods We used The Cancer Genome Atlas (TCGA) database, Genotype-Tissue Expression (GTEx) project and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) of 10 pairs of fresh endoscopic biopsy samples from patients with ESCC to analyze the messenger RNA (mRNA) expression levels of MCL1 in esophageal cancer tissues as compared to normal tissues. Immunohistochemistry (IHC) staining and Western blotting were performed using an anti-MCL1 antibody to visualize protein expression. The mechanism of radioresistance of ESCC was examined by combining bioinformatics analysis, Western blotting, and clone formation and stemness sphere formation assays. Results The analysis of TCGA database and the results of RT-qPCR indicated that the mRNA level of MCL1 was overexpressed in esophageal cancer tissues. Subsequently, the results of IHC and Western blotting showed that the protein level of MCL1 expression in cancer tissues was significantly higher than that in adjacent normal tissues. Moreover, there was a significant upregulation of MCL1 in ESCC tissues and in radioresistant tissues and cells, with its overexpression correlating with the acquisition of stemness properties in ESCC. In terms of mechanism, MCL1 induced cell cycle arrest by regulating the expression of cyclin D3 and p21 through the JAK-STAT signaling pathway. G0/G1 phase arrest contributed to the stem cell-like phenotype. Blocking JAK-STAT signaling significantly improved the efficacy of radiotherapy for ESCC. Conclusions These findings indicate that MCL1 is a critical cell cycle regulator that drives the stemness and radioresistance of ESCC and may thus be a potential target in a combined therapeutic strategy aimed at overcoming radioresistance.
Collapse
Affiliation(s)
- Junjie Chen
- Clinical Medical Research Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Guoling Chen
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinying Fang
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Sun
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiahui Song
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhiming Chen
- Department of Radiotherapy & Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
6
|
Desai P, Lonial S, Cashen A, Kamdar M, Flinn I, O’Brien S, Garcia JS, Korde N, Moslehi J, Wey M, Cheung P, Sharma S, Olabode D, Chen H, Ali Syed F, Liu M, Saeh J, Andrade-Campos M, Kadia TM, Blachly JS. A Phase 1 First-in-Human Study of the MCL-1 Inhibitor AZD5991 in Patients with Relapsed/Refractory Hematologic Malignancies. Clin Cancer Res 2024; 30:4844-4855. [PMID: 39167622 PMCID: PMC11528199 DOI: 10.1158/1078-0432.ccr-24-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE AZD5991, a human MCL-1 inhibitor, was assessed for safety, tolerability, pharmacokinetics, and antitumor activity as monotherapy and in combination with venetoclax in patients with relapsed or refractory hematologic malignancies. PATIENTS AND METHODS In the monotherapy cohort (n = 61), patients with hematologic malignancies received AZD5991 intravenously in escalating doses either once or twice weekly, following intrapatient dose escalation, during a 3-week cycle. In the combination cohort (n = 17), patients with acute myeloid leukemia and myelodysplastic syndrome received escalating doses of AZD5991 and venetoclax during either a 3- or 4-week cycle. Primary objectives were safety and maximum tolerated dose; secondary objectives included plasma pharmacokinetics and antitumor activity. RESULTS The most common (≥30%) adverse events were diarrhea (59.0%), nausea (55.1%), and vomiting (47.4%). Four deaths occurred because of adverse events: cardiac arrest, sepsis, tumor lysis syndrome, and acute respiratory failure; only tumor lysis syndrome was related to AZD5991. Dose-limiting toxicities occurred in five patients. Three patients with myelodysplastic syndrome achieved an objective response: one marrow complete remission without hematologic improvement, one partial remission with AZD5991 monotherapy, and one marrow complete remission with AZD5991 + venetoclax. Asymptomatic elevations of troponin I or T were observed in eight (10.3%) patients. Post hoc retrospective analysis revealed elevated troponin T in 14/31 patients before any AZD5991 dose and in 54/65 patients after any AZD5991 dose at or after Cycle 1. No associations were found between elevated troponin and cardiovascular risk factors. CONCLUSIONS Treatment with AZD5991 was associated with high incidence of laboratory troponin elevation and a low overall response rate.
Collapse
Affiliation(s)
| | - Sagar Lonial
- Emory Winship Cancer Institute, Atlanta, Georgia
| | - Amanda Cashen
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Ian Flinn
- Tennessee Oncology, Nashville, Tennessee
| | | | | | - Neha Korde
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Javid Moslehi
- University of California San Francisco, San Francisco, California
| | | | | | | | | | - Hong Chen
- AstraZeneca, Cambridge, United Kingdom
| | | | - Mary Liu
- AstraZeneca, Cambridge, United Kingdom
| | | | | | | | - James S. Blachly
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
7
|
Bayat M, Golestani S, Motlaghzadeh S, Bannazadeh Baghi H, Lalehzadeh A, Sadri Nahand J. War or peace: Viruses and metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189179. [PMID: 39299491 DOI: 10.1016/j.bbcan.2024.189179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Metastasis, the dissemination of malignant cells from a primary tumor to secondary sites, poses a catastrophic burden to cancer treatment and is the predominant cause of mortality in cancer patients. Metastasis as one of the main aspects of cancer progression could be strongly under the influence of viral infections. In fact, viruses have been central to modern cancer research and are associated with a great number of cancer cases. Viral-encoded elements are involved in modulating essential pathways or specific targets that are implicated in different stages of metastasis. Considering the continuous emergence of new viruses and the establishment of their contribution to cancer progression, the warfare between viruses and cancer appears to be endless. Here we aimed to review the critical mechanism and pathways involved in cancer metastasis and the influence of viral machinery and various routes that viruses adopt to manipulate those pathways for their benefit.
Collapse
Affiliation(s)
- Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahin Golestani
- Department of ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motlaghzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aidin Lalehzadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Porwal M, Rastogi V, Chandra P, Sharma KK, Varshney P. Significance of Phytoconstituents in Modulating Cell Signalling Pathways for the Treatment of Pancreatic Cancer. REVISTA BRASILEIRA DE FARMACOGNOSIA 2024. [DOI: 10.1007/s43450-024-00589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/26/2024] [Indexed: 01/03/2025]
|
9
|
Zhang Y, Zhou X. Targeting regulated cell death (RCD) in hematological malignancies: Recent advances and therapeutic potential. Biomed Pharmacother 2024; 175:116667. [PMID: 38703504 DOI: 10.1016/j.biopha.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024] Open
Abstract
Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
10
|
Yin ZH, Tan WH, Jiang YL. Exploration of the Molecular Mechanism of Curcuma aromatica Salisb's Anticolorectal Cancer Activity via the Integrative Approach of Network Pharmacology and Experimental Validation. ACS OMEGA 2024; 9:21426-21439. [PMID: 38764617 PMCID: PMC11097187 DOI: 10.1021/acsomega.4c01759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Curcuma aromatica Salisb (Cur), a well-known herbal medicine, has a wide spectrum of anti-inflammatory, anticarcinogenic, and antioxidant activities. However, the roles of its active compounds and potential mechanisms in colorectal cancer remain unknown. This research utilized network pharmacology and experimental validation to explore the possible mechanisms by which Cur protects against colorectal cancer. The active compounds of Cur and related genes for colorectal cancer were obtained from public databases. The DrugBank database was used to search for anticolorectal cancer drugs licensed through the FDA and their targets, and a "drug-component-target" relationship network was created using the Cytoscape program. The String database produced the PPI network. The ability of these active ingredients to bind to core targets was confirmed by molecular docking using AutoDock Vina. Cell and animal experiments were then carried out. A total of 274 targets were obtained from Cur, 49 of which were potential therapeutic targets. Four key targets, PTGS2, AKT1, TP53, and estrogen receptor 1 (ESR1), were screened via the PPI network and the FDA drug-target network. Molecular docking results revealed that Cur had strong binding abilities to these targets. In vivo and in vitro experiments demonstrated that Cur suppressed the development of colorectal cancer by regulating its targets (PTGS2, AKT1, TP53, and ESR1), which play crucial roles in promoting apoptosis and suppressing cell proliferation, migration, and invasion. Collectively, Cur protects against colorectal cancer by regulating the AKT1/PTGS2/ESR1 and P53 pathways, which lays the groundwork for further research and clinical applications of Cur in colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhi-Hui Yin
- The First Affiliated Hospital, Department of Anorectal, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Hua Tan
- The First Affiliated Hospital, Emergency Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yi-Ling Jiang
- The First Affiliated Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
11
|
Durand R, Descamps G, Bellanger C, Dousset C, Maïga S, Alberge JB, Derrien J, Cruard J, Minvielle S, Lilli NL, Godon C, Le Bris Y, Tessoulin B, Amiot M, Gomez-Bougie P, Touzeau C, Moreau P, Chiron D, Moreau-Aubry A, Pellat-Deceunynck C. A p53 score derived from TP53 CRISPR/Cas9 HMCLs predicts survival and reveals a major role of BAX in the response to BH3 mimetics. Blood 2024; 143:1242-1258. [PMID: 38096363 DOI: 10.1182/blood.2023021581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/27/2023] [Accepted: 11/29/2023] [Indexed: 03/25/2024] Open
Abstract
ABSTRACT To establish a strict p53-dependent gene-expression profile, TP53-/- clones were derived from TP53+/+ and TP53-/mut t(4;14) human myeloma cell lines (HMCLs) using CRISPR/Cas9 technology. From the 17 dysregulated genes shared between the TP53-/- clones from TP53+/+ HMCLs, we established a functional p53 score, involving 13 genes specifically downregulated upon p53 silencing. This functional score segregated clones and myeloma cell lines as well as other cancer cell lines according to their TP53 status. The score efficiently identified samples from patients with myeloma with biallelic TP53 inactivation and was predictive of overall survival in Multiple Myeloma Research Foundation-coMMpass and CASSIOPEA cohorts. At the functional level, we showed that among the 13 genes, p53-regulated BAX expression correlated with and directly affected the MCL1 BH3 mimetic S63845 sensitivity of myeloma cells by decreasing MCL1-BAX complexes. However, resistance to S63845 was overcome by combining MCL1 and BCL2 BH3 mimetics, which displayed synergistic efficacy. The combination of BH3 mimetics was effective in 97% of patient samples with or without del17p. Nevertheless, single-cell RNA sequencing analysis showed that myeloma cells surviving the combination had lower p53 score, showing that myeloma cells with higher p53 score were more sensitive to BH3 mimetics. Taken together, we established a functional p53 score that identifies myeloma cells with biallelic TP53 invalidation, demonstrated that p53-regulated BAX is critical for optimal cell response to BH3 mimetics, and showed that MCL1 and BCL2 BH3 mimetics in combination may be of greater effectiveness for patients with biallelic TP53 invalidation, for whom there is still an unmet medical need.
Collapse
Affiliation(s)
- Romane Durand
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Géraldine Descamps
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Céline Bellanger
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Christelle Dousset
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Sophie Maïga
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Jean-Baptiste Alberge
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Jennifer Derrien
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Jonathan Cruard
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Stéphane Minvielle
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | | | | | - Yannick Le Bris
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Benoit Tessoulin
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Martine Amiot
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Patricia Gomez-Bougie
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Cyrille Touzeau
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - Philippe Moreau
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire (CHU) de Nantes, CNRS, INSERM, CRCI2NA, Nantes, France
| | - David Chiron
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Agnès Moreau-Aubry
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| | - Catherine Pellat-Deceunynck
- Molecular Vulnerabilities of Tumor Escape in B-cell Malignancies, Nantes Université, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes Angers (CRCI2NA), Nantes, France
- Hematology Department, Site de Recherche Intégrée sur le Cancer, Imaging and Longitudinal Investigations to Ameliorate Decision-making (SIRIC ILIAD), Nantes, France
| |
Collapse
|
12
|
Fultang N, Schwab AM, McAneny-Droz S, Grego A, Rodgers S, Torres BV, Heiser D, Scherle P, Bhagwat N. PBRM1 loss is associated with increased sensitivity to MCL1 and CDK9 inhibition in clear cell renal cancer. Front Oncol 2024; 14:1343004. [PMID: 38371625 PMCID: PMC10869502 DOI: 10.3389/fonc.2024.1343004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
MCL1 is a member of the BCL2 family of apoptosis regulators, which play a critical role in promoting cancer survival and drug resistance. We previously described PRT1419, a potent, MCL1 inhibitor with anti-tumor efficacy in various solid and hematologic malignancies. To identify novel biomarkers that predict sensitivity to MCL1 inhibition, we conducted a gene essentiality analysis using gene dependency data generated from CRISPR/Cas9 cell viability screens. We observed that clear cell renal cancer (ccRCC) cell lines with damaging PBRM1 mutations displayed a strong dependency on MCL1. PBRM1 (BAF180), is a chromatin-targeting subunit of mammalian pBAF complexes. PBRM1 is frequently altered in various cancers particularly ccRCC with ~40% of tumors harboring damaging PBRM1 alterations. We observed potent inhibition of tumor growth and induction of apoptosis by PRT1419 in various preclinical models of PBRM1-mutant ccRCC but not PBRM1-WT. Depletion of PBRM1 in PBRM1-WT ccRCC cell lines induced sensitivity to PRT1419. Mechanistically, PBRM1 depletion coincided with increased expression of pro-apoptotic factors, priming cells for caspase-mediated apoptosis following MCL1 inhibition. Increased MCL1 activity has been described as a resistance mechanism to Sunitinib and Everolimus, two approved agents for ccRCC. PRT1419 synergized with both agents to potently inhibit tumor growth in PBRM1-loss ccRCC. PRT2527, a potent CDK9 inhibitor which depletes MCL1, was similarly efficacious in monotherapy and in combination with Sunitinib in PBRM1-loss cells. Taken together, these findings suggest PBRM1 loss is associated with MCL1i sensitivity in ccRCC and provide rationale for the evaluation of PRT1419 and PRT2527 for the treatment for PBRM1-deficient ccRCC.
Collapse
|
13
|
Wang J, Liang S, Ma T, Chen S, Hu Y, Wang L. Tranexamic Acid Causes Chondral Injury Through Chondrocytes Apoptosis Induced by Activating Endoplasmic Reticulum Stress. Arthroscopy 2023; 39:2529-2546.e1. [PMID: 37683831 DOI: 10.1016/j.arthro.2023.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
PURPOSE To investigate whether tranexamic acid (TXA) is cytotoxic in chondrocyte and cartilage tissues, as well as explore the mechanisms behind the possible toxicity in detail. METHODS We detected the cell viability of chondrocytes in vitro and the change of morphology and specific in vivo contents of cartilage after TXA treatment. Furthermore, we detected apoptosis in cartilage. We used apoptosis-specific staining, reactive oxygen species detection, mitochondrial membrane potential detection, flow cytometry, and western blot for apoptosis detection. Finally, we detected the activation of endoplasmic reticulum stress (ERS) in TXA-treated chondrocytes to clarify the mechanism behind chondrocyte apoptosis. RESULTS TXA presented an increasing toxic effect with increasing concentrations, especially in the 100 mg/mL group. In addition, we found that 50 mg/mL and 100 mg/mL TXA significantly increased apoptosis in cartilage and subchondral bone. TXA could induce chondrocyte apoptosis in cell and protein levels with reactive oxygen species generation and mitochondrial membrane depolarization. An apoptosis inhibitor could inhibit the induced apoptosis. Next, TXA induced calcium overload in chondrocytes and increased ERS-specific protein expression, whereas ERS inhibitor blocked ERS activation and further inhibited chondrocyte apoptosis. CONCLUSIONS We concluded that TXA had a toxic effect on chondrocytes by inducing apoptosis through ERS activation, especially in 50 mg/mL and 100 mg/mL groups. We recommend TXA concentrations of less than 50 mg/mL in joint surgeries. CLINICAL RELEVANCE It is still unclear whether TXA has a toxic effect on cartilage when topically used in joint surgeries. The concentration also varies. This study provides additional evidence that TXA at high concentrations will cause cartilage damage, which will help to provide a new understanding of the clinical administration of TXA.
Collapse
Affiliation(s)
- Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
14
|
Li Y, Lee HH, Jiang VC, Che Y, McIntosh J, Jordan A, Vargas J, Zhang T, Yan F, Simmons ME, Wang W, Nie L, Yao Y, Jain P, Wang M, Liu Y. Potentiation of apoptosis in drug-resistant mantle cell lymphoma cells by MCL-1 inhibitor involves downregulation of inhibitor of apoptosis proteins. Cell Death Dis 2023; 14:714. [PMID: 37919300 PMCID: PMC10622549 DOI: 10.1038/s41419-023-06233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) and CAR T-cell therapy have demonstrated tremendous clinical benefits in mantle cell lymphoma (MCL) patients, but intrinsic or acquired resistance inevitably develops. In this study, we assessed the efficacy of the highly potent and selective MCL-1 inhibitor AZD5991 in various therapy-resistant MCL cell models. AZD5991 markedly induced apoptosis in these cells. In addition to liberating BAK from the antiapoptotic MCL-1/BAK complex for the subsequent apoptosis cascade, AZD5991 downregulated inhibitor of apoptosis proteins (IAPs) through a BAK-dependent mechanism to amplify the apoptotic signal. The combination of AZD5991 with venetoclax enhanced apoptosis and reduced mitochondrial oxygen consumption capacity in MCL cell lines irrespective of their BTKi or venetoclax sensitivity. This combination also dramatically inhibited tumor growth and prolonged mouse survival in two aggressive MCL patient-derived xenograft models. Mechanistically, the augmented cell lethality was accompanied by the synergistic suppression of IAPs. Supporting this notion, the IAP antagonist BV6 induced dramatic apoptosis in resistant MCL cells and sensitized the resistant MCL cells to venetoclax. Our study uncovered another unique route for MCL-1 inhibitor to trigger apoptosis, implying that the pro-apoptotic combination of IAP antagonists and apoptosis inducers could be further exploited for MCL patients with multiple therapeutic resistance.
Collapse
Affiliation(s)
- Yijing Li
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Heng-Huan Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vivian Changying Jiang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuxuan Che
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph McIntosh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alexa Jordan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jovanny Vargas
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tianci Zhang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fangfang Yan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Margaret Elizabeth Simmons
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lei Nie
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yixin Yao
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Yang K, Xiao Y, Zhong L, Zhang W, Wang P, Ren Y, Shi L. p53-regulated lncRNAs in cancers: from proliferation and metastasis to therapy. Cancer Gene Ther 2023; 30:1456-1470. [PMID: 37679529 DOI: 10.1038/s41417-023-00662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/19/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as master gene regulators through various mechanisms such as transcription, translation, protein modification and RNA-protein complexes. LncRNA dysregulation is frequently associated with a variety of biological functions and human diseases including cancer. The p53 network is a key tumor-suppressive mechanism that transcriptionally activates target genes to suppress cellular proliferation in human malignancies. Recent research indicates that lncRNAs play an important role in the p53 signaling pathway. In this review, we summarize the current knowledge of lncRNAs in p53-relevant functions and provide an overview of how these altered lncRNAs contribute to tumor initiation and progression. We also discuss the association between lncRNA and up- or downstream genes of p53. These findings imply that lncRNAs can help identify cellular vulnerabilities that may prove to be promising potential biomarkers and therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Kaixin Yang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yinan Xiao
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Linghui Zhong
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wenyang Zhang
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Peng Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, 075131, People's Republic of China
| | - Yaru Ren
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lei Shi
- RNA Oncology Group, School of Public Health, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
16
|
Raghani NR, Shah DD, Shah TS, Chorawala MR, Patel RB. Combating relapsed and refractory Mantle cell lymphoma with novel therapeutic armamentarium: Recent advances and clinical prospects. Crit Rev Oncol Hematol 2023; 190:104085. [PMID: 37536448 DOI: 10.1016/j.critrevonc.2023.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Mantle cell lymphoma (MCL) is a rare, aggressive subtype of non-Hodgkin's lymphoma (NHL), accounting for 5% of all cases. Due to its virulence factor, it is an incurable disease and keeps relapsing despite an intensive treatment regimen. Advancements in research and drug discovery have shifted the treatment strategy from conventional chemotherapy to targeted agents and immunotherapies. The establishment of the role of Bruton tyrosine kinase led to the development of ibrutinib, a first-generation BTK inhibitor, and its successors. A conditioning regimen based immunotherapeutic agent like ibritumumob, has also demonstrated a viable response with a favorable toxicity profile. Brexucabtagene Autoleucel, the only approved CAR T-cell therapy, has proven advantageous for relapsed/refractory MCL in both children and adults. This article reviews certain therapies that could help update the current approach and summarizes a few miscellaneous agents, which, seldom studied in trials, could alleviate the regression observed in traditional therapies. DATA AVAILABILITY: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
Affiliation(s)
- Neha R Raghani
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Disha D Shah
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Tithi S Shah
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Rakesh B Patel
- Department of Internal Medicine, Division of Hematology and Oncology, UI Carver College of Medicine: The University of Iowa Roy J and Lucille A Carver College of Medicine, 375 Newton Rd, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Jung M, Bui I, Bonavida B. Role of YY1 in the Regulation of Anti-Apoptotic Gene Products in Drug-Resistant Cancer Cells. Cancers (Basel) 2023; 15:4267. [PMID: 37686541 PMCID: PMC10486809 DOI: 10.3390/cancers15174267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is a leading cause of death among the various diseases encountered in humans. Cancer is not a single entity and consists of numerous different types and subtypes that require various treatment regimens. In the last decade, several milestones in cancer treatments were accomplished, such as specific targeting agents or revitalizing the dormant anti-tumor immune response. These milestones have resulted in significant positive clinical responses as well as tumor regression and the prolongation of survival in subsets of cancer patients. Hence, in non-responding patients and non-responding relapsed patients, cancers develop intrinsic mechanisms of resistance to cell death via the overexpression of anti-apoptotic gene products. In parallel, the majority of resistant cancers have been reported to overexpress a transcription factor, Yin Yang 1 (YY1), which regulates the chemo-immuno-resistance of cancer cells to therapeutic anticancer cytotoxic agents. The relationship between the overexpression of YY1 and several anti-apoptotic gene products, such as B-cell lymphoma 2 protein (Bcl-2), B-cell lymphoma extra-large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1) and survivin, is investigated in this paper. The findings demonstrate that these anti-apoptotic gene products are regulated, in part, by YY1 at the transcriptional, epigenetic, post-transcriptional and translational levels. While targeting each of the anti-apoptotic gene products individually has been examined and clinically tested for some, this targeting strategy is not effective due to compensation by other overexpressed anti-apoptotic gene products. In contrast, targeting YY1 directly, through small interfering RNAs (siRNAs), gene editing or small molecule inhibitors, can be therapeutically more effective and generalized in YY1-overexpressed resistant cancers.
Collapse
Affiliation(s)
| | | | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
18
|
Tantawy SI, Timofeeva N, Sarkar A, Gandhi V. Targeting MCL-1 protein to treat cancer: opportunities and challenges. Front Oncol 2023; 13:1226289. [PMID: 37601693 PMCID: PMC10436212 DOI: 10.3389/fonc.2023.1226289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Evading apoptosis has been linked to tumor development and chemoresistance. One mechanism for this evasion is the overexpression of prosurvival B-cell lymphoma-2 (BCL-2) family proteins, which gives cancer cells a survival advantage. Mcl-1, a member of the BCL-2 family, is among the most frequently amplified genes in cancer. Targeting myeloid cell leukemia-1 (MCL-1) protein is a successful strategy to induce apoptosis and overcome tumor resistance to chemotherapy and targeted therapy. Various strategies to inhibit the antiapoptotic activity of MCL-1 protein, including transcription, translation, and the degradation of MCL-1 protein, have been tested. Neutralizing MCL-1's function by targeting its interactions with other proteins via BCL-2 interacting mediator (BIM)S2A has been shown to be an equally effective approach. Encouraged by the design of venetoclax and its efficacy in chronic lymphocytic leukemia, scientists have developed other BCL-2 homology (BH3) mimetics-particularly MCL-1 inhibitors (MCL-1i)-that are currently in clinical trials for various cancers. While extensive reviews of MCL-1i are available, critical analyses focusing on the challenges of MCL-1i and their optimization are lacking. In this review, we discuss the current knowledge regarding clinically relevant MCL-1i and focus on predictive biomarkers of response, mechanisms of resistance, major issues associated with use of MCL-1i, and the future use of and maximization of the benefits from these agents.
Collapse
Affiliation(s)
- Shady I. Tantawy
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Timofeeva
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aloke Sarkar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Zhang A, Guo Z, Ren JX, Chen H, Yang W, Zhou Y, Pan L, Chen Z, Ren F, Chen Y, Zhang M, Peng F, Chen W, Wang X, Zhang Z, Wu H. Development of an MCL-1-related prognostic signature and inhibitors screening for glioblastoma. Front Pharmacol 2023; 14:1162540. [PMID: 37538176 PMCID: PMC10394558 DOI: 10.3389/fphar.2023.1162540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: The effect of the conventional treatment methods of glioblastoma (GBM) is poor and the prognosis of patients is poor. The expression of MCL-1 in GBM is significantly increased, which shows a high application value in targeted therapy. In this study, we predicted the prognosis of glioblastoma patients, and therefore constructed MCL-1 related prognostic signature (MPS) and the development of MCL-1 small molecule inhibitors. Methods: In this study, RNA-seq and clinical data of 168 GBM samples were obtained from the TCGA website, and immunological analysis, differential gene expression analysis and functional enrichment analysis were performed. Subsequently, MCL-1-associated prognostic signature (MPS) was constructed and validated by LASSO Cox analysis, and a nomogram was constructed to predict the prognosis of patients. Finally, the 17931 small molecules downloaded from the ZINC15 database were screened by LibDock, ADME, TOPKAT and CDOCKER modules and molecular dynamics simulation in Discovery Studio2019 software, and two safer and more effective small molecule inhibitors were finally selected. Results: Immunological analysis showed immunosuppression in the MCL1_H group, and treatment with immune checkpoint inhibitors had a positive effect. Differential expression gene analysis identified 449 differentially expressed genes. Build and validate MPS using LASSO Cox analysis. Use the TSHR HIST3H2A, ARGE OSMR, ARHGEF25 build risk score, proved that low risk group of patients prognosis is better. Univariate and multivariate analysis proved that risk could be used as an independent predictor of patient prognosis. Construct a nomogram to predict the survival probability of patients at 1,2,3 years. Using a series of computer-aided techniques, two more reasonable lead compounds ZINC000013374322 and ZINC000001090002 were virtually selected. These compounds have potential inhibitory effects on MCL-1 and provide a basis for the design and further development of MCL-1 specific small molecule inhibitors. Discussion: This study analyzed the effect of MCL-1 on the prognosis of glioblastoma patients from the perspective of immunology, constructed a new prognostic model to evaluate the survival rate of patients, and further screened 2 MCL-1 small molecule inhibitors, which provides new ideas for the treatment and prognosis of glioblastoma.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhen Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia-xin Ren
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hongyu Chen
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenzhuo Yang
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Zhou
- Clinical College, Jilin University, Changchun, China
| | - Lin Pan
- Clinical College, Jilin University, Changchun, China
| | - Zhuopeng Chen
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fei Ren
- Clinical College, Jilin University, Changchun, China
| | - Youqi Chen
- Clinical College, Jilin University, Changchun, China
| | - Menghan Zhang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Xinxiang Medical College, Xinxiang, China
| | - Fei Peng
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Wanting Chen
- Clinical College, Jilin University, Changchun, China
| | - Xinhui Wang
- Department of Hematology, The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, China
| | - Zhiyun Zhang
- Department of Plastic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hui Wu
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Li Z, Yin X, Lyu C, Wang T, Wang W, Zhang J, Wang J, Wang Z, Han C, Zhang R, Guo D, Xu R. Zinc oxide nanoparticles induce toxicity in diffuse large B-cell lymphoma cell line U2932 via activating PINK1/Parkin-mediated mitophagy. Biomed Pharmacother 2023; 164:114988. [PMID: 37307677 DOI: 10.1016/j.biopha.2023.114988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma. Zinc oxide (ZnO) nanoparticles have excellent anti-tumor properties in the biomedical field. The present study aimed to explore the underlying mechanism by which ZnO nanoparticles induce toxicity in DLBCL cells (U2932) via the PINK1/Parkin-mediated mitophagy pathway. After U2932 cells were exposed to various concentrations of ZnO nanoparticles, the cell survival rate, reactive oxygen species (ROS) generation, cell cycle arrest, and changes in the expression of PINK1, Parkin, P62, and LC3 were monitored. Moreover, we investigated monodansylcadaverine (MDC) fluorescence intensity and autophagosome and further validated the results using the autophagy inhibitor 3-methyladenine (3-MA). The results showed that ZnO nanoparticles could effectively inhibit the proliferation of U2932 cells and induce cell cycle arrest at the G0/G1 phases. Moreover, ZnO nanoparticles significantly increased ROS production, MDC fluorescence intensity, autophagosome formation, and the expression of PINK1, Parkin, and LC3, and decreased the expression of P62 in U2932 cells. In contrast, the autophagy level was reduced after the intervention of the 3-MA. Overall, ZnO nanoparticles can trigger PINK1/Parkin-mediated mitophagy signaling in U2932 cells, which may be a potential therapeutic approach for DLBCL.
Collapse
Affiliation(s)
- Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Teng Wang
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China
| | - Wenhao Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jiachen Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Jinxin Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Zhenzhen Wang
- Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China
| | - Chen Han
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong Province, China.
| | - Ruirong Xu
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan 250014, China; Department of Hematology, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369#, Jingshi Road, Jinan 250014, Shandong Province, China; Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
21
|
Zhao P, Song H, Gao F, Chen L, Qiu J, Jin J, Pan C, Tang Y, Chen M, Pan Y, Li Y, Huang L, Yang J, Hao X. A Novel Derivative of Curcumol, HCL-23, Inhibits the Malignant Phenotype of Triple-Negative Breast Cancer and Induces Apoptosis and HO-1-Dependent Ferroptosis. Molecules 2023; 28:molecules28083389. [PMID: 37110625 PMCID: PMC10142363 DOI: 10.3390/molecules28083389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive molecular subtype of breast cancer. Curcumol, as a natural small molecule compound, has potential anti-breast cancer activity. In this study, we chemically synthesized a derivative of curcumol, named HCL-23, by structural modification and explored its effect on and underlying mechanism regarding TNBC progression. MTT and colony formation assays demonstrated that HCL-23 significantly inhibited TNBC cells proliferation. HCL-23 induced G2/M phase cell cycle arrest and repressed the capability of migration, invasion, and adhesion in MDA-MB-231 cells. RNA-seq results identified 990 differentially expressed genes including 366 upregulated and 624 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) revealed that these differentially expressed genes were obviously enriched in adhesion, cell migration, apoptosis, and ferroptosis. Furthermore, HCL-23 induced apoptosis via the loss of mitochondrial membrane potential and the activation of the caspase family in TNBC cells. In addition, HCL-23 was verified to trigger ferroptosis through increasing cellular reactive oxygen species (ROS), labile iron pool (LIP), and lipid peroxidation levels. Mechanistically, HCL-23 markedly upregulated the expression of heme oxygenase 1 (HO-1), and the knockdown of HO-1 could attenuate ferroptosis induced by HCL-23. In animal experiments, we found that HCL-23 inhibited tumor growth and weight. Consistently, the upregulation of Cleaved Caspase-3, Cleaved PARP, and HO-1 expression was also observed in tumor tissues treated with HCL-23. In summary, the above results suggest that HCL-23 can promote cell death through activating caspases-mediated apoptosis and HO-1-dependent ferroptosis in TNBC. Therefore, our findings provide a new potential agent against TNBC.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Hui Song
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
| | - Futian Gao
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Liang Chen
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Jianfei Qiu
- Key Laboratory of Modern Pathogen Biology and Characteristics, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Jun Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Chaolan Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yunyan Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Meijun Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yang Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yanmei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Liejun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Jue Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants & Key Laboratory of Endemic and Ethnic Diseases & Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang 550014, China
- Research Unit of Chemical Biology of Natural Anti-Virus Products, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
22
|
Fakhri B, Danilov A. SOHO State of the Art Updates and Next Questions: New Targetable Pathways in Chronic Lymphocytic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:232-237. [PMID: 36754692 DOI: 10.1016/j.clml.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Regulatory approvals of Bruton tyrosine kinase (BTK) inhibitors and BCL2 inhibitors have transformed the therapeutic paradigm in chronic lymphocytic leukemia (CLL). However, despite significant improvement, treatment discontinuations due to an acquired resistance mutation or intolerance to these agents are common. Those who are refractory and/or intolerant to both these classes of drugs - the "double exposed/refractory" patients - pose a real challenge in clinical practice and are in dire need of novel therapeutic approaches. In this manuscript, we review the ongoing efforts addressing this unmet clinical need including the ongoing development of non-covalent BTK inhibitors, BTK degraders, novel BH3-mimetics, therapeutic antibodies targeting novel antigens and immune cell enabling therapies.
Collapse
Affiliation(s)
- Bita Fakhri
- Division of Hematology, Department of Medicine, Stanford University, Palo Alto, CA
| | - Alexey Danilov
- Department of Hematology and Hematopoietic Stem Cell Transplant, City of Hope National Medical Center, Duarte, CA.
| |
Collapse
|
23
|
Thieme E, Bruss N, Sun D, Dominguez EC, Coleman D, Liu T, Roleder C, Martinez M, Garcia-Mansfield K, Ball B, Pirrotte P, Wang L, Xia Z, Danilov AV. CDK9 inhibition induces epigenetic reprogramming revealing strategies to circumvent resistance in lymphoma. Mol Cancer 2023; 22:64. [PMID: 36998071 PMCID: PMC10061728 DOI: 10.1186/s12943-023-01762-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) exhibits significant genetic heterogeneity which contributes to drug resistance, necessitating development of novel therapeutic approaches. Pharmacological inhibitors of cyclin-dependent kinases (CDK) demonstrated pre-clinical activity in DLBCL, however many stalled in clinical development. Here we show that AZD4573, a selective inhibitor of CDK9, restricted growth of DLBCL cells. CDK9 inhibition (CDK9i) resulted in rapid changes in the transcriptome and proteome, with downmodulation of multiple oncoproteins (eg, MYC, Mcl-1, JunB, PIM3) and deregulation of phosphoinotiside-3 kinase (PI3K) and senescence pathways. Following initial transcriptional repression due to RNAPII pausing, we observed transcriptional recovery of several oncogenes, including MYC and PIM3. ATAC-Seq and ChIP-Seq experiments revealed that CDK9i induced epigenetic remodeling with bi-directional changes in chromatin accessibility, suppressed promoter activation and led to sustained reprograming of the super-enhancer landscape. A CRISPR library screen suggested that SE-associated genes in the Mediator complex, as well as AKT1, confer resistance to CDK9i. Consistent with this, sgRNA-mediated knockout of MED12 sensitized cells to CDK9i. Informed by our mechanistic findings, we combined AZD4573 with either PIM kinase or PI3K inhibitors. Both combinations decreased proliferation and induced apoptosis in DLBCL and primary lymphoma cells in vitro as well as resulted in delayed tumor progression and extended survival of mice xenografted with DLBCL in vivo. Thus, CDK9i induces reprogramming of the epigenetic landscape, and super-enhancer driven recovery of select oncogenes may contribute to resistance to CDK9i. PIM and PI3K represent potential targets to circumvent resistance to CDK9i in the heterogeneous landscape of DLBCL.
Collapse
Affiliation(s)
- Elana Thieme
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Nur Bruss
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Duanchen Sun
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR USA
- grid.27255.370000 0004 1761 1174Present address: School of Mathematics, Shandong University, Jinan, 250100 Shandong China
| | - Edward C. Dominguez
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Daniel Coleman
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Tingting Liu
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Carly Roleder
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Melissa Martinez
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Krystine Garcia-Mansfield
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Brian Ball
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Patrick Pirrotte
- grid.250942.80000 0004 0507 3225Translational Genomics Research Institute, Phoenix, AZ 85004 USA
- grid.410425.60000 0004 0421 8357Integrated Mass Spectrometry Shared Resource, City of Hope National Medical Center, Duarte, CA USA
| | - Lili Wang
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| | - Zheng Xia
- grid.516136.6Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
- grid.5288.70000 0000 9758 5690Biomedical Engineering Department, Oregon Health & Science University, Portland, OR USA
| | - Alexey V. Danilov
- grid.410425.60000 0004 0421 8357City of Hope National Medical Center, 1500 E Duarte Road, Duarte, CA 91010 USA
| |
Collapse
|
24
|
Waseem M, Wang BD. Promising Strategy of mPTP Modulation in Cancer Therapy: An Emerging Progress and Future Insight. Int J Mol Sci 2023; 24:5564. [PMID: 36982637 PMCID: PMC10051994 DOI: 10.3390/ijms24065564] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Lu Y, Li Z, Zhang S, Zhang T, Liu Y, Zhang L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 2023; 13:736-766. [PMID: 36632220 PMCID: PMC9830443 DOI: 10.7150/thno.79876] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Cellular mitophagy means that cells selectively wrap and degrade damaged mitochondria through an autophagy mechanism, thus maintaining mitochondria and intracellular homeostasis. In recent years, mitophagy has received increasing attention as a research hotspot related to the pathogenesis of clinical diseases, such as neurodegenerative diseases, cardiovascular diseases, cancer, metabolic diseases, and so on. It has been found that the regulation of mitophagy may become a new direction for the treatment of some diseases. In addition, numerous small molecule modulators of mitophagy have also been reported, which provides new opportunities to comprehend the procedure and potential of therapeutic development. Taken together, in this review, we summarize current understanding of the mechanism of mitophagy, discuss the roles of mitophagy and its relationship with diseases, introduce the existing small-molecule pharmacological modulators of mitophagy and further highlight the significance of their development.
Collapse
Affiliation(s)
- Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China,✉ Corresponding authors: Yanjun Liu, E-mail: ; Lan Zhang, E-mail:
| |
Collapse
|
26
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
27
|
Wang Y, Chen H, Wang J, Chen X, Chen L. Exploring the mechanism of Buyang Huanwu Decoction in the treatment of spinal cord injury based on network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e31023. [PMID: 36221378 PMCID: PMC9542821 DOI: 10.1097/md.0000000000031023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Buyang Huanwu Decoction, a traditional Chinese medicine decoction, is widely used to treat spinal cord injury in China. However, the underlying mechanism of this decoction in treating spinal cord injury is unclear. This study used network pharmacology and molecular docking to examine the pharmacological mechanism of Buyang Huanwu Decoction in prevention and treatment of spinal cord injury. The active compounds and target genes of Buyang Huanwu Decoction were collected from the Traditional Chinese Medicine Systems Pharmacology and the SwissTargetPrediction Database. The network diagram of "traditional Chinese medicine compound target" was constructed by Cytoscape software. Genetic data of spinal cord injury were obtained by GeneCards database. According to the intersection of Buyang Huanwu Decoction's targets and disease targets, the core targets were searched. The protein-protein interaction network were constructed using the STRING and BisoGenet platforms. Meanwhile, gene ontology enrichment and Kyoto encyclopedia of genes, and genome pathway were performed on the intersection targets by Metascape. Molecular docking technology was adopted to verify the combination of main components and core targets. A total of 109 active compounds and 5440 prediction targets were screened from 7 Chinese herbal medicines of Buyang Huanwu Decoction, with 98 active components and 49 related prediction targets being strongly linked to Spinal Cord Injury. By studying protein-protein interaction network, a total of 8 core proteins were identified, primarily interleukin-6, tumor protein P53, epidermal growth factor receptor, and others. Positive regulation of kinase activity regulation of reaction to inorganic chemicals are the basic biological processes. Buyang Huanwu Decoction cures Spinal Cord Injury primarily by moderating immunological inflammation, apoptosis, and oxidative stress, which involves the cancer pathway, the HIF-1 signaling pathway, the p53 signaling pathway, the MAPK signaling pathway, and so on. The results of molecular docking demonstrated that the primary components could attach to the target protein effectively. Finally, the mechanism of Buyang Huanwu Decoction in the treatment of spinal cord injury through multicomponent, multitarget, and multichannel was deeply explored. And it offers new ideas and directions for future research on the mechanism of the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Ying Wang
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Haixu Chen
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Junwei Wang
- Department of Pediatric Surgery and Vascular Surgery, Zigong Fourth People’s Hospital, Zigong, China
| | - Xin Chen
- Department of Integrated Traditional Chinese and Western Medicine for Pulmonary Disease, Zigong First People’s Hospital, Zigong, China
| | - Lan Chen
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
- * Correspondence: Lan Chen, Department of basic medicine, Sichuan Vocational College of Health and Rehabilitation, East New Town, Yantan District, Zigong City, Sichuan Province 643000, China (e-mail: )
| |
Collapse
|
28
|
EXABS-125-CLL Novel Agents in Chronic Lymphocytic Leukemia (CLL). CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22 Suppl 2:S30-S31. [PMID: 36163935 DOI: 10.1016/s2152-2650(22)00651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
High-throughput screening identifies stevioside as a potent agent to induce apoptosis in bladder cancer cells. Biochem Pharmacol 2022; 203:115166. [PMID: 35820501 DOI: 10.1016/j.bcp.2022.115166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Bladder cancer (BC) is a global health issue that lacks effective treatment strategies. Growing evidence suggests that various natural products possess anti-tumour effects. This study aims to identify a novel agent that can be used in the treatment of BC. METHODS High-throughput screening was conducted to search for potential anti-BC natural agents. Cell viabilities were measured by the CCK-8 assay. Cell death, cellular reactive oxygen species (ROS), and mitochondrial outer membrane potential (MOMP) were measured by flow cytometry. RNA sequencing was conducted to identify the affected signalling pathways. Western blots were used to measure the change of proteins. Xenografts models were used to assess the anti-tumour effects in vivo. RESULTS Through high-throughput screening, we identified stevioside, a diterpenoid glycoside isolated from Stevia rebaudiana, which selectively inhibited the viability of BC cells and induced their intrinsic apoptosis sparing normal cells. Stevioside also induced mitochondrial stress in BC cells, and activated Bax by downregulating Mcl-1 and upregulating Noxa. RNA sequencing revealed that stevioside treatment caused activation of GSK-3β and endoplasmic reticulum (ER) stress signalling pathways. Activation of GSK-3β induced upregulation of FBXW7, which effectuated the downregulation of Mcl-1. In addition, activation of GSK-3β triggered ER stress, leading to the upregulation of Noxa. Further investigations revealed that the accumulation of ROS was responsible for the activation of the GSK-3β signalling pathway in BC cells. Moreover, we also found that stevioside inhibited the growth of BC cells in vivo. CONCLUSIONS Collectively, our data suggest that stevioside can be a potential agent for the treatment of BC.
Collapse
|
30
|
Ferrarini I, Rigo A, Visco C. The mitochondrial anti-apoptotic dependencies of hematologic malignancies: from disease biology to advances in precision medicine. Haematologica 2022; 107:790-802. [PMID: 35045693 PMCID: PMC8968907 DOI: 10.3324/haematol.2021.280201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are critical organelles in the regulation of intrinsic apoptosis. As a general feature of blood cancers, different antiapoptotic members of the BCL-2 protein family localize at the outer mitochondrial membrane to sequester variable amounts of proapoptotic activators, and hence protect cancer cells from death induction. However, the impact of distinct anti-apoptotic members on apoptosis prevention, a concept termed anti-apoptotic dependence, differs remarkably across disease entities. Over the last two decades, several genetic and functional methodologies have been established to uncover the anti-apoptotic dependencies of the majority of blood cancers, inspiring the development of a new class of small molecules called BH3 mimetics. In this review, we highlight the rationale of targeting mitochondrial apoptosis in hematology, and provide a comprehensive map of the anti-apoptotic dependencies that are currently guiding novel therapeutic strategies. Cell-extrinsic and -intrinsic mechanisms conferring resistance to BH3 mimetics are also examined, with insights on potential strategies to overcome them. Finally, we discuss how the field of mitochondrial apoptosis might be complemented with other dimensions of precision medicine for more successful treatment of 'highly complex' hematologic malignancies.
Collapse
Affiliation(s)
- Isacco Ferrarini
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy.
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy.
| |
Collapse
|
31
|
Dual BTK/SYK inhibition with CG-806 (luxeptinib) disrupts B-cell receptor and Bcl-2 signaling networks in mantle cell lymphoma. Cell Death Dis 2022; 13:246. [PMID: 35296646 PMCID: PMC8927405 DOI: 10.1038/s41419-022-04684-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/27/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022]
Abstract
Aberrant B-cell receptor (BCR) signaling is a key driver in lymphoid malignancies. Bruton tyrosine kinase (BTK) inhibitors that disrupt BCR signaling have received regulatory approvals in therapy of mantle cell lymphoma (MCL). However, responses are incomplete and patients who experience BTK inhibitor therapy failure have dire outcomes. CG-806 (luxeptinib) is a dual BTK/SYK inhibitor in clinical development in hematologic malignancies. Here we investigated the pre-clinical activity of CG-806 in MCL. In vitro treatment with CG-806 thwarted survival of MCL cell lines and patient-derived MCL cells in a dose-dependent manner. CG-806 blocked BTK and SYK activation and abrogated BCR signaling. Contrary to ibrutinib, CG-806 downmodulated the anti-apoptotic proteins Mcl-1 and Bcl-xL, abrogated survival of ibrutinib-resistant MCL cell lines, and partially reversed the pro-survival effects of stromal microenvironment-mimicking conditions in primary MCL cells. Dual BTK/SYK inhibition led to mitochondrial membrane depolarization accompanied by mitophagy and metabolic reprogramming toward glycolysis. In vivo studies of CG-806 demonstrated improved survival in one of the two tested aggressive MCL PDX models. While suppression of the anti-apoptotic Bcl-2 family proteins and NFκB signaling correlated with in vivo drug sensitivity, OxPhos and MYC transcriptional programs were upregulated in the resistant model following treatment with CG-806. BAX and NFKBIA were implicated in susceptibility to CG-806 in a whole-genome CRISPR-Cas9 library screen (in a diffuse large B-cell lymphoma cell line). A high-throughput in vitro functional drug screen demonstrated synergy between CG-806 and Bcl-2 inhibitors. In sum, dual BTK/SYK inhibitor CG-806 disrupts BCR signaling and induces metabolic reprogramming and apoptosis in MCL. The Bcl-2 network is a key mediator of sensitivity to CG-806 and combined targeting of Bcl-2 demonstrates synergy with CG-806 warranting continued exploration in lymphoid malignancies.
Collapse
|