1
|
Khan S, Cao L, Wiegand J, Zhang P, Zajac-Kaye M, Kaye FJ, Zheng G, Zhou D. PROTAC-Mediated Dual Degradation of BCL-xL and BCL-2 Is a Highly Effective Therapeutic Strategy in Small-Cell Lung Cancer. Cells 2024; 13:528. [PMID: 38534371 PMCID: PMC10968744 DOI: 10.3390/cells13060528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
BCL-xL and BCL-2 are validated therapeutic targets in small-cell lung cancer (SCLC). Targeting these proteins with navitoclax (formerly ABT263, a dual BCL-xL/2 inhibitor) induces dose-limiting thrombocytopenia through on-target BCL-xL inhibition in platelets. Therefore, platelet toxicity poses a barrier in advancing the clinical translation of navitoclax. We have developed a strategy to selectively target BCL-xL in tumors, while sparing platelets, by utilizing proteolysis-targeting chimeras (PROTACs) that hijack the cellular ubiquitin proteasome system for target ubiquitination and subsequent degradation. In our previous study, the first-in-class BCL-xL PROTAC, called DT2216, was shown to have synergistic antitumor activities when combined with venetoclax (formerly ABT199, BCL-2-selective inhibitor) in a BCL-xL/2 co-dependent SCLC cell line, NCI-H146 (hereafter referred to as H146), in vitro and in a xenograft model. Guided by these findings, we evaluated our newly developed BCL-xL/2 dual degrader, called 753b, in three BCL-xL/2 co-dependent SCLC cell lines and the H146 xenograft models. 753b was found to degrade both BCL-xL and BCL-2 in these cell lines. Importantly, it was considerably more potent than DT2216, navitoclax, or DT2216 + venetoclax in reducing the viability of BCL-xL/2 co-dependent SCLC cell lines in cell culture. In vivo, 5 mg/kg weekly dosing of 753b was found to lead to significant tumor growth delay, similar to the DT2216 + venetoclax combination in H146 xenografts, by degrading both BCL-xL and BCL-2. Additionally, 753b administration at 5 mg/kg every four days induced tumor regressions. At this dosage, 753b was well tolerated in mice, without observable induction of severe thrombocytopenia as seen with navitoclax, and no evidence of significant changes in mouse body weights. These results suggest that the BCL-xL/2 dual degrader could be an effective and safe therapeutic for a subset of SCLC patients, warranting clinical trials in future.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lin Cao
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Janet Wiegand
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Maria Zajac-Kaye
- Department of Anatomy & Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Frederic J. Kaye
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Khan S, Cao L, Wiegand J, Zhang P, Zajac-Kaye M, Kaye FJ, Zheng G, Zhou D. PROTAC-mediated dual degradation of BCL-xL and BCL-2 is a highly effective therapeutic strategy in small-cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582353. [PMID: 38464204 PMCID: PMC10925307 DOI: 10.1101/2024.02.27.582353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BCL-xL and BCL-2 are validated therapeutic targets in small-cell lung cancer (SCLC). Targeting these proteins with navitoclax (formerly ABT263, a dual BCL-xL/2 inhibitor) induces dose-limiting thrombocytopenia through on-target BCL-xL inhibition in platelets. Therefore, platelet toxicity poses a barrier in advancing the clinical translation of navitoclax. We have developed a strategy to selectively target BCL-xL in tumors, while sparing platelets, by utilizing proteolysis-targeting chimeras (PROTACs) that hijack the cellular ubiquitin proteasome system for target ubiquitination and subsequent degradation. In our previous study, the first-in-class BCL-xL PROTAC, called DT2216, was shown to have synergistic antitumor activities when combined with venetoclax (formerly ABT199, BCL-2-selective inhibitor) in a BCL-xL/2 co-dependent SCLC cell line, NCI-H146 (hereafter referred to as H146), in vitro and in a xenograft model. Guided by these findings, we evaluated our newly developed BCL-xL/2 dual degrader, called 753b, in three BCL-xL/2 co-dependent SCLC cell lines and the H146 xenograft models. 753b was found to degrade both BCL-xL and BCL-2 in these cell lines. Importantly, it was considerably more potent than DT2216, navitoclax, or DT2216+venetoclax to reduce the viability of BCL-xL/2 co-dependent SCLC cell lines in cell culture. In vivo, 5 mg/kg weekly dosing of 753b leads to significant tumor growth delay similar to the DT2216+venetoclax combination in H146 xenografts by degrading both BCL-xL and BCL-2. Additionally, 753b administration at 5 mg/kg every four days induced tumor regressions. 753b at this dosage was well tolerated in mice without induction of severe thrombocytopenia as seen with navitoclax nor induced significant changes in mouse body weights. These results suggest that the BCL-xL/2 dual degrader could be an effective and safe therapeutic for a subset of SCLC patients warranting clinical trials in future.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lin Cao
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Janet Wiegand
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Maria Zajac-Kaye
- Department of Anatomy & Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Frederic J. Kaye
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Kataoka T. Biological properties of the BCL-2 family protein BCL-RAMBO, which regulates apoptosis, mitochondrial fragmentation, and mitophagy. Front Cell Dev Biol 2022; 10:1065702. [PMID: 36589739 PMCID: PMC9800997 DOI: 10.3389/fcell.2022.1065702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria play an essential role in the regulation of cellular stress responses, including cell death. Damaged mitochondria are removed by fission and fusion cycles and mitophagy, which counteract cell death. BCL-2 family proteins possess one to four BCL-2 homology domains and regulate apoptosis signaling at mitochondria. BCL-RAMBO, also known as BCL2-like 13 (BCL2L13), was initially identified as one of the BCL-2 family proteins inducing apoptosis. Mitophagy receptors recruit the ATG8 family proteins MAP1LC3/GABARAP via the MAP1LC3-interacting region (LIR) motif to initiate mitophagy. In addition to apoptosis, BCL-RAMBO has recently been identified as a mitophagy receptor that possesses the LIR motif and regulates mitochondrial fragmentation and mitophagy. In the 20 years since its discovery, many important findings on BCL-RAMBO have been increasingly reported. The biological properties of BCL-RAMBO are reviewed herein.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan,Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Japan,*Correspondence: Takao Kataoka,
| |
Collapse
|
4
|
Systematic identification of biomarker-driven drug combinations to overcome resistance. Nat Chem Biol 2022; 18:615-624. [PMID: 35332332 DOI: 10.1038/s41589-022-00996-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.
Collapse
|
5
|
Nor Hisam NS, Ugusman A, Rajab NF, Ahmad MF, Fenech M, Liew SL, Mohamad Anuar NN. Combination Therapy of Navitoclax with Chemotherapeutic Agents in Solid Tumors and Blood Cancer: A Review of Current Evidence. Pharmaceutics 2021; 13:pharmaceutics13091353. [PMID: 34575429 PMCID: PMC8468743 DOI: 10.3390/pharmaceutics13091353] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 01/19/2023] Open
Abstract
Combination therapy emerges as a fundamental scheme in cancer. Many targeted therapeutic agents are developed to be used with chemotherapy or radiation therapy to enhance drug efficacy and reduce toxicity effects. ABT-263, known as navitoclax, mimics the BH3-only proteins of the BCL-2 family and has a high affinity towards pro-survival BCL-2 family proteins (i.e., BCL-XL, BCL-2, BCL-W) to induce cell apoptosis effectively. A single navitoclax action potently ameliorates several tumor progressions, including blood and bone marrow cancer, as well as small cell lung carcinoma. Not only that, but navitoclax alone also therapeutically affects fibrotic disease. Nevertheless, outcomes from the clinical trial of a single navitoclax agent in patients with advanced and relapsed small cell lung cancer demonstrated a limited anti-cancer activity. This brings accumulating evidence of navitoclax to be used concomitantly with other chemotherapeutic agents in several solid and non-solid tumors that are therapeutically benefiting from navitoclax treatment in preclinical studies. Initially, we justify the anti-cancer role of navitoclax in combination therapy. Then, we evaluate the current evidence of navitoclax in combination with the chemotherapeutic agents comprehensively to indicate the primary regulator of this combination strategy in order to produce a therapeutic effect.
Collapse
Affiliation(s)
- Nur Syahidah Nor Hisam
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.S.N.H.); (S.L.L.)
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Nor Fadilah Rajab
- Center for Healthy Ageing & Wellness, Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.F.R.); (M.F.)
| | - Mohd Faizal Ahmad
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Michael Fenech
- Center for Healthy Ageing & Wellness, Programme of Biomedical Science, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.F.R.); (M.F.)
- Genome Health Foundation, North Brighton, SA 5048, Australia
| | - Sze Ling Liew
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.S.N.H.); (S.L.L.)
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (N.S.N.H.); (S.L.L.)
- Correspondence: ; Tel.: +60-13-3845844
| |
Collapse
|
6
|
Sitia L, Bonizzi A, Mazzucchelli S, Negri S, Sottani C, Grignani E, Rizzuto MA, Prosperi D, Sorrentino L, Morasso C, Allevi R, Sevieri M, Silva F, Truffi M, Corsi F. Selective Targeting of Cancer-Associated Fibroblasts by Engineered H-Ferritin Nanocages Loaded with Navitoclax. Cells 2021; 10:328. [PMID: 33562504 PMCID: PMC7915356 DOI: 10.3390/cells10020328] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key actors in regulating cancer progression. They promote tumor growth, metastasis formation, and induce drug resistance. For these reasons, they are emerging as potential therapeutic targets. Here, with the aim of developing CAF-targeted drug delivery agents, we functionalized H-ferritin (HFn) nanocages with fibroblast activation protein (FAP) antibody fragments. Functionalized nanocages (HFn-FAP) have significantly higher binding with FAP+ CAFs than with FAP- cancer cells. We loaded HFn-FAP with navitoclax (Nav), an experimental Bcl-2 inhibitor pro-apoptotic drug, whose clinical development is limited by its strong hydrophobicity and toxicity. We showed that Nav is efficiently loaded into HFn (HNav), maintaining its mechanism of action. Incubating Nav-loaded functionalized nanocages (HNav-FAP) with FAP+ cells, we found significantly higher cytotoxicity as compared to non-functionalized HNav. This was correlated with a significantly higher drug release only in FAP+ cells, confirming the specific targeting ability of functionalized HFn. Finally, we showed that HFn-FAP is able to reach the tumor and to target CAFs in a mouse syngeneic model of triple negative breast cancer after intravenous administration. Our data show that HNav-FAP could be a promising tool to enhance specific drug delivery into CAFs, thus opening new therapeutic possibilities focused on tumor microenvironment.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Sara Negri
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Cristina Sottani
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Elena Grignani
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Maria Antonietta Rizzuto
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (M.A.R.); (D.P.)
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy; (M.A.R.); (D.P.)
| | - Luca Sorrentino
- Colorectal Surgery Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy;
| | - Carlo Morasso
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Raffaele Allevi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Filippo Silva
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche “L. Sacco”, Università di Milano, 20157 Milan, Italy; (L.S.); (A.B.); (S.M.); (R.A.); (M.S.); (F.S.)
- Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (S.N.); (C.S.); (E.G.); (C.M.)
| |
Collapse
|
7
|
Mohamad Anuar NN, Nor Hisam NS, Liew SL, Ugusman A. Clinical Review: Navitoclax as a Pro-Apoptotic and Anti-Fibrotic Agent. Front Pharmacol 2020; 11:564108. [PMID: 33381025 PMCID: PMC7768911 DOI: 10.3389/fphar.2020.564108] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
B-cell lymphoma 2 (BCL-2) family proteins primarily work as a programmed cell death regulator, whereby multiple interactions between them determine cell survival. This explains the two major classes of BCL-2 proteins which are anti-apoptotic and pro-apoptotic proteins. The anti-apoptotic proteins are attractive targets for BCL-2 family inhibitors, which result in the augmentation of the intrinsic apoptotic pathway. BCL-2 family inhibitors have been studied extensively for novel targeted therapies in various cancer types, fibrotic diseases, aging-related as well as autoimmune diseases. Navitoclax is one of them and it has been discovered to have a high affinity toward BCL-2 anti-apoptotic proteins, including BCL-2, BCL-W and B-cell lymphoma-extra-large. Navitoclax has been demonstrated as a single agent or in combination with other drugs to successfully ameliorate tumor progression and fibrosis development. To date, navitoclax has entered phase I and phase II clinical studies. Navitoclax alone potently treats small cell lung cancer and acute lymphocytic leukemia, whilst in combination therapy for solid tumors, it enhances the therapeutic effect of other chemotherapeutic agents. A low platelet count has always associated with single navitoclax treatments, though this effect is tolerable. Moreover, the efficacy of navitoclax is determined by the expression of several BCL-2 family members. Here, we elucidate the complex mechanisms of navitoclax as a pro-apoptotic agent, and review the early and current clinical studies of navitoclax alone as well as with other drugs. Additionally, some suggestions on the development of navitoclax clinical studies are presented in the future prospects section.
Collapse
Affiliation(s)
- Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Syahidah Nor Hisam
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sze Ling Liew
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| |
Collapse
|
8
|
Satta T, Grant S. Enhancing venetoclax activity in hematological malignancies. Expert Opin Investig Drugs 2020; 29:697-708. [PMID: 32600066 PMCID: PMC7529910 DOI: 10.1080/13543784.2020.1789588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Targeting anti-apoptotic pathways involving the BCL2 family proteins represents a novel treatment strategy in hematologic malignancies. Venetoclax, a selective BCL2 inhibitor, represents the first approved agent of this class, and is currently used in CLL and AML. However, monotherapy is rarely sufficient for sustained responses due to the development of drug resistance and loss of dependence upon the targeted protein. Numerous pre-clinical studies have shown that combining venetoclax with other agents may represent a more effective therapeutic strategy by circumventing resistance mechanisms. In this review, we summarize pre-clinical data providing a foundation for rational combination strategies involving venetoclax. AREAS COVERED Novel combination strategies in hematologic malignancies involving venetoclax, primarily at the pre-clinical level, will be reviewed. We emphasize novel agents that interrupt complementary or compensatory pro-survival pathways, and particularly mechanistic insights underlying synergism. PubMed, Cochrane, EMBASE, and Google scholar were searched from 2000. EXPERT OPINION Although venetoclax has proven to be an effective therapeutic in hematologic malignancies, monotherapy may be insufficient for maximal effectiveness due to the development of resistance and/or loss of BCL2 addiction. Further pre-clinical and clinical development of combination therapies may be necessary for optimal outcomes in patients with diverse blood cancers.
Collapse
Affiliation(s)
- Toshihisa Satta
- Division of Hematology/Oncology, Virginia Commonwealth University , Richmond, USA
| | - Steven Grant
- Division of Hematology/Oncology, Virginia Commonwealth University , Richmond, USA
- Department of Biochemistry, Virginia Commonwealth University , Richmond, USA
- Department of Pharmacology, Virginia Commonwealth University , Richmond, USA
- Department of Molecular and Human Genetics, Virginia Commonwealth University , Richmond, USA
| |
Collapse
|
9
|
Inoue-Yamauchi A, Oda H. EMT-inducing transcription factor ZEB1-associated resistance to the BCL-2/BCL-X L inhibitor is overcome by BIM upregulation in ovarian clear cell carcinoma cells. Biochem Biophys Res Commun 2020; 526:612-617. [PMID: 32247610 DOI: 10.1016/j.bbrc.2020.03.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022]
Abstract
Ovarian clear cell carcinoma (OCCC) is an aggressive subtype of epithelial ovarian cancer, which generally exhibits chemoresistance. Effective therapy for OCCC is currently unavailable, requiring the development of new therapeutic strategies. ABT-263 (navitoclax), an inhibitor of the anti-apoptotic BCL-2/BCL-XL, has a potent ability of inducing death in cancer cells; however, the therapeutic effect of ABT-263 in OCCC remains unclear. Epithelial cells undergo epithelial-mesenchymal transition (EMT) to acquire a mesenchymal phenotype, which is known to contribute to the development of resistance against therapeutic agents. In this study, we revealed that the sensitivity of OCCC cells to ABT-263 was associated with the epithelial/mesenchymal status of the cells. While the OCCC cells with an epithelial phenotype were ABT-263-sensitive, those with a mesenchymal phenotype were ABT-263-resistant, which was accompanied by an insufficient expression of the pro-apoptotic BH3 protein BIM. Mechanistically, the EMT-inducing transcription factor, ZEB1 down-regulated BIM transcription by binding to BIM promoter, resulting in resistance to ABT-263. It is noteworthy that ZEB1-associated ABT-263 resistance was overcome by an HDAC inhibitor, FK228 (romidepsin), through the up-regulation of BIM. In summary, our study provides evidence for a mechanism for ABT-263 resistance in OCCC cells as well as a potential therapeutic strategy to overcome it.
Collapse
Affiliation(s)
- Akane Inoue-Yamauchi
- Division of Genetics, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Division of Experimental Pathology, Department of Pathology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hideaki Oda
- Division of Experimental Pathology, Department of Pathology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
10
|
Brachtendorf S, El-Hindi K, Grösch S. WITHDRAWN: Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019:100992. [PMID: 31442523 DOI: 10.1016/j.plipres.2019.100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Khadija El-Hindi
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| |
Collapse
|
11
|
Smolewski P, Rydygier D, Robak T. Clinical management of mantle cell lymphoma in the elderly. Expert Opin Pharmacother 2019; 20:1893-1905. [PMID: 31373238 DOI: 10.1080/14656566.2019.1642871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Mantle cell lymphoma (MCL) is a disease with an indolent histology, but mostly aggressive clinical course. While treatment can yield more promising results in younger patients, the disease is most diagnosed at a median age of approximately 70 years, and treatment in this group still presents a major challenge for oncohematologists. Unfortunately, due to comorbidities and poorer general status, the implementation of intensive treatment approaches with the cytarabine-based regimens and autologous stem cell transplantation is generally not possible, and the disease remains incurable, especially in elderly patients. Areas covered: In this paper, the authors discuss the therapeutic options available for older patients with MCL in the first line and relapsed/refractory settings, indicating new therapeutic options, which may achieve longer remissions and overall survival. Expert opinion: Although great progress has been made in the treatment of MCL in recent years, there remains a need for new treatment lines which can allow improved patient outcomes. Novel agents targeting altered the signal transduction pathways in MCL cells may offer more promise than traditional chemotherapy or immunochemotherapy and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz , Lodz , Poland
| | - Dominika Rydygier
- Department of Hematology, Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz , Lodz , Poland
| |
Collapse
|
12
|
Mitophagy in Cancer: A Tale of Adaptation. Cells 2019; 8:cells8050493. [PMID: 31121959 PMCID: PMC6562743 DOI: 10.3390/cells8050493] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
:In the past years, we have learnt that tumors co-evolve with their microenvironment, and that the active interaction between cancer cells and stromal cells plays a pivotal role in cancer initiation, progression and treatment response. Among the players involved, the pathways regulating mitochondrial functions have been shown to be crucial for both cancer and stromal cells. This is perhaps not surprising, considering that mitochondria in both cancerous and non-cancerous cells are decisive for vital metabolic and bioenergetic functions and to elicit cell death. The central part played by mitochondria also implies the existence of stringent mitochondrial quality control mechanisms, where a specialized autophagy pathway (mitophagy) ensures the selective removal of damaged or dysfunctional mitochondria. Although the molecular underpinnings of mitophagy regulation in mammalian cells remain incomplete, it is becoming clear that mitophagy pathways are intricately linked to the metabolic rewiring of cancer cells to support the high bioenergetic demand of the tumor. In this review, after a brief introduction of the main mitophagy regulators operating in mammalian cells, we discuss emerging cell autonomous roles of mitochondria quality control in cancer onset and progression. We also discuss the relevance of mitophagy in the cellular crosstalk with the tumor microenvironment and in anti-cancer therapy responses.
Collapse
|
13
|
Brachtendorf S, El-Hindi K, Grösch S. Ceramide synthases in cancer therapy and chemoresistance. Prog Lipid Res 2019; 74:160-185. [DOI: 10.1016/j.plipres.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022]
|
14
|
Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discov 2018; 4:72. [PMID: 30062053 PMCID: PMC6060109 DOI: 10.1038/s41420-018-0075-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Conventional chemotherapy-based drug combinations have, until recently, been the backbone of most therapeutic strategies for cancer. In a time of emerging rationale drug development, targeted therapies are beginning to be added to traditional chemotherapeutics to synergistically enhance clinical responses. Of note, the importance of pro-apoptotic ceramide in mediating the anti-cancer effects of these therapies is becoming more apparent. Furthermore, reduced cellular ceramide in favour of pro-survival sphingolipids correlates with tumorigenesis and most importantly, drug resistance. Thus, agents that manipulate sphingolipid metabolism have been explored as potential anti-cancer agents and have recently demonstrated exciting potential to augment the efficacy of anti-cancer therapeutics. This review examines the biology underpinning these observations and the potential use of sphingolipid manipulating agents in the context of existing and emerging therapies for haematological malignancies. • Efficacy of many chemotherapeutics and targeted therapies is dictated by cellular ceramide levels. • Oncogene activation skews sphingolipid metabolism to favour the production of pro-survival sphingolipids. • Inhibitors of enzymes involved in ceramide metabolism exhibit promise in the relapsed-refractory setting. • Anti-cancer activity of sphingosine kinase inhibitors provides several options for new drug combinations. Open Questions • What other clinically utilised drugs rely on increases in ceramide levels for their efficacy and can they be effectively partnered with other ceramide inducing agents? • How does ceramide modulate the Bcl-2 family proteins, Mcl-1 and Bcl-2? • Are sphingolipid enzyme inhibitors best suited in the frontline or relapsed-refractory setting?
Collapse
|
15
|
Subramanian A, Andronache A, Li YC, Wade M. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA. Oncotarget 2017; 7:15986-6002. [PMID: 26910119 PMCID: PMC4941292 DOI: 10.18632/oncotarget.7558] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
BH3 mimetic compounds induce tumor cell death through targeted inhibition of anti-apoptotic BCL2 proteins. Resistance to one such compound, ABT-737, is due to increased levels of anti-apoptotic MCL1. Using chemical and genetic approaches, we show that resistance to ABT-737 is abrogated by inhibition of the mitochondrial RING E3 ligase, MARCH5. Mechanistically, this is due to increased expression of pro-apoptotic BCL2 family member, NOXA, and is associated with MARCH5 regulation of MCL1 ubiquitylation and stability in a NOXA-dependent manner. MARCH5 expression contributed to an 8-gene signature that correlates with sensitivity to the preclinical BH3 mimetic, navitoclax. Furthermore, we observed a synthetic lethal interaction between MCL1 and MARCH5 in MCL1-dependent breast cancer cells. Our data uncover a novel level at which the BCL2 family is regulated; furthermore, they suggest targeting MARCH5-dependent signaling will be an effective strategy for treatment of BH3 mimetic-resistant tumors, even in the presence of high MCL1.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Adrian Andronache
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| | - Yao-Cheng Li
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark Wade
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, Italy
| |
Collapse
|
16
|
Leverson JD, Sampath D, Souers AJ, Rosenberg SH, Fairbrother WJ, Amiot M, Konopleva M, Letai A. Found in Translation: How Preclinical Research Is Guiding the Clinical Development of the BCL2-Selective Inhibitor Venetoclax. Cancer Discov 2017; 7:1376-1393. [PMID: 29146569 PMCID: PMC5728441 DOI: 10.1158/2159-8290.cd-17-0797] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/12/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Since the discovery of apoptosis as a form of programmed cell death, targeting the apoptosis pathway to induce cancer cell death has been a high-priority goal for cancer therapy. After decades of effort, drug-discovery scientists have succeeded in generating small-molecule inhibitors of antiapoptotic BCL2 family proteins. Innovative medicinal chemistry and structure-based drug design, coupled with a strong fundamental understanding of BCL2 biology, were essential to the development of BH3 mimetics such as the BCL2-selective inhibitor venetoclax. We review a number of preclinical studies that have deepened our understanding of BCL2 biology and facilitated the clinical development of venetoclax.Significance: Basic research into the pathways governing programmed cell death have paved the way for the discovery of apoptosis-inducing agents such as venetoclax, a BCL2-selective inhibitor that was recently approved by the FDA and the European Medicines Agency. Preclinical studies aimed at identifying BCL2-dependent tumor types have translated well into the clinic thus far and will likely continue to inform the clinical development of venetoclax and other BCL2 family inhibitors. Cancer Discov; 7(12); 1376-93. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | - Martine Amiot
- CRCINA, INSERM, CNRS, Université de Nantes, Université d'Angers, Nantes, France
| | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
17
|
Tahir SK, Smith ML, Hessler P, Rapp LR, Idler KB, Park CH, Leverson JD, Lam LT. Potential mechanisms of resistance to venetoclax and strategies to circumvent it. BMC Cancer 2017; 17:399. [PMID: 28578655 PMCID: PMC5457565 DOI: 10.1186/s12885-017-3383-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 05/24/2017] [Indexed: 11/20/2022] Open
Abstract
Background Venetoclax (ABT-199), a first-in-class orally bioavailable BCL-2-selective inhibitor, was recently approved by the FDA for use in patients with 17p-deleted chronic lymphocytic leukemia who have received prior therapy. It is also being evaluated in numerous clinical trials for treating patients with various hematologic malignancies. As with any targeted cancer therapy, it is critically important to identify potential mechanisms of resistance, both for patient stratification and developing strategies to overcome resistance, either before it develops or as it emerges. Methods In order to gain a more comprehensive insight into the nature of venetoclax resistance mechanisms, we evaluated the changes in the BCL-2 family members at the genetic and expression levels in seven different venetoclax-resistant derived leukemia and lymphoma cell lines. Results Gene and protein expression analyses identified a number of different alterations in the expression of pro- and anti-apoptotic BCL-2 family members. In the resistant derived cells, an increase in either or both the anti-apoptotic proteins BCL-XL or MCL-1, which are not targeted by venetoclax was observed, and either concomitant or exclusive with a decrease in one or more pro-apoptotic proteins. In addition, mutational analysis also revealed a mutation in the BH3 binding groove (F104L) that could potentially interfere with venetoclax-binding. Not all changes may be causally related to venetoclax resistance and may only be an epiphenomenon. For resistant cell lines showing elevations in BCL-XL or MCL-1, strong synergistic cell killing was observed when venetoclax was combined with either BCL-XL- or MCL-1-selective inhibitors, respectively. This highlights the importance of BCL-XL- and MCL-1 as causally contributing to venetoclax resistance. Conclusions Overall our study identified numerous changes in multiple resistant lines; the changes were neither mutually exclusive nor universal across the cell lines tested, thus exemplifying the complexity and heterogeneity of potential resistance mechanisms. Identifying and evaluating their contribution has important implications for both patient selection and the rational development of strategies to overcome resistance. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3383-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephen K Tahir
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Morey L Smith
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Paul Hessler
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Lisa Roberts Rapp
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Kenneth B Idler
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Chang H Park
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Joel D Leverson
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA
| | - Lloyd T Lam
- AbbVie Oncology, North Waukegan Road North, Chicago, IL, 60064-6098, USA.
| |
Collapse
|
18
|
Shin JA, Kim LH, Lee SJ, Jeong JH, Jung JY, Lee HN, Hong IS, Cho SD. Targeting ERK1/2-bim signaling cascades by BH3-mimetic ABT-737 as an alternative therapeutic strategy for oral cancer. Oncotarget 2016; 6:35667-83. [PMID: 26447615 PMCID: PMC4742133 DOI: 10.18632/oncotarget.5523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/21/2015] [Indexed: 11/25/2022] Open
Abstract
To date, many different chemotherapeutic agents have been widely used as common treatments for oral cancers. However, their therapeutic effects have been disappointing, and these agents may have unwanted side effects. Among the many regulatory factors, overexpression of pro-survival Bcl-2 family members may promote resistance to chemotherapeutic drugs in many tumors. The BH3 domain-only proteins effectively antagonize their apoptotic activities. Therefore, there is substantial interest in developing chemotherapeutic drugs that directly target pro-survival Bcl-2 proteins by mimicking the BH3 domain and unleashing pro-apoptotic molecules in tumor cells. Among the numerous available small molecule BH3 mimetics, ABT-737, a potent small molecule that binds to Bcl-2/Bcl-xL with high affinity, has anti-tumor activity in a wide variety of cancer cells. However, the effects of ABT-737 on human oral cancers and the underlying molecular mechanisms have not previously been elucidated. In the present study, we observed that inactivation of the ERK1/2 signaling pathway using ABT-737 dramatically increased the expression of pro-apoptotic protein Bim via transcriptional and/or posttranslational regulation, in a cell type-dependent manner, inducing mitochondria-mediated apoptosis of human oral cancer cells. To the best of our knowledge, this is the first demonstration of the antitumor effects of ABT-737 on human oral cancers.
Collapse
Affiliation(s)
- Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Lee-Han Kim
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | - Sook-Jeong Lee
- Department of New Drug Discovery and Development, Chungnam National University, Daejon, Republic of Korea
| | - Joseph H Jeong
- Department of Dermatology and Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ji-Youn Jung
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| | - Hae Nim Lee
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry, Institute of Biodegradable Material, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
19
|
Smith ML, Chyla B, McKeegan E, Tahir SK. Development of a flow cytometric method for quantification of BCL-2 family members in chronic lymphocytic leukemia and correlation with sensitivity to BCL-2 family inhibitors. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:331-339. [PMID: 27177607 DOI: 10.1002/cyto.b.21383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 05/10/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND We have developed a quantitative fluorescence cytometry (QFCM) method that can be used to measure BCL-2 family member proteins in cell lines and clinical samples. We described the validation of antibodies, methods development and application of the assay. METHOD We characterized and validated antibodies to BCL-2, BCL-XL , and MCL-1 in cell lines to confirm specificity for flow cytometry. Each protein was measured in a panel of leukemia/lymphoma cell lines and B-cells from chronic lymphocytic leukemia (CLL) patients treated with the BCL-2/BCL-XL inhibitor navitoclax. The cellular activity of various BCL-2 family member inhibitors alone and in combination was determined to demonstrate utility of our assay to correlate protein levels with efficacy. RESULTS We identified antibodies that were highly specific for each protein. The expression profile in cell lines as determined by molecules of equivalent soluble fluorochrome was comparable to western blot. Using our assay, BCL-2, BCL-XL , and MCL-1 protein levels were shown to correlate with response to BCL-2 family inhibitors in vitro and could be measured in clinical samples. CONCLUSIONS This method can quantify BCL-2 family members in a specific, highly reproducible and sensitive fashion, and requires fewer cells compared to western blot. It is particularly useful for identifying BCL-2, BCL-XL , and MCL-1 protein levels in a specific cell population within a heterogeneous population like those collected from CLL patients. These data show that our QFCM method can be used to facilitate the quantification and evaluation of biomarkers predictive of response in patients treated with BCL-2 family member inhibitors. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Morey L Smith
- Research and Development, Oncology Discovery, AbbVie, Inc, 1 North Waukegan Rd, North Chicago, Illinois, 60064
| | - Brenda Chyla
- Research and Development, Oncology Discovery, AbbVie, Inc, 1 North Waukegan Rd, North Chicago, Illinois, 60064
| | - Evelyn McKeegan
- Research and Development, Oncology Discovery, AbbVie, Inc, 1 North Waukegan Rd, North Chicago, Illinois, 60064
| | - Stephen K Tahir
- Research and Development, Oncology Discovery, AbbVie, Inc, 1 North Waukegan Rd, North Chicago, Illinois, 60064
| |
Collapse
|
20
|
Zhu Y, Tchkonia T, Fuhrmann‐Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016; 15:428-35. [PMID: 26711051 PMCID: PMC4854923 DOI: 10.1111/acel.12445] [Citation(s) in RCA: 753] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2015] [Indexed: 12/29/2022] Open
Abstract
Clearing senescent cells extends healthspan in mice. Using a hypothesis‐driven bioinformatics‐based approach, we recently identified pro‐survival pathways in human senescent cells that contribute to their resistance to apoptosis. This led to identification of dasatinib (D) and quercetin (Q) as senolytics, agents that target some of these pathways and induce apoptosis preferentially in senescent cells. Among other pro‐survival regulators identified was Bcl‐xl. Here, we tested whether the Bcl‐2 family inhibitors, navitoclax (N) and TW‐37 (T), are senolytic. Like D and Q, N is senolytic in some, but not all types of senescent cells: N reduced viability of senescent human umbilical vein epithelial cells (HUVECs), IMR90 human lung fibroblasts, and murine embryonic fibroblasts (MEFs), but not human primary preadipocytes, consistent with our previous finding that Bcl‐xl siRNA is senolytic in HUVECs, but not preadipocytes. In contrast, T had little senolytic activity. N targets Bcl‐2, Bcl‐xl, and Bcl‐w, while T targets Bcl‐2, Bcl‐xl, and Mcl‐1. The combination of Bcl‐2, Bcl‐xl, and Bcl‐w siRNAs was senolytic in HUVECs and IMR90 cells, while combination of Bcl‐2, Bcl‐xl, and Mcl‐1 siRNAs was not. Susceptibility to N correlated with patterns of Bcl‐2 family member proteins in different types of human senescent cells, as has been found in predicting response of cancers to N. Thus, N is senolytic and acts in a potentially predictable cell type‐restricted manner. The hypothesis‐driven, bioinformatics‐based approach we used to discover that dasatinib (D) and quercetin (Q) are senolytic can be extended to increase the repertoire of senolytic drugs, including additional cell type‐specific senolytic agents.
Collapse
Affiliation(s)
- Yi Zhu
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | | | - Haiming M. Dai
- Center of Medical Physics and Technology Hefei Institutes of Physical Sciences Hefei China
| | - Yuanyuan Y. Ling
- Department of Metabolism and Aging The Scripps Research Institute Jupiter FL USA
| | - Michael B. Stout
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | | | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | - Kurt O. Johnson
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| | - Cory B. Giles
- Arthritis and Clinical Immunology Research Program Oklahoma Medical Research Foundation Oklahoma City OK USA
| | - Jonathan D. Wren
- Arthritis and Clinical Immunology Research Program Oklahoma Medical Research Foundation Oklahoma City OK USA
| | | | - Paul D. Robbins
- Department of Metabolism and Aging The Scripps Research Institute Jupiter FL USA
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester MN USA
| |
Collapse
|
21
|
Ung MH, Sun CH, Weng CW, Huang CC, Lin CC, Liu CC, Cheng C. Integrated Drug Expression Analysis for leukemia: an integrated in silico and in vivo approach to drug discovery. THE PHARMACOGENOMICS JOURNAL 2016; 17:351-359. [PMID: 26975228 DOI: 10.1038/tpj.2016.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/18/2015] [Accepted: 02/04/2016] [Indexed: 02/06/2023]
Abstract
Screening for drug compounds that exhibit therapeutic properties in the treatment of various diseases remains a challenge even after considerable advancements in biomedical research. Here, we introduce an integrated platform that exploits gene expression compendia generated from drug-treated cell lines and primary tumor tissue to identify therapeutic candidates that can be used in the treatment of acute myeloid leukemia (AML). Our framework combines these data with patient survival information to identify potential candidates that presumably have a significant impact on AML patient survival. We use a drug regulatory score (DRS) to measure the similarity between drug-induced cell line and patient tumor gene expression profiles, and show that these computed scores are highly correlated with in vitro metrics of pharmacological activity. Furthermore, we conducted several in vivo validation experiments of our potential candidate drugs in AML mouse models to demonstrate the accuracy of our in silico predictions.
Collapse
Affiliation(s)
- M H Ung
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - C-H Sun
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
| | - C-W Weng
- Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - C-C Huang
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
| | - C-C Lin
- Institute of Biomedical Science, National Chung-Hsing University, Taichung, Taiwan
| | - C-C Liu
- Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung, Taiwan
| | - C Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
22
|
Abstract
INTRODUCTION In this article, we provide an accurate overview of both standard treatment option and novel promising therapeutics. Major impact is on novel agents now being tested in randomized clinical trials. While the initial data are promising, they may rapidly expand treatment options, change existing paradigms and further improve outcomes for mantle cell lymphoma (MCL) patients. AREAS COVERED MCL is a disease with indolent histology, but aggressive clinical course. However, for now, MCL remains incurable and the search for the most effective and tumor-specific treatment still represents a great challenge for oncohematologists. However, the implementation of chemotherapy together with the anti-CD20 antibody rituximab, as well as the growing use of autologous stem cell transplantation in first remission, have improved effects of treatment in MCL, including even some improvement in overall survival. Recently, treatment modalities for MCL have been expanded by strategies based on several biologically targeted agents, including m-TOR kinase or proteasome inhibitors and immunomodulatory agents, such as lenalidomide. B-cell receptor pathway inhibitors, such as ibrutinib and idelalisib, and histone deacetylase or cyclin-dependent kinase inhibitors have also shown promising activity in resistant or relapsed disease. EXPERT OPINION Although enormous progress was made in the treatment of MCL over the last year, the disease remains incurable. One chance for the significant life prolongation is intensive treatment with consolidative auto SCT. However, real progress may be afforded by developing the novel agents described in this article. In this way, MCL may soon become another potentially curable oncological malignancy.
Collapse
Affiliation(s)
- Piotr Smolewski
- a 1 Medical University of Lodz, Department of Experimental Hematology , Lodz, Poland
| | - Magdalena Witkowska
- a 1 Medical University of Lodz, Department of Experimental Hematology , Lodz, Poland
| | - Tadeusz Robak
- b 2 Medical University of Lodz, Copernicus Memorial Hospital, Department of Hematology , ul. Ciołkowskiego 2, 93-510 Lodz, Poland
| |
Collapse
|
23
|
Xiao Y, Nimmer P, Sheppard GS, Bruncko M, Hessler P, Lu X, Roberts-Rapp L, Pappano WN, Elmore SW, Souers AJ, Leverson JD, Phillips DC. MCL-1 Is a Key Determinant of Breast Cancer Cell Survival: Validation of MCL-1 Dependency Utilizing a Highly Selective Small Molecule Inhibitor. Mol Cancer Ther 2015; 14:1837-47. [PMID: 26013319 DOI: 10.1158/1535-7163.mct-14-0928] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/13/2015] [Indexed: 11/16/2022]
Abstract
Hyperexpression of antiapoptotic BCL-2 family proteins allows cells to survive despite the receipt of signals that would ordinarily induce their deletion, a facet frequently exploited by tumors. Tumors addicted to the BCL-2 family proteins for survival are now being targeted therapeutically. For example, navitoclax, a BCL-2/BCL-XL/BCL-W inhibitor, is currently in phase I/II clinical trials in numerous malignancies. However, the related family member, MCL-1, limits the efficacy of navitoclax and other chemotherapeutic agents. In the present study, we identify breast cancer cell lines that depend upon MCL-1 for survival and subsequently determine the mechanism of apoptosis mediated by the MCL-1 selective inhibitor A-1210477. We demonstrate that apoptosis resulting from a loss in MCL-1 function requires expression of the proapoptotic protein BAK. However, expression of BCL-XL can limit apoptosis resulting from loss in MCL-1 function through sequestration of free BIM. Finally, we demonstrate substantial synergy between navitoclax and MCL-1 siRNA, the direct MCL-1 inhibitor A-1210477, or the indirect MCL-1 inhibitor flavopiridol, highlighting the therapeutic potential for inhibiting BCL-XL and MCL-1 in breast cancer.
Collapse
Affiliation(s)
- Yu Xiao
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Paul Nimmer
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | | | - Milan Bruncko
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Paul Hessler
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Xin Lu
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | | | |
Collapse
|
24
|
Williams MM, Cook RS. Bcl-2 family proteins in breast development and cancer: could Mcl-1 targeting overcome therapeutic resistance? Oncotarget 2015; 6:3519-30. [PMID: 25784482 PMCID: PMC4414133 DOI: 10.18632/oncotarget.2792] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/20/2014] [Indexed: 02/07/2023] Open
Abstract
Apoptosis, cell death executed by caspases, is essential to normal breast development and homeostasis. Pro-apoptotic and anti-apoptotic signals are tightly regulated in normal breast epithelial cells. Dysregulation of this balance is required for breast tumorigenesis and increases acquired resistance to treatments, including molecularly targeted therapies, radiation and chemotherapies. The pro-apoptotic or anti-apoptotic Bcl-2 family members interact with each other to maintain mitochondrial integrity and regulate cellular commitment to apoptosis. Among the anti-apoptotic Bcl-2 family members, Mcl-1 is uniquely regulated by numerous oncogenic signaling pathways. This review will focus on the role of Bcl-2 family proteins in normal breast development, breast tumorigenesis and acquired resistance to breast cancer treatment strategies, while highlighting Mcl-1 as a promising target to improve breast cancer tumor cell killing.
Collapse
Affiliation(s)
- Michelle M. Williams
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville TN 27232, USA
| | - Rebecca S. Cook
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville TN 27232, USA
- Department of Vanderbilt Ingram Cancer Center, Nashville, TN 37232, USA
| |
Collapse
|
25
|
Antihelminthic benzimidazoles potentiate navitoclax (ABT-263) activity by inducing Noxa-dependent apoptosis in non-small cell lung cancer (NSCLC) cell lines. Cancer Cell Int 2015; 15:5. [PMID: 25685063 PMCID: PMC4326508 DOI: 10.1186/s12935-014-0151-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022] Open
Abstract
Background Evasion of apoptosis is a hallmark of cancer cells. One mechanism to deregulate the apoptotic pathway is by upregulation of the anti-apoptotic Bcl-2 family members. Navitoclax (ABT-263) is a Bcl-2/Bcl-xL inhibitor that restores the ability of cancer cells to undergo apoptosis. Methods In this study we performed a high-throughput screen with 640 FDA-approved drugs to identify potential therapeutic combinations with navitoclax in a non-small cell lung cancer (NSCLC) cell line. Results Other than a panel of cancer compounds such as doxorubicin, camptothecin, and docetaxel, four antihelminthic compounds (benzimidazoles) potentiated navitoclax activity. Treatment with benzimidazoles led to induction of the pro-apoptotic protein Noxa at the mRNA and protein level. Noxa binds and antagonizes antiapoptotic protein Mcl-1. siRNA-mediated knock-down of Noxa completely rescued benzimidazole-potentiated navitoclax activity. In addition, inhibiting caspase 3 and 9 partially rescued benzimidazole-potentiated navitoclax activity. Conclusions We have identified compounds and mechanisms which potentiate navitoclax activity in lung cancer cell lines. Further validation of the benzimidazole-potentiated navitoclax effect in vivo is required to evaluate the potential for translating this observation into clinical benefit. Electronic supplementary material The online version of this article (doi:10.1186/s12935-014-0151-3) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Rozovski U, Hazan-Halevy I, Keating MJ, Estrov Z. Personalized medicine in CLL: current status and future perspectives. Cancer Lett 2014; 352:4-14. [PMID: 23879961 PMCID: PMC3871981 DOI: 10.1016/j.canlet.2013.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 01/12/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common hematologic malignancy in the Western Hemisphere. Despite advances in research and the development of effective treatment regimens, CLL is still largely an incurable disease. Although several prognostic factors have been identified in recent years, most of the new prognostic factors are not utilized, and treatment decisions are still based on clinical staging and limited use of cytogenetic analysis. Patients with advanced disease are treated at diagnosis, whereas others, regardless of their prognostic indicators, are offered treatment only at disease progression. Furthermore, treatment guidelines for elderly or "unfit" patients are unavailable because most CLL trials have included mostly younger, healthier patients. Given theheterogeneity of the clinical manifestations and prognosis of CLL, patients are likely to benefit from a personalized therapeutic approach. Recent advances in CLL pathobiology research, the use of high-throughput technologies, and most importantly, the introduction of novel targeted therapies with high efficacy and low toxicity are currently transforming the treatment of CLL. A personalized approach that includes early intervention in selected patients with CLL is likely to bring physicians closer to the goal of attaining cures in most patients with CLL.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Inbal Hazan-Halevy
- Laboratory of Nanomedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
27
|
Suryani S, Carol H, Chonghaile TN, Frismantas V, Sarmah C, High L, Bornhauser B, Cowley MJ, Szymanska B, Evans K, Boehm I, Tonna E, Jones L, Manesh DM, Kurmasheva RT, Billups C, Kaplan W, Letai A, Bourquin JP, Houghton PJ, Smith MA, Lock RB. Cell and molecular determinants of in vivo efficacy of the BH3 mimetic ABT-263 against pediatric acute lymphoblastic leukemia xenografts. Clin Cancer Res 2014; 20:4520-31. [PMID: 25013123 DOI: 10.1158/1078-0432.ccr-14-0259] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Predictive biomarkers are required to identify patients who may benefit from the use of BH3 mimetics such as ABT-263. This study investigated the efficacy of ABT-263 against a panel of patient-derived pediatric acute lymphoblastic leukemia (ALL) xenografts and utilized cell and molecular approaches to identify biomarkers that predict in vivo ABT-263 sensitivity. EXPERIMENTAL DESIGN The in vivo efficacy of ABT-263 was tested against a panel of 31 patient-derived ALL xenografts composed of MLL-, BCP-, and T-ALL subtypes. Basal gene expression profiles of ALL xenografts were analyzed and confirmed by quantitative RT-PCR, protein expression and BH3 profiling. An in vitro coculture assay with immortalized human mesenchymal cells was utilized to build a predictive model of in vivo ABT-263 sensitivity. RESULTS ABT-263 demonstrated impressive activity against pediatric ALL xenografts, with 19 of 31 achieving objective responses. Among BCL2 family members, in vivo ABT-263 sensitivity correlated best with low MCL1 mRNA expression levels. BH3 profiling revealed that resistance to ABT-263 correlated with mitochondrial priming by NOXA peptide, suggesting a functional role for MCL1 protein. Using an in vitro coculture assay, a predictive model of in vivo ABT-263 sensitivity was built. Testing this model against 11 xenografts predicted in vivo ABT-263 responses with high sensitivity (50%) and specificity (100%). CONCLUSION These results highlight the in vivo efficacy of ABT-263 against a broad range of pediatric ALL subtypes and shows that a combination of in vitro functional assays can be used to predict its in vivo efficacy.
Collapse
Affiliation(s)
- Santi Suryani
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Hernan Carol
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Triona Ni Chonghaile
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viktoras Frismantas
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Chintanu Sarmah
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Laura High
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Beat Bornhauser
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Mark J Cowley
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Barbara Szymanska
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Kathryn Evans
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Ingrid Boehm
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Elise Tonna
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Luke Jones
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | - Donya Moradi Manesh
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia
| | | | - Catherine Billups
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Warren Kaplan
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jean-Pierre Bourquin
- Division of Pediatric Oncology, University Children's Hospital, Zurich, Switzerland
| | - Peter J Houghton
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio
| | | | - Richard B Lock
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| |
Collapse
|
28
|
Frederick DT, Salas Fragomeni RA, Schalck A, Ferreiro-Neira I, Hoff T, Cooper ZA, Haq R, Panka DJ, Kwong LN, Davies MA, Cusack JC, Flaherty KT, Fisher DE, Mier JW, Wargo JA, Sullivan RJ. Clinical profiling of BCL-2 family members in the setting of BRAF inhibition offers a rationale for targeting de novo resistance using BH3 mimetics. PLoS One 2014; 9:e101286. [PMID: 24983357 PMCID: PMC4077767 DOI: 10.1371/journal.pone.0101286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/05/2014] [Indexed: 11/19/2022] Open
Abstract
While response rates to BRAF inhibitiors (BRAFi) are high, disease progression emerges quickly. One strategy to delay the onset of resistance is to target anti-apoptotic proteins such as BCL-2, known to be associated with a poor prognosis. We analyzed BCL-2 family member expression levels of 34 samples from 17 patients collected before and 10 to 14 days after treatment initiation with either vemurafenib or dabrafenib/trametinib combination. The observed changes in mRNA and protein levels with BRAFi treatment led us to hypothesize that combining BRAFi with a BCL-2 inhibitor (the BH3-mimetic navitoclax) would improve outcome. We tested this hypothesis in cell lines and in mice. Pretreatment mRNA levels of BCL-2 negatively correlated with maximal tumor regression. Early increases in mRNA levels were seen in BIM, BCL-XL, BID and BCL2-W, as were decreases in MCL-1 and BCL2A. No significant changes were observed with BCL-2. Using reverse phase protein array (RPPA), significant increases in protein levels were found in BIM and BID. No changes in mRNA or protein correlated with response. Concurrent BRAF (PLX4720) and BCL2 (navitoclax) inhibition synergistically reduced viability in BRAF mutant cell lines and correlated with down-modulation of MCL-1 and BIM induction after PLX4720 treatment. In xenograft models, navitoclax enhanced the efficacy of PLX4720. The combination of a selective BRAF inhibitor with a BH3-mimetic promises to be an important therapeutic strategy capable of enhancing the clinical efficacy of BRAF inhibition in many patients that might otherwise succumb quickly to de novo resistance. Trial registrations: ClinicalTrials.gov NCT01006980; ClinicalTrials.gov NCT01107418; ClinicalTrials.gov NCT01264380; ClinicalTrials.gov NCT01248936; ClinicalTrials.gov NCT00949702; ClinicalTrials.gov NCT01072175.
Collapse
Affiliation(s)
- Dennie T. Frederick
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Roberto A. Salas Fragomeni
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aislyn Schalck
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - Isabel Ferreiro-Neira
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Taylor Hoff
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Zachary A. Cooper
- Department of Surgical Oncology and Genomic Medicine, University of Texas, M.D.Anderson Cancer Center, Houston, Texas, United States of America
| | - Rizwan Haq
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - David J. Panka
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Lawrence N. Kwong
- Department of Surgical Oncology and Genomic Medicine, University of Texas, M.D.Anderson Cancer Center, Houston, Texas, United States of America
| | - Michael A. Davies
- Department of Surgical Oncology and Genomic Medicine, University of Texas, M.D.Anderson Cancer Center, Houston, Texas, United States of America
| | - James C. Cusack
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Keith T. Flaherty
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - David E. Fisher
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - James W. Mier
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Jennifer A. Wargo
- Department of Surgical Oncology and Genomic Medicine, University of Texas, M.D.Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan J. Sullivan
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
Focused chemical libraries--design and enrichment: an example of protein-protein interaction chemical space. Future Med Chem 2014; 6:1291-307. [PMID: 24773599 DOI: 10.4155/fmc.14.57] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the many obstacles in the development of new drugs lies in the limited number of therapeutic targets and in the quality of screening collections of compounds. In this review, we present general strategies for building target-focused chemical libraries with a particular emphasis on protein-protein interactions (PPIs). We describe the chemical spaces spanned by nine commercially available PPI-focused libraries and compare them to our 2P2I3D academic library, dedicated to orthosteric PPI modulators. We show that although PPI-focused libraries have been designed using different strategies, they share common subspaces. PPI inhibitors are larger and more hydrophobic than standard drugs; however, an effort has been made to improve the drug-likeness of focused chemical libraries dedicated to this challenging class of targets.
Collapse
|
30
|
Jensen SA, Calvert AE, Volpert G, Kouri FM, Hurley LA, Luciano JP, Wu Y, Chalastanis A, Futerman AH, Stegh AH. Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc Natl Acad Sci U S A 2014; 111:5682-7. [PMID: 24706805 PMCID: PMC3992626 DOI: 10.1073/pnas.1316700111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Therapy resistance is a major limitation to the successful treatment of cancer. Here, we identify Bcl2-like 13 (Bcl2L13), an atypical member of the Bcl-2 family, as a therapy susceptibility gene with elevated expression in solid and blood cancers, including glioblastoma (GBM). We demonstrate that mitochondria-associated Bcl2L13 inhibits apoptosis induced by a wide spectrum of chemo- and targeted therapies upstream of Bcl2-associated X protein activation and mitochondrial outer membrane permeabilization in vitro and promotes GBM tumor growth in vivo. Mechanistically, Bcl2L13 binds to proapoptotic ceramide synthases 2 (CerS2) and 6 (CerS6) via a unique C-terminal 250-aa sequence located between its Bcl-2 homology and membrane anchor domains and blocks homo- and heteromeric CerS2/6 complex formation and activity. Correspondingly, CerS2/6 activity and Bcl2L13 abundance are inversely correlated in GBM tumors. Thus, our genetic and functional studies identify Bcl2L13 as a regulator of therapy susceptibility and point to the Bcl2L13-CerS axis as a promising target to enhance responses of therapy-refractory cancers toward conventional and targeted regimens currently in clinical use.
Collapse
Affiliation(s)
- Samuel A. Jensen
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Andrea E. Calvert
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Giora Volpert
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Fotini M. Kouri
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Lisa A. Hurley
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Janina P. Luciano
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Yongfei Wu
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Alexandra Chalastanis
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| | - Anthony H. Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander H. Stegh
- Ken and Ruth Davee Department of Neurology, The Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and
| |
Collapse
|
31
|
Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S, Bracha AL, Liefeld T, Wawer M, Gilbert JC, Wilson AJ, Stransky N, Kryukov GV, Dancik V, Barretina J, Garraway LA, Hon CSY, Munoz B, Bittker JA, Stockwell BR, Khabele D, Stern AM, Clemons PA, Shamji AF, Schreiber SL. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 2013; 154:1151-1161. [PMID: 23993102 DOI: 10.1016/j.cell.2013.08.003] [Citation(s) in RCA: 566] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 06/21/2013] [Accepted: 08/01/2013] [Indexed: 01/18/2023]
Abstract
The high rate of clinical response to protein-kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: (1) associate with specific cancer-genomic alterations and (2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (http://www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene β-catenin with sensitivity to the Bcl-2 family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and to accelerate discovery of drugs matched to patients by their cancer genotype and lineage.
Collapse
Affiliation(s)
- Amrita Basu
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Jaime H Cheah
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Edmund V Price
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ke Liu
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | | | | - Daisuke Ito
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Stephanie Wang
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Abigail L Bracha
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ted Liefeld
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mathias Wawer
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Joshua C Gilbert
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Andrew J Wilson
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Nicolas Stransky
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Vlado Dancik
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jordi Barretina
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Levi A Garraway
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - C Suk-Yee Hon
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Benito Munoz
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Joshua A Bittker
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | - Dineo Khabele
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrew M Stern
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Paul A Clemons
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Alykhan F Shamji
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | | |
Collapse
|
32
|
Abstract
The past decade has witnessed tremendous advances in the discovery and development of novel small-molecule inhibitors targeting apoptosis pathways for cancer treatment, with some compounds now in clinical development. Early promising clinical data have been reported with these new classes of anticancer drugs. This review highlights the recent advancements in the development of small-molecule inhibitors targeting three major classes of antiapoptotic proteins: antiapoptotic B cell lymphoma 2 (BCL-2) proteins, inhibitor of apoptosis proteins (IAPs), and murine double-minute 2 (MDM2). Special emphasis is given to those that have been advanced into clinical trials. The challenges and future directions in the further preclinical and clinical development of these new anticancer drugs are also discussed.
Collapse
Affiliation(s)
- Longchuan Bai
- University of Michigan Comprehensive Cancer Center and Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| | | |
Collapse
|
33
|
Frith AE, Hirbe AC, Van Tine BA. Novel pathways and molecular targets for the treatment of sarcoma. Curr Oncol Rep 2013; 15:378-85. [PMID: 23661264 DOI: 10.1007/s11912-013-0319-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sarcomas collectively represent over 100 different subtypes of bone and soft tissue tumors of mesenchymal origin. The low response rate to cytotoxic chemotherapies has necessitated the need for development of either histologically driven or pathway-specific targeted therapies. As our understanding of the molecular mechanisms driving certain subtypes is rapidly advancing, the number of targeted therapies is also increasing. Recently identified novel druggable targets include the MDM2 amplifications in well-differentiated and dedifferentiated liposarcomas, the new translocation NAB2:STAT6 of solitary fibrous tumors, the angiopoeitin-TIE2 pathway in angiosarcoma, the suppression of Mcl1 in X:18/synovial sarcomas, the mTOR pathway in malignant peripheral nerve sheath tumors, CDK4 in alveolar rhabdomyosarcoma, cMET regulation in alveolar soft parts sarcoma, the metabolic abnormalities in wild-type/SHD GIST, and the lack of argininosuccinate synthetase 1 expression seen in most sarcomas. It is through a fundamental understanding of sarcoma biology that clinical trials based on molecular targets can be developed.
Collapse
Affiliation(s)
- Ashley E Frith
- Division of Medical Oncology, Department of Internal Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
34
|
Lam LT, Zhang H, Chyla B. Biomarkers of therapeutic response to BCL2 antagonists in cancer. Mol Diagn Ther 2013; 16:347-56. [PMID: 23023732 DOI: 10.1007/s40291-012-0003-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells persist by resisting programmed cell death or apoptosis. In particular, an imbalance of proteins that regulate apoptosis leads to lack of response to apoptotic stimuli. Thus, restoring the ability of cancer cells to undergo apoptosis is highly desirable. One apoptosis pathway, the intrinsic pathway, involves perturbation of the mitochondria. The major players of this pathway are the members of the B cell CLL/lymphoma 2 (BCL2) family. Currently, three BCL2 antagonists are in clinical trials for cancer treatment. While these antagonists show various specificity and potency, the development of companion diagnostics is crucial for developing these compounds into viable cancer treatments. In this review we describe predictive and pharmacodynamic biomarkers for these agents. Future directions on biomarker development for this class of antagonist are also discussed.
Collapse
Affiliation(s)
- Lloyd T Lam
- Department R4CD, Global Pharmaceutical R&D, Abbott Laboratories, Building AP-10, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | |
Collapse
|
35
|
Chen YT, Feng B, Chen LB. Update of research on drug resistance in small cell lung cancer chemotherapy. Asian Pac J Cancer Prev 2013; 13:3577-81. [PMID: 23098422 DOI: 10.7314/apjcp.2012.13.8.3577] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Small cell lung cancer (SCLC) is characterized by a short cell doubling time, rapid progression and early occurrence of blood-borne and lymph metastasis. The malignancy is the highest of all lung cancer types. Although SCLC has a relatively good initial response to chemotherapy as well as radiotherapy, relapse or disease progression may occur quickly after the initial treatment. Drug resistance, especially multi-drug resistance, is the most important cause of failure of SCLC chemotherapy. This article provides a brief update of research on mechanisms of drug resistance in SCLC and reversal strategies.
Collapse
Affiliation(s)
- Yi-Tian Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing, China
| | | | | |
Collapse
|
36
|
Liu Q, Wang HG. Anti-cancer drug discovery and development: Bcl-2 family small molecule inhibitors. Commun Integr Biol 2013; 5:557-65. [PMID: 23336025 PMCID: PMC3541322 DOI: 10.4161/cib.21554] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Deregulated apoptosis is a hallmark of cancer, and the B-cell lymphoma-2 (Bcl-2) family of proteins is pivotal to mediating the intrinsic pathway of this process. Recent advances have yielded both pan-Bcl-2 small molecule inhibitors (SMIs) that inhibit both the Bcl-2 and the Mcl-1 arm of the Bcl-2 family anti-apoptotic proteins, as well as selective SMIs to differentially target the two arms. Of these SMIs, ABT-263 (navitoclax), AT-101 [(-)-gossypol], and obatoclax (GX15-070) are currently in clinical trials for multiple cancers. While pan-Bcl-2 inhibitors such as AT-101 and obatoclax can be more toxic for inhibiting all members of the anti-apoptotic Bcl-2 family of proteins, resistance can quickly develop for ABT-263, a selective Bcl-2 inhibitor. In this article, we discuss the current status of Bcl-2 family SMIs in preclinical and clinical development. As Mcl-1 upregulation is a major mechanism of ABT-263 resistance, Mcl-1-specific inhibitors are expected to be efficacious both in combination/sequential treatments and as a single agent against cancers resistant to ABT-263.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Pharmacology and Penn State Hershey Cancer Institute; The Pennsylvania University College of Medicine; Hershey, PA USA
| | | |
Collapse
|
37
|
Thomas S, Quinn BA, Das SK, Dash R, Emdad L, Dasgupta S, Wang XY, Dent P, Reed JC, Pellecchia M, Sarkar D, Fisher PB. Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets 2012; 17:61-75. [PMID: 23173842 DOI: 10.1517/14728222.2013.733001] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation. AREAS COVERED This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors (SMIs) and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics. EXPERT OPINION Strategies to specifically identify and inhibit critical determinants that promote therapy resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying SMIs with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
Collapse
Affiliation(s)
- Shibu Thomas
- Virginia Commonwealth University, Department of Human and Molecular Genetics, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Muppidi A, Doi K, Edwardraja S, Drake EJ, Gulick AM, Wang HG, Lin Q. Rational design of proteolytically stable, cell-permeable peptide-based selective Mcl-1 inhibitors. J Am Chem Soc 2012; 134:14734-7. [PMID: 22920569 DOI: 10.1021/ja306864v] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct chemical modifications provide a simple and effective means to "translate" bioactive helical peptides into potential therapeutics targeting intracellular protein-protein interactions. We previously showed that distance-matching bisaryl cross-linkers can reinforce peptide helices containing two cysteines at the i and i+7 positions and confer cell permeability to the cross-linked peptides. Here we report the first crystal structure of a biphenyl-cross-linked Noxa peptide in complex with its target Mcl-1 at 2.0 Å resolution. Guided by this structure, we remodeled the surface of this cross-linked peptide through side-chain substitution and N-methylation and obtained a pair of cross-linked peptides with substantially increased helicity, cell permeability, proteolytic stability, and cell-killing activity in Mcl-1-overexpressing U937 cells.
Collapse
Affiliation(s)
- Avinash Muppidi
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Mattoo AR, FitzGerald DJ. Combination treatments with ABT-263 and an immunotoxin produce synergistic killing of ABT-263-resistant small cell lung cancer cell lines. Int J Cancer 2012; 132:978-87. [PMID: 22821746 DOI: 10.1002/ijc.27732] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/06/2012] [Indexed: 01/04/2023]
Abstract
Synergistic killing was achieved when Small Cell Lung Cancer (SCLC) cell lines were incubated with ABT-263 and an immunotoxin directed to the transferrin receptor. SCLC lines are variably sensitive to the BH-3 only peptide mimetic, ABT-263. To determine their sensitivity to toxin-based reagents, we incubated four representative SCLC lines with a model Pseudomonas exotoxin-based immunotoxin directed to the transferrin receptor. Remarkably in 4-of-4 lines, there was little evidence of immunotoxin-mediated cytotoxicity despite near complete inhibition of protein synthesis. However, when combinations of ABT-263 and immunotoxin were added to the ABT-263-resistant cell lines (H196 and H69AR), there was synergistic killing as evidenced by increased activation of caspase 3/7, annexin V staining, and loss of cell integrity. Synergistic killing was evident at 6 hr and correlated with loss of Mcl-1. This synergy was also noted when the closely related compound ABT-737 was combined with the same immunotoxin. To establish that the synergy seen in tissue culture could be achieved in vivo, H69AR cells were grown as tumors in nude mice and shown to be susceptible to the killing action of an immunotoxin-ABT-737 combination but not to either agent alone. When immunotoxin-ABT combinations were added to ABT-263-sensitive lines (H146 and H1417), killing was additive. Our data support combination approaches for treating ABT-263-resistant SCLC with ABT-263 and a second agent that provides synergistic killing action.
Collapse
Affiliation(s)
- Abid R Mattoo
- Biotherapy Section, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, HHS, Bethesda, MD 20819, USA
| | | |
Collapse
|
40
|
Rooswinkel RW, van de Kooij B, Verheij M, Borst J. Bcl-2 is a better ABT-737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B. Cell Death Dis 2012; 3:e366. [PMID: 22875003 PMCID: PMC3434657 DOI: 10.1038/cddis.2012.109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The novel anticancer drug ABT-737 is a Bcl-2 Homology 3 (BH3)-mimetic that induces apoptosis by inhibiting pro-survival Bcl-2 proteins. ABT-737 binds with equal affinity to Bcl-2, Bcl-xL and Bcl-w in vitro and is expected to overrule apoptosis resistance mediated by these Bcl-2 proteins in equal measure. We have profiled ABT-737 specificity for all six pro-survival Bcl-2 proteins, in p53 wild-type or p53-mutant human T-leukemic cells. Bcl-B was untargeted, like Bfl-1 and Mcl-1, in accord with their low affinity for ABT-737 in vitro. However, Bcl-2 proved a better ABT-737 target than Bcl-xL and Bcl-w. This was reflected in differential apoptosis-sensitivity to ABT-737 alone, or combined with etoposide. ABT-737 was not equally effective in displacing BH3-only proteins or Bax from Bcl-2, as compared with Bcl-xL or Bcl-w, offering an explanation for the differential ABT-737 sensitivity of tumor cells overexpressing these proteins. Inducible expression demonstrated that BH3-only proteins Noxa, but not Bim, Puma or truncated Bid could overrule ABT-737 resistance conferred by Bcl-B, Bfl-1 or Mcl-1. These data identify Bcl-B, Bfl-1 and Mcl-1, but also Bcl-xL and Bcl-w as potential mediators of ABT-737 resistance and indicate that target proteins can be differentially sensitive to BH3-mimetics, depending on the pro-apoptotic Bcl-2 proteins they are complexed with.
Collapse
Affiliation(s)
- R W Rooswinkel
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Radiotherapy, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - B van de Kooij
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - M Verheij
- Division of Radiotherapy, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - J Borst
- Division of Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands. Tel: +31 20 5122056; Fax: +31 20 5122057; E-mail:
| |
Collapse
|
41
|
Jones KB, Su L, Jin H, Lenz C, Randall RL, Underhill TM, Nielsen TO, Sharma S, Capecchi MR. SS18-SSX2 and the mitochondrial apoptosis pathway in mouse and human synovial sarcomas. Oncogene 2012; 32:2365-71, 2375.e1-5. [PMID: 22797074 DOI: 10.1038/onc.2012.247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Synovial sarcoma is a deadly malignancy with limited sensitivity to traditional cytotoxic chemotherapy. SS18-SSX fusion oncogene expression characterizes human synovial sarcomas and drives oncogenesis in a mouse model. Elevated expression of BCL2 is considered a consistent feature of the synovial sarcoma expression profile. Our objective was to evaluate the expression of apoptotic pathway members in synovial sarcomas and interrogate the impact of modulating SS18-SSX expression on this pathway. We show in human and murine synovial sarcoma cells that SS18-SSX increases BCL2 expression, but represses other anti-apoptotic genes, including MCL1 and BCL2A1. This repression is achieved by directly suppressing expression via binding through activating transcription factor 2 (ATF2) to the cyclic adenosine monophosphate (AMP) response element (CRE) in the promoters of these genes and recruiting TLE1/Groucho. The suppression of these two anti-apoptotic pathways silences the typical routes by which other tumors evade BH3-domain peptidomimetic pharmacotherapy. We show that mouse and human synovial sarcoma cells are sensitive in vitro to ABT-263, a BH3-peptidomimetic, much more than the other tested cancer cell lines. ABT-263 also enhances the sensitivity of these cells to doxorubicin, a traditional cytotoxic chemotherapy used for synovial sarcoma. We also demonstrate the capacity of ABT-263 to stunt synovial sarcomagenesis in vivo in a genetic mouse model. These data recommend pursuit of BH3-peptidomimetic pharmacotherapy in human synovial sarcomas.
Collapse
Affiliation(s)
- K B Jones
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112-5331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Curry MC, Luk NA, Kenny PA, Roberts-Thomson SJ, Monteith GR. Distinct regulation of cytoplasmic calcium signals and cell death pathways by different plasma membrane calcium ATPase isoforms in MDA-MB-231 breast cancer cells. J Biol Chem 2012; 287:28598-608. [PMID: 22733819 DOI: 10.1074/jbc.m112.364737] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane calcium ATPases (PMCAs) actively extrude Ca(2+) from the cell and are essential components in maintaining intracellular Ca(2+) homeostasis. There are four PMCA isoforms (PMCA1-4), and alternative splicing of the PMCA genes creates a suite of calcium efflux pumps. The role of these different PMCA isoforms in the control of calcium-regulated cell death pathways and the significance of the expression of multiple isoforms of PMCA in the same cell type are not well understood. In these studies, we assessed the impact of PMCA1 and PMCA4 silencing on cytoplasmic free Ca(2+) signals and cell viability in MDA-MB-231 breast cancer cells. The PMCA1 isoform was the predominant regulator of global Ca(2+) signals in MDA-MB-231 cells. PMCA4 played only a minor role in the regulation of bulk cytosolic Ca(2+), which was more evident at higher Ca(2+) loads. Although PMCA1 or PMCA4 knockdown alone had no effect on MDA-MB-231 cell viability, silencing of these isoforms had distinct consequences on caspase-independent (ionomycin) and -dependent (ABT-263) cell death. PMCA1 knockdown augmented necrosis mediated by the Ca(2+) ionophore ionomycin, whereas apoptosis mediated by the Bcl-2 inhibitor ABT-263 was enhanced by PMCA4 silencing. PMCA4 silencing was also associated with an inhibition of NFκB nuclear translocation, and an NFκB inhibitor phenocopied the effects of PMCA4 silencing in promoting ABT-263-induced cell death. This study demonstrates distinct roles for PMCA1 and PMCA4 in the regulation of calcium signaling and cell death pathways despite the widespread distribution of these two isoforms. The targeting of some PMCA isoforms may enhance the effectiveness of therapies that act through the promotion of cell death pathways in cancer cells.
Collapse
Affiliation(s)
- Merril C Curry
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
43
|
Fennell DA, Swanton C. Unlocking Pandora's box: personalising cancer cell death in non-small cell lung cancer. EPMA J 2012; 3:6. [PMID: 22738201 PMCID: PMC3422179 DOI: 10.1186/1878-5085-3-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/03/2012] [Indexed: 01/09/2023]
Abstract
Evasion of apoptosis is a hallmark of tumorigenesis and a recognised cause of multidrug resistance. Over the last decade, insights into how apoptosis might be exploited in non-small cell lung cancer (NSCLC) and how cancer therapeutics might be used to engage apoptotic signalling in a personalised manner have changed markedly. We are now in the wake of a paradigm shift in stratified therapeutic approaches related to NSCLC. At the heart of this shift in thinking is the emerging knowledge that even the most drug-resistant cancers exhibit a functional death pathway and, critically, that this pathway can be efficiently engaged, leading to clinical benefit. This review will summarise current knowledge of mitochondrial apoptotic pathway dysfunction in NSCLC and how the next generation of targeted therapeutics might be used to exploit deficiencies in apoptotic signalling in a personalised manner to improve clinical outcome and predict therapeutic benefit.
Collapse
Affiliation(s)
- Dean A Fennell
- University of Leicester & Leicester University Hospitals, Hodgkin Building, Lancaster Road, PO Box 138, Leicester, LE1 9HN, UK.
| | | |
Collapse
|
44
|
Wong M, Tan N, Zha J, Peale FV, Yue P, Fairbrother WJ, Belmont LD. Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models. Mol Cancer Ther 2012; 11:1026-35. [PMID: 22302098 DOI: 10.1158/1535-7163.mct-11-0693] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To examine the potential of combining Bcl-2 family inhibitors with chemotherapy in ovarian cancer, we evaluated a panel of 27 ovarian cancer cell lines for response to the combination of navitoclax (formerly ABT-263) and paclitaxel or gemcitabine. The majority of cell lines exhibited a greater than additive response to either combination, as determined by the Bliss independence model, and more than 50% of the ovarian cell lines exhibited strong synergy for the navitoclax/paclitaxel combination. To identify biomarkers for tumors likely to respond to this combination, we evaluated the protein levels of intrinsic apoptosis pathway components. Bcl-x(L) seems necessary, but not sufficient, for navitoclax/paclitaxel synergy in vitro, suggesting that exclusion of patients whose tumors have low or undetectable Bcl-x(L) would enrich for patients responsive to the combination. We evaluated Bcl-x(L) levels in ovarian cancer tumor tissue from 40 patients (20 taxane responsive and 20 with poor response to taxane) and found that patients with high Bcl-x(L) were less sensitive to taxane treatment (10 of 12) Bcl-x(L) positive patients, P = 0.014). These data support the use of navitoclax in combination with taxane-based therapy in ovarian cancer patients with high levels of Bcl-x(L).
Collapse
Affiliation(s)
- Maureen Wong
- Molecular Diagnostics and Cancer Cell Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Metro G, Duranti S, Fischer MJ, Cappuzzo F, Crinò L. Emerging drugs for small cell lung cancer--an update. Expert Opin Emerg Drugs 2012; 17:31-6. [PMID: 22288522 DOI: 10.1517/14728214.2012.656588] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is a biologically complex tumor whose medical treatment has remained largely unchanged over the last 30 years. The frustration for the invariably negative results reported in the early 2000s in clinical studies investigating new agents for this disease have contributed to the little interest shown by pharmaceutical industries in funding SCLC research. However, recent advances in the molecular understanding of the oncogenic mechanisms underlying SCLC have renewed the attraction for the clinical development of novel active drugs for the treatment of this challenging disease. AREAS COVERED The authors briefly touch on the most promising agents under clinical development for the treatment of SCLC, either chemotherapeutic or targeted drugs. Relevant and recent (2 years) studies obtained through Pubmed literature research or released at International scientific meetings are presented. EXPERT OPINION The data discussed herein provide evidence in support of the fact that only rationally designed clinical trials including relevant translational research may lead to successful results. Therefore, a thoughtful change in trial construction is crucial for the approval of new active drugs for this orphan disease.
Collapse
Affiliation(s)
- Giulio Metro
- Division of Medical Oncology, Santa Maria della Misericordia Hospital, Azienda Ospedaliera di Perugia, Via Dottori, 1, 06156 Perugia, Italy.
| | | | | | | | | |
Collapse
|
46
|
Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL, Carney DA, He SZ, Huang DCS, Xiong H, Cui Y, Busman TA, McKeegan EM, Krivoshik AP, Enschede SH, Humerickhouse R. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2011; 30:488-96. [PMID: 22184378 DOI: 10.1200/jco.2011.34.7898] [Citation(s) in RCA: 670] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE BCL2 overexpression is a hallmark of chronic lymphocytic leukemia (CLL). The novel BH3 mimetic navitoclax (ABT-263) specifically inhibits BCL2 and related proteins BCL-x(l) and BCL-w, potently inducing apoptosis of CLL cells in vitro. A phase I trial in patients with CLL was conducted to evaluate the safety, pharmacokinetics, and biologic activity of oral navitoclax. PATIENTS AND METHODS Twenty-nine patients with relapsed or refractory CLL received daily navitoclax for 14 days (10, 110, 200, or 250 mg/d; n = 15) or 21 days (125, 200, 250, or 300 mg/d; n = 14) of each 21-day cycle. Dose escalation decisions were informed by continual reassessment methodology. RESULTS Lymphocytosis was reduced by more than 50% in 19 of 21 patients with baseline lymphocytosis. Among 26 patients treated with navitoclax ≥ 110 mg/d, nine (35%) achieved a partial response and seven maintained stable disease for more than 6 months. Median treatment duration was 7 months (range, 1 to ≥ 29 months). Median progression-free survival was 25 months. Activity was observed in patients with fludarabine-refractory disease, bulky adenopathy, and del(17p) CLL. Thrombocytopenia due to BCL-x(l) inhibition was the major dose-limiting toxicity and was dose-related. Low MCL1 expression and high BIM:MCL1 or BIM:BCL2 ratios in leukemic cells correlated with response. We determined that the navitoclax dose of 250 mg/d in a continuous dosing schedule was optimal for phase II studies. CONCLUSION BCL2 is a valid therapeutic target in CLL, and its inhibition by navitoclax warrants further evaluation as monotherapy and in combination in this disease.
Collapse
Affiliation(s)
- Andrew W Roberts
- MBBS, Department of Clinical Haematology and BMT, The Royal Melbourne Hospital, 2 Centre, Grattan St, Parkville 3050, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fulda S, Kroemer G. Mitochondria as therapeutic targets for the treatment of malignant disease. Antioxid Redox Signal 2011; 15:2937-49. [PMID: 21644835 DOI: 10.1089/ars.2011.4078] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIGNIFICANCE Mitochondria exert vital functions during normal physiology and are also centrally involved in the regulation of various modes of cell death. Thus, engaging the mitochondrial apoptosis pathway presents an attractive possibility to activate lethal effectors in cancer cells. RECENT ADVANCES Compounds that directly target mitochondria offer the advantage to initiate mitochondrial outer membrane permeabilization independently of upstream signal transduction elements that are frequently impaired in human cancers. As a consequence, mitochondrion-targeted agents may bypass some forms of drug resistance. CRITICAL ISSUES An ever-increasing number of compounds, including natural compounds and rationally designed drugs, has been shown to directly act on mitochondria. FUTURE DIRECTIONS Forthcoming insights into the fine regulation of mitochondrial apoptosis will likely open future perspectives for cancer drug development.
Collapse
Affiliation(s)
- Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt am Main, Germany.
| | | |
Collapse
|
48
|
Singh A, Jayanthan A, Farran A, Elwi AN, Kim SW, Farran P, Narendran A. Induction of apoptosis in pediatric acute lymphoblastic leukemia (ALL) cells by the therapeutic opioid methadone and effective synergy with Bcl-2 inhibition. Leuk Res 2011; 35:1649-57. [DOI: 10.1016/j.leukres.2011.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 06/25/2011] [Accepted: 06/25/2011] [Indexed: 10/17/2022]
|
49
|
Abstract
The incidence and mortality of small-cell lung cancer worldwide make this disease a notable health-care issue. Diagnosis relies on histology, with the use of immunohistochemical studies to confirm difficult cases. Typical patients are men older than 70 years who are current or past heavy smokers and who have pulmonary and cardiovascular comorbidities. Patients often present with rapid-onset symptoms due to local intrathoracic tumour growth, extrapulmonary distant spread, paraneoplastic syndromes, or a combination of these features. Staging aims ultimately to define disease as metastatic or non-metastatic. Combination chemotherapy, generally platinum-based plus etoposide or irinotecan, is the mainstay first-line treatment for metastatic small-cell lung cancer. For non-metastatic disease, evidence supports early concurrent thoracic radiotherapy. Prophylactic cranial irradiation should be considered for patients with or without metastases whose disease does not progress after induction chemotherapy and radiotherapy. Despite high initial response rates, most patients eventually relapse. Except for topotecan, few treatment options then remain. Signalling pathways have been identified that might yield new drug targets.
Collapse
Affiliation(s)
- Jan P van Meerbeeck
- Department of Respiratory Medicine and Lung Oncological Network, Ghent University Hospital, Ghent, Belgium.
| | | | | |
Collapse
|
50
|
Baggstrom MQ, Qi Y, Koczywas M, Argiris A, Johnson EA, Millward MJ, Murphy SC, Erlichman C, Rudin CM, Govindan R. A phase II study of AT-101 (Gossypol) in chemotherapy-sensitive recurrent extensive-stage small cell lung cancer. J Thorac Oncol 2011; 6:1757-60. [PMID: 21918390 PMCID: PMC3180914 DOI: 10.1097/jto.0b013e31822e2941] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND AT-101 is an oral inhibitor of the antiapoptotic Bcl proteins (Bcl-2, Bcl-XL, Bcl-W, and Mcl-1) and an inducer of the pro-apoptotic proteins noxa and puma. We studied the efficacy of AT-101 in patients with recurrent chemosensitive extensive-stage small cell lung cancer (SCLC). METHODS Patients with recurrent "sensitive" SCLC (defined as no progression during and no disease recurrence <2 months after completion of first-line platinum-based chemotherapy) were eligible. AT-101 was administered 20 mg orally daily for 21 of 28 days each cycle for up to six cycles. The primary end point was the objective response rate. RESULTS At the time of planned interim evaluation, none of the 14 evaluable patients enrolled in the first stage had any response to therapy, and the study was closed permanently for further accrual. Three patients (21%) achieved stable disease after two cycles of therapy. Grade 3 toxicities included anorexia, fatigue, and nausea/vomiting. CONCLUSIONS AT-101 is not active in patients with recurrent chemosensitive SCLC.
Collapse
Affiliation(s)
- Maria Q Baggstrom
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|