1
|
Zhang JY, Li H, Zhang MJ, Sun ZJ. Lymphangiogenesis orchestrating tumor microenvironment: Face changing in immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189278. [PMID: 39929379 DOI: 10.1016/j.bbcan.2025.189278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/22/2025] [Accepted: 02/04/2025] [Indexed: 02/19/2025]
Abstract
In the era of immunotherapy, the lymphatic system has garnered significant attention from researchers. Increasing evidence highlights the complex regulation of lymphatic vessels (LVs) within the tumor microenvironment, unveiling a paradox in tumor progression: while LVs enhance immune surveillance, they simultaneously foster immune suppression. This review summarizes the regulatory factors of lymphangiogenesis, discusses the intricate effects of LVs on immunotherapy, and emphasizes the potential connection between lymphangiogenesis and tertiary lymphoid structure. Additionally, current therapeutic strategies targeting lymphangiogenesis are critically evaluated, with a forward-looking perspective on future research directions and regulatory approaches to achieve precise targeting and optimize immunotherapy paradigms.
Collapse
Affiliation(s)
- Jun-Ye Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Centre for Life and Medical Sciences, Wuhan University, Wuhan 430079, China
| | - Hao Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Centre for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China
| | - Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Centre for Life and Medical Sciences, Wuhan University, Wuhan 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Centre for Immunology and Metabolism, Taikang Centre for Life and Medical Sciences, Wuhan University, Wuhan 430079, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
2
|
Sun M, Yu Y, Zhu H, Yao Y, Zhou X, Wang X, Zhang Y, Xu X, Zhuang J, Sun C. Hepatic Growth Factor as a Potential Biomarker for Lung Adenocarcinoma: A Multimodal Study. Curr Issues Mol Biol 2025; 47:208. [PMID: 40136462 PMCID: PMC11941628 DOI: 10.3390/cimb47030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
(1) Background: Despite previous studies linking inflammatory cytokines to lung adenocarcinoma (LUAD), their causal mechanisms remain unclear. This study aims to explore the causal relationship between inflammatory cytokines and LUAD to fill this knowledge gap. (2) Methods: This study employs a comprehensive approach, integrating Mendelian randomization (MR) analysis, single-cell RNA sequencing (scRNA-seq), and transcriptomic sequencing (RNA-seq) data to investigate the relationship between inflammatory cytokines and LUAD. (3) Results: In forward MR analysis, elevated levels of hepatocyte growth factor (HGF), interleukin-1 receptor antagonist (IL-1RA), IL-5, monocyte chemoattractant protein-3, and monokine induced by interferon-γ were causally associated with an increased risk of LUAD. In reverse MR analysis, LUAD exhibited a positive causal relationship with the levels of regulated upon activation normal T cell expressed and secreted factor (RANTES) and stromal cell-derived factor-1α. The scRNA-seq data further identified specific cell populations that may influence LUAD onset and progression through the expression of particular inflammatory genes and intercellular communication. RNA-seq data analysis highlighted the role of the HGF gene in LUAD diagnosis, demonstrating its strong correlation with patient prognosis and immune cell infiltration within the tumor microenvironment. (4) Conclusions: The findings reveal a causal relationship between inflammatory cytokines and LUAD, with HGF emerging as a potential biomarker of significant clinical relevance. This study provides new insights into the molecular mechanisms underlying LUAD and lays the foundation for future therapeutic strategies.
Collapse
Affiliation(s)
- Mengxuan Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Yang Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Hanci Zhu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Yan Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Xintong Zhou
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Xue Wang
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261000, China; (X.W.); (X.X.)
| | - Yubao Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
| | - Xiaowei Xu
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261000, China; (X.W.); (X.X.)
| | - Jing Zhuang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261000, China; (X.W.); (X.X.)
| | - Changgang Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (M.S.); (H.Z.); (Y.Y.); (X.Z.); (Y.Z.)
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang 261000, China; (X.W.); (X.X.)
| |
Collapse
|
3
|
Belloni A, Pugnaloni A, Rippo MR, Di Valerio S, Giordani C, Procopio AD, Bronte G. The cell line models to study tyrosine kinase inhibitors in non-small cell lung cancer with mutations in the epidermal growth factor receptor: A scoping review. Crit Rev Oncol Hematol 2024; 194:104246. [PMID: 38135018 DOI: 10.1016/j.critrevonc.2023.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) represents ∼85% of all lung cancers and ∼15-20% of them are characterized by mutations affecting the Epidermal Growth Factor Receptor (EGFR). For several years now, a class of tyrosine kinase inhibitors was developed, targeting sensitive mutations affecting the EGFR (EGFR-TKIs). To date, the main burden of the TKIs employment is due to the onset of resistance mutations. This scoping review aims to resume the current situation about the cell line models employed for the in vitro evaluation of resistance mechanisms induced by EGFR-TKIs in oncogene-addicted NSCLC. Adenocarcinoma results the most studied NSCLC histotype with the H1650, H1975, HCC827 and PC9 mutated cell lines, while Gefitinib and Osimertinib the most investigated inhibitors. Overall, data collected frame the current advancement of this topic, showing a plethora of approaches pursued to overcome the TKIs resistance, from RNA-mediated strategies to the innovative combination therapies.
Collapse
Affiliation(s)
- Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Silvia Di Valerio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Giordani
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
4
|
Cai Y, Sheng Z, Dong Z, Wang J. EGFR Inhibitor CL-387785 Suppresses the Progression of Lung Adenocarcinoma. Curr Mol Pharmacol 2023; 16:211-216. [PMID: 35352671 DOI: 10.2174/1874467215666220329212300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed to explore the influence of the irreversible EGFR inhibitor CL-387785 on invasion, metastasis, and radiation sensitization of non-small cell lung cancer cells. METHODS The proliferation inhibitory rate at different time points was detected by MTT assay. The apoptosis of H1975 cells treated with CL-387785 was detected using flow cytometry. The invasion and migration of H1975 cells treated with CL-387785 were determined by Transwell assay and wound healing assay. The survival fraction (SF) of H1975 cells cultured with CL- 387785 under X-ray (0, 2, 4, 6, 8, and 10 Gy) was detected by cloning formation experiment, and the sensitization ratio (SER) was calculated by clicking the multi-target model to fit the cell survival curve. RESULTS CL-387785 restrained H1975 cell proliferation in a concentration- and time-dependent manner. CL-387785 promoted H1975 cell apoptosis and reduced cell migration distance and the number of transmembrane cells. The SF treated by different concentrations of CL-387785 (10, 25, 50, and 100 nM) was all below 0 nM. The radiation SER of CL-387785 (10, 25, 50 and 100 nM) were 1.17, 1.39, 2.88, and 3.64, respectively. CONCLUSION The invasion and metastasis of H1975 cells were restrained by irreversible EGFR inhibitor CL-387785. CL-387785 also exhibited the effect of radiotherapy sensitization.
Collapse
Affiliation(s)
- Yong Cai
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhaoying Sheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zhiyi Dong
- Department of Traditional Chinese Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jiying Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| |
Collapse
|
5
|
Round Robin Evaluation of MET Protein Expression in Lung Adenocarcinomas Improves Interobserver Concordance. Appl Immunohistochem Mol Morphol 2021; 28:669-677. [PMID: 31876606 PMCID: PMC7242128 DOI: 10.1097/pai.0000000000000810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Overexpression of the mesenchymal-epithelial transition (MET) receptor, a receptor tyrosine kinase, can propel the growth of cancer cells and portends poor prognoses for patients with lung cancer. Evaluation of MET by immunohistochemistry is challenging, with MET protein overexpression varying from 20% to 80% between lung cancer cohorts. Clinical trials using MET protein expression to select patients have also reported a wide range of positivity rates and outcomes.
Collapse
|
6
|
Zhuo E, Cai C, Liu W, Li K, Zhao W. Downregulated microRNA-140-5p expression regulates apoptosis, migration and invasion of lung cancer cells by targeting zinc finger protein 800. Oncol Lett 2020; 20:390. [PMID: 33193850 PMCID: PMC7656116 DOI: 10.3892/ol.2020.12253] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in the diagnosis and treatment in recent years, lung cancer is still one of the primary causes of cancer-associated morbidity and mortality in globally. Abnormally expressed microRNAs (miRNAs/miRs) in tumor tissues serve vital roles in the pathological mechanism of tumors and have become prospective biomarkers for cancer diagnosis. The present study aimed to investigate the effects of the miR-140-5p/zinc finger protein 800 (ZNF800) axis in lung carcinoma, and determine its potential underlying molecular mechanisms. The degree of cell proliferation was assessed via the MTT assay, while the migratory and invasive abilities of lung cancer cells were determined via the Transwell and Matrigel assays. The expression levels of miR-140-5p and ZNF800 were detected via reverse transcription-quantitative PCR and western blot analyses. The results demonstrated that miR-140-5p expression was notably higher in normal human bronchial epithelial cells compared with the respective lung cancer cell lines, H292, PC-9, CL1-5 and H460. Furthermore, miR-140-5p expression increased in the lung cancer cells compared with the control cells following transfection with miR-140-5p mimic. Overexpressing miR-140-5p significantly suppressed the proliferative, invasive and migratory abilities of H460 and PC-9 cells, and stimulated cell apoptosis by upregulating the expression of cleaved-caspase-3. Notably, these effects were reversed following transfection with miR-140-5p inhibitor. miR-140-5p was predicted as a negative regulator of ZNF800, and ZNF800 knockdown significantly suppressed the proliferative and metastatic abilities of lung adenocarcinoma (LUAD) cells, which was comparable to the effects of miR-140-5p mimic. Taken together, these results suggest that miR-140-5p may block the malignant phenotype of LUAD by negatively regulating ZNF800 expression. Thus, the miR-140-5p/ZNF800 axis may be used as an alternative therapeutic target for lung carcinoma in general, and LUAD in particular.
Collapse
Affiliation(s)
- Enqing Zhuo
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Changqing Cai
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wenzhe Liu
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Kunsong Li
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| | - Wenzhen Zhao
- Department of 2nd Oncology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
| |
Collapse
|
7
|
Ren XD, Liu DY, Guo HQ, Wang L, Zhao N, Su N, Wei K, Ren S, Qu XM, Dai XT, Huang Q. Sensitive detection of low-abundance in-frame deletions in EGFR exon 19 using novel wild-type blockers in real-time PCR. Sci Rep 2019; 9:8276. [PMID: 31164704 PMCID: PMC6547704 DOI: 10.1038/s41598-019-44792-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/24/2019] [Indexed: 01/29/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations are associated with response of tyrosine kinase inhibitors (TKIs) for patients with advanced non-small cell lung cancer (NSCLC). However, the existing methods for detection of samples having rare mutations(i.e. ~0.01%) have limits in terms of specificity, time consumption or cost. In the current study, novel wild-type blocking (WTB) oligonucleotides modified with phosphorothioate or inverted dT at the 5'-termini were designed to precisely detect 11 common deletion mutations in exon 19 of EGFR gene (E19del) using a WTB-PCR assay. And internal competitive leptin amplifications were further applied to enhance the specificity of the WTB-PCR system. Our results showed that WTB-PCR could completely block amplification of wild-type EGFR when 200 ng of DNA was used as template. Furthermore, the current WTB-PCR assay facilitated the detection of E19del mutations with a selectivity of 0.01% and sensitivity as low as a single copy. And, the results showed that the current WTB-PCR system exceeded detection limits afforded by the ARMS-PCR assay. In conclusion, the current WTB-PCR strategy represents a simple and cost-effective method to precisely detect various low-abundance deletion mutations.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Ding-Yuan Liu
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Hai-Qin Guo
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Liu Wang
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Na Zhao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Kun Wei
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Sai Ren
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China
| | - Xue-Mei Qu
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China
| | - Xiao-Tian Dai
- Department of Pulmonology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
| | - Qing Huang
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, P.R. China.
- Department of Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, P.R. China.
| |
Collapse
|
8
|
Nagano T, Tachihara M, Nishimura Y. Mechanism of Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors and a Potential Treatment Strategy. Cells 2018; 7:E212. [PMID: 30445769 PMCID: PMC6262543 DOI: 10.3390/cells7110212] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) improves the overall survival of patients with EGFR-mutated non-small-cell lung cancer (NSCLC). First-generation EGFR-TKIs (e.g., gefitinib and erlotinib) or second-generation EGFR-TKIs (e.g., afatinib and dacomitinib) are effective for the treatment of EGFR-mutated NSCLC, especially in patients with EGFR exon 19 deletions or an exon 21 L858R mutation. However, almost all cases experience disease recurrence after 1 to 2 years due to acquired resistance. The EGFR T790M mutation in exon 20 is the most frequent alteration associated with the development of acquired resistance. Osimertinib-a third-generation EGFR-TKI-targets the T790M mutation and has demonstrated high efficacy against EGFR-mutated lung cancer. However, the development of acquired resistance to third-generation EGFR-TKI, involving the cysteine residue at codon 797 mutation, has been observed. Other mechanisms of acquired resistance include the activation of alternative pathways or downstream targets and histological transformation (i.e., epithelial⁻mesenchymal transition or conversion to small-cell lung cancer). Furthermore, the development of primary resistance through overexpression of the hepatocyte growth factor and suppression of Bcl-2-like protein 11 expression may lead to problems. In this report, we review these mechanisms and discuss therapeutic strategies to overcome resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| |
Collapse
|
9
|
Wang R, Peng S, Zhang X, Wu Z, Duan H, Yuan Y, Wang W. Inhibition of NF-κB improves sensitivity to irradiation and EGFR-TKIs and decreases irradiation-induced lung toxicity. Int J Cancer 2018; 144:200-209. [PMID: 30289964 DOI: 10.1002/ijc.31907] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Resistance to radiotherapy and to EGFR tyrosine kinase inhibitors (EGFR-TKIs), as well as therapy-related lung toxicity, are serious problems in the treatment of lung cancer. NF-κB has been reported to be associated with radioresistance. Therefore, we evaluated its effects on sensitivity to irradiation and to EGFR-TKIs; irradiation-induced lung toxicity; and the effects of irradiation on sensitivity to EGFR-TKIs. We used IKKβ inhibitor IMD 0354 or p65 depletion to explore their effects on sensitivity to irradiation and to EGFR-TKIs in vitro and in vivo. We evaluated the efficacy of IMD 0354 in a radiation-induced pulmonary-fibrosis mouse model. Irradiation enhanced activation and expression of MET and therefore suppressed the sensitivity of lung cancer cells to irradiation or EGFR-TKIs. Inhibition of NF-κB by IMD 0354 or by p65 depletion reversed irradiation-induced MET activation and increased the sensitivity of lung cancer cells to irradiation, to EGFR-TKIs and to the combination thereof in vitro and in vivo. In addition, IMD 0354 significantly reduced lung toxicity in a murine model of irradiation-induced pneumonia and lung fibrosis. These findings indicated that NF-κB inhibition can improve sensitivity to irradiation and to EGFR-TKIs and can decrease irradiation-induced lung toxicity in lung cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shunli Peng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojuan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenming Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hezhen Duan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Wei Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
First-line onartuzumab plus erlotinib treatment for patients with MET-positive and EGFR mutation-positive non-small-cell lung cancer. Cancer Treat Res Commun 2018; 18:100113. [PMID: 30472556 DOI: 10.1016/j.ctarc.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/30/2018] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The phase II JO28638 study evaluated first-line onartuzumab plus erlotinib in patients with MET-positive advanced, metastatic, or post-operative recurrent non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. The study was stopped following termination of the global METLung study (OAM4971g), which showed lack of efficacy in the onartuzumab/erlotinib arm. We present immature efficacy and safety data from JO28638. MATERIALS AND METHODS Chemotherapy-naïve patients aged ≥ 20 years were enrolled. Patients received onartuzumab (15 mg/kg every 3 weeks) plus erlotinib (150 mg once daily) until progression or unacceptable toxicity. The co-primary endpoints were investigator (INV)-assessed progression-free survival (PFS) and safety. Secondary endpoints: overall response rate (ORR), disease control rate (DCR), overall survival (OS), duration of response (DOR), and pharmacokinetics. Exploratory biomarker analyses were also conducted. RESULTS 61 patients received treatment. Median age was 67 years and most patients had stage IV NSCLC (71%), MET-IHC score 2 (87%), and exon 19 deletion EGFR mutation (53%). Median PFS (INV) was 8.5 months (95% confidence interval [CI] 6.8-12.4); median OS was 15.6 months (95% CI 15.6-not evaluable); ORR was 68.9% (95% CI 55.7-80.1); median DOR was not reached; DCR was 88.5% (95% CI 77.8-95.3). Pharmacokinetics were similar to previous studies. All patients experienced an adverse event (AE); 26 patients discontinued treatment due to AEs; no grade 5 AEs were reported. No significant correlation was found between biomarkers and efficacy outcomes. CONCLUSION The results presented are inconclusive due to the early termination of the study.
Collapse
|
11
|
Phase I Trial of Anti-MET Monoclonal Antibody in MET-Overexpressed Refractory Cancer. Clin Colorectal Cancer 2018; 17:140-146. [DOI: 10.1016/j.clcc.2018.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 01/06/2023]
|
12
|
Yang Z, Tam KY. Combination Strategies Using EGFR-TKi in NSCLC Therapy: Learning from the Gap between Pre-Clinical Results and Clinical Outcomes. Int J Biol Sci 2018; 14:204-216. [PMID: 29483838 PMCID: PMC5821041 DOI: 10.7150/ijbs.22955] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/09/2017] [Indexed: 01/04/2023] Open
Abstract
Although epidermal growth factor receptor (EGFR) inhibitors have been used to treat non-small cell lung cancer (NSCLC) for decades with great success in patients with EGFR mutations, acquired resistance inevitably occurs after long-term exposure. More recently, combination therapy has emerged as a promising strategy to overcome this issue. Several experiments have been carried out to evaluate the synergism of combination therapy both in vitro and in vivo. Additionally, many clinical studies have been carried out to investigate the feasibility of treatment with EGFR-tyrosine kinase inhibitors (TKi) combined with other NSCLC treatments, including radiotherapy, cytotoxic chemotherapies, targeted therapies, and emerging immunotherapies. However, a significant gap still exists when applying pre-clinical results to clinical scenarios, which hinders the development and use of these strategies. This article is a literature review analysing the rationalities and controversies in the transition from pre-clinical investigation to clinical practice associated with various combination strategies. It also highlights clues and challenges regarding future combination therapeutic options in NSCLC treatment.
Collapse
Affiliation(s)
| | - Kin Yip Tam
- Faculty of Health Science, University of Macau, Taipa, Macau, China
| |
Collapse
|
13
|
Tan EH, Lim WT, Ahn MJ, Ng QS, Ahn JS, Shao-Weng Tan D, Sun JM, Han M, Payumo FC, McKee K, Yin W, Credi M, Agarwal S, Jac J, Park K. Phase 1b Trial of Ficlatuzumab, a Humanized Hepatocyte Growth Factor Inhibitory Monoclonal Antibody, in Combination With Gefitinib in Asian Patients With NSCLC. Clin Pharmacol Drug Dev 2018; 7:532-542. [PMID: 29346833 PMCID: PMC6032914 DOI: 10.1002/cpdd.427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/27/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Hepatocyte growth factor (HGF)/c-Met pathway dysregulation is a mechanism for epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). Ficlatuzumab (AV-299; SCH 900105), a humanized IgG1 κ HGF inhibitory monoclonal antibody, prevents HGF/c-Met pathway ligand-mediated activation. This phase 1b study assessed the safety/tolerability, pharmacokinetics/pharmacodynamics, and antitumor activity of ficlatuzumab plus gefitinib in Asian patients with previously treated advanced non-small cell lung cancer (NSCLC). Patients received intravenous ficlatuzumab either 10 mg/kg (cohort 1; n = 3) or 20 mg/kg (cohort 2; n = 12) every 2 weeks plus oral gefitinib 250 mg daily. Patients tolerated the drug combination well. Four treatment-related grade 3/4 adverse events were reported in 3 patients (cohort 2). Pharmacokinetic profiles for ficlatuzumab and gefitinib were consistent with prior single-agent trials. Partial responses were achieved in 5 patients (4 confirmed), all in cohort 2; objective response rate (ORR) was 33% (duration, 1.9-6.4 months). Responding patients had no prior EGFR TKI treatment, 2 without an EGFR mutation. Four additional patients had disease stabilization (cohort 2; duration, 2.7-9.1 months; 42% ORR). The recommended phase 2 dose for ficlatuzumab plus gefitinib 250 mg/day was 20 mg/kg every 2 weeks. This drug combination has shown preliminary dose-related antitumor activity in advanced NSCLC.
Collapse
Affiliation(s)
- Eng-Huat Tan
- National Cancer Centre, Department of Medical Oncology, Singapore
| | - Wan-Teck Lim
- National Cancer Centre, Department of Medical Oncology, Singapore
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Quan-Sing Ng
- National Cancer Centre, Department of Medical Oncology, Singapore
| | - Jin Seok Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jong-Mu Sun
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - May Han
- AVEO Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | | - Wei Yin
- AVEO Pharmaceuticals, Inc., Cambridge, MA, USA
| | - Marc Credi
- AVEO Pharmaceuticals, Inc., Cambridge, MA, USA
| | | | | | - Keunchil Park
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Han Z, Wu Y, Wang K, Xiao Y, Cheng Z, Sun X, Shen B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Res 2017; 7:41. [PMID: 28485003 PMCID: PMC5422222 DOI: 10.1186/s13550-017-0286-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/17/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mesenchymal-epithelial transition factor also named c-MET is a receptor tyrosine kinase for the hepatocyte growth factor that plays a pivotal role in tumorigenesis. c-MET-targeted therapies have been tested in preclinical models and patients, with significant benefits for cancer treatment. In recent years, many studies have shown that the expression level and activation status of c-MET are closely correlated to c-MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the c-MET status during and prior to targeted therapy. Molecular imaging allows the monitoring of abnormal alterations of c-MET in real time and in vivo. RESULTS In this review, we initially summarize the recent advances in c-MET-targeted molecular imaging, with a special focus on the development of imaging agents ranging in size from monoclonal antibody to small molecule. The aim of this review is to report the preclinical results and clinical application of all molecular imaging studies completed until now for in vivo detection of c-MET in cancer, in order to be beneficial to development of molecular probe and the combination of molecular imaging technologies for in vivo evaluation of c-MET. Various molecular probe targeted to c-MET possesses distinctive advantages and disadvantages. For example, antibody-based probes have high binding affinity but with long metabolic cycle as well as remarkable immunogenicity. CONCLUSIONS Although studies for c-MET-targeted molecular imaging have made many important advances, most of imaging agents specifically target to extracellular area of c-MET receptor; however, it is difficult to reflect entirely activation of c-MET. Therefore, small molecule probes based on tyrosine kinase inhibitors, which could target to intracellular area of c-MET without any immunogenicity, should be paid more attention.
Collapse
Affiliation(s)
- Zhaoguo Han
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yadi Xiao
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Xilin Sun
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Baozhong Shen
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
15
|
Wu YL, Soo RA, Locatelli G, Stammberger U, Scagliotti G, Park K. Does c-Met remain a rational target for therapy in patients with EGFR TKI-resistant non-small cell lung cancer? Cancer Treat Rev 2017; 61:70-81. [PMID: 29121501 DOI: 10.1016/j.ctrv.2017.10.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) inevitably develops resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment. In 5-20% of cases, this can be attributed to aberrant c-Met activity, providing a clear rationale for the use of c-Met inhibitors in these patients. EGFR TKI-resistant tumors often remain sensitive to EGFR signaling, such that c-Met inhibitors are likely to be most effective when combined with continued EGFR TKI therapy. The phase III trials of the c-Met inhibitors onartuzumab and tivantinib, which failed to demonstrate significant benefit in patients with NSCLC but excluded patients with EGFR TKI-resistant disease, do not allow c-Met to be dismissed as a rational target in EGFR TKI-resistant NSCLC. Selective c-Met TKIs exhibit more favorable properties, targeting both hepatocyte growth factor (HGF)-dependent and -independent c-Met activity, with a reduced risk of toxicity compared to non-selective c-Met TKIs. Phase Ib/II trials of the selective c-Met TKIs capmatinib and tepotinib have shown encouraging signs of efficacy. Factors affecting the success of ongoing and future trials of c-Met inhibitors in patients with EGFR TKI-resistant, c-Met-positive NSCLC are considered.
Collapse
Affiliation(s)
- Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Ross Andrew Soo
- National University Cancer Institute, National University Health System, Singapore.
| | | | | | - Giorgio Scagliotti
- University of Torino, Department of Medical Oncology, S. Luigi Hospital, Torino, Italy.
| | - Keunchil Park
- Innovative Cancer Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Yang Z, Hu X, Zhang S, Zhang W, Tam KY. Pharmacological synergism of 2,2-dichloroacetophenone and EGFR-TKi to overcome TKi-induced resistance in NSCLC cells. Eur J Pharmacol 2017; 815:80-87. [PMID: 28870456 DOI: 10.1016/j.ejphar.2017.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 01/28/2023]
Abstract
Combination treatment has been used as one of the therapeutic approaches for patients suffering from lung cancer, either to cope with the issue of acquired drug resistance due to prolong the use of a particular EGFR-TKi treatment, or to decrease the doses of each compound in order to reduce potential toxicity. 2,2-dichloroacetophenone (DAP) was reported as a PDK inhibitor recently, which is much more potent than dichloroacetate (DCA) in anti-cancer therapy. In this study, we applied DAP in combined with EGFR-TKis, erlotinib or gefitinib in NSCLC cell lines and NSCLC xenograft model. Synergistic anti-cancer effects in two NSCLC cell lines with EGFR mutation, NCI-H1975 and NCI-H1650, as well as in NCI-H1975 xenograft model were observed. In comparison with either DAP or EGFR-TKi applied alone, the combination treatment not only further suppressed the EGFR signaling in vitro and in vivo, but also significantly promoted cell apoptosis. Interestingly, this synergistic anti-cancer effect was also observed in NCI-H1975 gefitinib induced-resistant cell line. Taken together, our results suggested that the combined use of DAP and EGFR-TKi exhibited anti-cancer synergy which may offer an additional treatment option for patients with EGFR-TKi induced-resistance.
Collapse
Affiliation(s)
- Zheng Yang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiaohui Hu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shaolin Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wen Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
17
|
MET/SMAD3/SNAIL circuit mediated by miR-323a-3p is involved in regulating epithelial-mesenchymal transition progression in bladder cancer. Cell Death Dis 2017; 8:e3010. [PMID: 28837140 PMCID: PMC5596538 DOI: 10.1038/cddis.2017.331] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/06/2023]
Abstract
Bladder cancer (BCa) is the one of the most common cancers with high incidence, occurrence and low 5-year survival rate. Emerging evidence indicates that DLK1-DIO3 genomic region especially the miRNA cluster in this region is involved in several pathologic processes and various cancers, and miR-323a-3p is a member of this miRNA cluster. In this study, we investigate the function and regulatory network of miR-323a-3p in BCa. miR-323a-3p is frequently downregulated in BCa tissues and three cell lines compared with adjacent non-tumorous tissues and bladder normal cell line (SV-HUC-1). Besides, downregulation of miR-323a-3p is significantly associated with poor overall survival rate of BCa. Methylation of DLK1-MEG3 intergenic DMR (IG-DMR) contributes to the reduction of miR-323a-3p. Overexpression of miR-323a-3p significantly inhibits the epithelial-mesenchymal transition (EMT) progression of BCa. Both upregulated MET and SMAD3 are direct targets of miR-323a-3p, and the knockdown of MET and SMAD3 also represses the EMT progression consistently with overexpression of miR-323a-3p. SNAIL is detected in the last targeted confocal protein of both MET and SMAD3 signaling that trigger EMT consequently. Hence, a miR-323a-3p/MET/SMAD3/SNAIL circuit is established to regulate the EMT progression of BCa. And a mutual regulatory mechanism between miR-323a-3p/miR-433/miR-409 and MET also participates in this circuit. In conclusion, our study demonstrates a novel regulatory mechanism of the miR-323a-3p/MET/SMAD3/SNAIL circuit that is involved in the EMT regulation of BCa, which may be a potential therapy target for BCa.
Collapse
|
18
|
Lara MS, Holland WS, Chinn D, Burich RA, Lara PN, Gandara DR, Kelly K, Mack PC. Preclinical Evaluation of MET Inhibitor INC-280 With or Without the Epidermal Growth Factor Receptor Inhibitor Erlotinib in Non-Small-Cell Lung Cancer. Clin Lung Cancer 2016; 18:281-285. [PMID: 28038979 DOI: 10.1016/j.cllc.2016.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although the epidermal growth factor receptor (EGFR) inhibitor erlotinib is initially effective in non-small-cell lung cancer (NSCLC) patients with tumors harboring activating mutations of EGFR, most subsequently develop acquired resistance. One recognized resistance mechanism occurs through activation of bypass signaling via the hepatocyte growth factor (HGF)-MET pathway. INC-280 is a small molecule kinase inhibitor of MET. We sought to demonstrate the activity of INC-280 on select NSCLC cell lines both as a single agent and in combination with erlotinib using exogenous HGF to simulate MET up-regulation. METHODS Four NSCLC cell lines (HCC827, PC9, H1666, and H358) were treated with either single-agent INC-280 or in combination with erlotinib with or without HGF. The activity of the drug treatments was measured by cell viability assays. Immunoblotting was used to monitor expression of EGFR/pEGFR, MET/pMET, GAB1/pGAB1, AKT/pAKT, and ERK/pERK as well as markers of apoptosis (PARP and capase-3 cleavage) in H1666, HCC827, and PC9. RESULTS As a single agent, INC-280 showed minimal cytotoxicity despite potent inhibition of MET kinase activity at concentrations as low as 10 nM. Addition of HGF prevented erlotinib-induced cell death. The addition of INC280 to HGF-mediated erlotinib-resistant models restored erlotinib sensitivity for all cell lines tested, associated with cleavage of both PARP and caspase-3. In these models, INC-280 treatment was sufficient to restore erlotinib-induced inhibition of MET, GAB1, AKT, and ERK in the presence of HGF. CONCLUSION Although the MET inhibitor INC-280 alone had no discernible effect on cell growth, it was able to restore sensitivity to erlotinib and promote apoptosis in NSCLC models rendered erlotinib resistant by HGF. These data provide a preclinical rationale for an ongoing phase 1 clinical trial of erlotinib plus INC-280 in EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Matthew S Lara
- Division of Hematology-Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Davis, CA
| | - William S Holland
- Division of Hematology-Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Davis, CA
| | - Danielle Chinn
- Division of Hematology-Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Davis, CA
| | - Rebekah A Burich
- Division of Hematology-Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Davis, CA
| | - Primo N Lara
- Division of Hematology-Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Davis, CA
| | - David R Gandara
- Division of Hematology-Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Davis, CA
| | - Karen Kelly
- Division of Hematology-Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Davis, CA
| | - Philip C Mack
- Division of Hematology-Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Davis, CA.
| |
Collapse
|
19
|
TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis 2016; 7:e2290. [PMID: 27362807 PMCID: PMC5108342 DOI: 10.1038/cddis.2016.192] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) show a clinical benefit when used to treat patients with EGFR-mutated non-small-cell lung cancer (NSCLC), but this treatment unfortunately fails in patients with TKI-resistant tumors. We here provide evidence that TC-N19 (N19), a novel dual inhibitor of EGFR and cMET, efficiently overcomes the EGFR-TKI resistance in EGFR-mutated NSCLC cells via simultaneous degradation of both proteins by ubiquitin proteasomes. Comparison with HSP90 inhibitor treatment and knockdown of EGFR and cMET by small hairpin RNAs reveal that the reduction of EGFR and cMET expression by N19 is responsible for overcoming the intrinsic TKI resistance mediated by paxillin (PXN) in high PXN-expressing cells, PXN-overexpressing PC9 cells (PC9-PXN), the EGFR-T790M-mediated TKI resistance in H1975 and CL97 cells, and the acquired resistance to gefitinib in gefitinib-resistant PC9 cells (PC9GR). Annexin V-PI staining assay showed that the induction of apoptosis in NSCLC cells by N19 depended on the reduction in levels of both proteins. Xenograft tumor formation in nude mice induced by a PC9-PXN-stable clone and by PC9GR cells was nearly completely suppressed by N19 treatment, with no changes in animal body weight. MTT assays of normal lung cells and reticulocytes showed no cytotoxicity responses to N19. In summary, N19 may act as a novel dual inhibitor of EGFR and cMET that induces apoptosis in TKI-resistant EGFR-mutated NSCLC cells and suppresses xenograft tumor formation. We suggest that N19 may be a potential new-generation TKI or HSP90 inhibitor used for treatment of NSCLC patients who show resistance to current TKI-targeting therapies.
Collapse
|
20
|
梁 红, 王 孟. [Mechanism of c-MET in Non-small Cell Lung Cancer and Its Treatment and Testing]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:745-51. [PMID: 26706951 PMCID: PMC6015186 DOI: 10.3779/j.issn.1009-3419.2015.12.06] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/20/2015] [Accepted: 08/23/2015] [Indexed: 02/01/2023]
Abstract
Hepatocyte growth factor/c-MET (HGF/c-MET) signaling pathway can be abnormal activated by many mechanisms such as c-MET mutation, amplification and the overexpression of HGF, and it plays an important role in the development of non-small cell lung cancer (NSCLC), as well as in the tolerance of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in NSCLC. Therefore, c-MET is a new molecular target for the therapy of NSCLC since EGFR and ALK. At present, although the c-MET inhibitors have shown a potential prospect in some clinical trials, its assessment of safety and effectiveness in clinical applications, and the choice of testing methods and standards still need a further discussion. In this paper, we summarized the mechanism of c-MET in NSCLC, as well as its treatment prospect and selection of testing methods.
Collapse
Affiliation(s)
- 红格 梁
- />100730 北京,中国医学科学院中国协和医科大学北京协和医学院呼吸内科Chinese Academy of Medical Sciences, Chinese Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| | - 孟昭 王
- />100730 北京,中国医学科学院中国协和医科大学北京协和医学院呼吸内科Chinese Academy of Medical Sciences, Chinese Peking Union Medical College, Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
21
|
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. TRANSLATIONAL ONCOGENOMICS 2015; 7:13-31. [PMID: 26628860 DOI: 10.4137/togog.s30534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
MET and its ligand HGF are involved in many biological processes, both physiological and pathological, making this signaling pathway an attractive therapeutic target in oncology. Downstream signaling effects are transmitted via mitogen-activated protein kinase (MAPK), PI3K (phosphoinositide 3-kinase protein kinase B)/AKT, signal transducer and activator of transcription proteins (STAT), and nuclear factor-κB. The final output of the terminal effector components of these pathways is activation of cytoplasmic and nuclear processes leading to increases in cell proliferation, survival, mobilization and invasive capacity. In addition to its role as an oncogenic driver, increasing evidence implicates MET as a common mechanism of resistance to targeted therapies including EGFR and VEGFR inhibitors. In the present review, we summarize the current knowledge on the role of the HGF-MET signaling pathway in cancer and its therapeutic targeting (HGF activation inhibitors, HGF inhibitors, MET antagonists and selective/nonselective MET kinase inhibitors). Recent advances in understanding the role of this pathway in the resistance to current anticancer strategies used in lung, kidney and pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. ; Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. ; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Garajová I, Giovannetti E, Biasco G, Peters GJ. c-Met as a Target for Personalized Therapy. TRANSLATIONAL ONCOGENOMICS 2015; 7:13-31. [PMID: 26628860 PMCID: PMC4659440 DOI: 10.4137/tog.s30534] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/20/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022]
Abstract
MET and its ligand HGF are involved in many biological processes, both physiological and pathological, making this signaling pathway an attractive therapeutic target in oncology. Downstream signaling effects are transmitted via mitogen-activated protein kinase (MAPK), PI3K (phosphoinositide 3-kinase protein kinase B)/AKT, signal transducer and activator of transcription proteins (STAT), and nuclear factor-κB. The final output of the terminal effector components of these pathways is activation of cytoplasmic and nuclear processes leading to increases in cell proliferation, survival, mobilization and invasive capacity. In addition to its role as an oncogenic driver, increasing evidence implicates MET as a common mechanism of resistance to targeted therapies including EGFR and VEGFR inhibitors. In the present review, we summarize the current knowledge on the role of the HGF-MET signaling pathway in cancer and its therapeutic targeting (HGF activation inhibitors, HGF inhibitors, MET antagonists and selective/nonselective MET kinase inhibitors). Recent advances in understanding the role of this pathway in the resistance to current anticancer strategies used in lung, kidney and pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Ingrid Garajová
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Guido Biasco
- Department of Experimental, Diagnostic and Speciality Medicine, University of Bologna, Sant’Orsola-Malpighi Hospital, Bologna, Italy
| | - Godefridus J. Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Brosseau S, Oulkhouir Y, Naltet C, Zalcman G. Résistances aux thérapeutiques ciblées et stratégies des lignes ultérieures dans les CBNPC métastatiques. Bull Cancer 2015; 102:S27-33. [DOI: 10.1016/s0007-4551(15)31215-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 11/26/2022]
|
24
|
Finocchiaro G, Toschi L, Gianoncelli L, Baretti M, Santoro A. Prognostic and predictive value of MET deregulation in non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:83. [PMID: 25992382 PMCID: PMC4416957 DOI: 10.3978/j.issn.2305-5839.2015.03.43] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/11/2015] [Indexed: 12/11/2022]
Abstract
Recent progress in cancer biology has led to the discovery of increasing number of oncogene alterations that have dramatically changed the paradigm of lung cancer treatment. MET is a tyrosine kinase receptor for the hepatocyte growth factor (HGF) that is deregulated in several malignancies, including non-small cell lung cancer (NSCLC). Abnormal MET-HGF signaling pathway activation can occur via different mechanisms, including HGF and/or MET overexpression, MET gene amplification, mutations or rearrangements. MET protein overexpression and increased MET gene number have been identified as poor prognostic factors in several series of surgically resected NSCLC making this receptor an attractive target for cancer treatment. Several clinical trials have recently evaluated the activity of a variety of anti-MET strategies in NSCLC patients with or without molecular selection with a variable degree of success, underscoring the need of establishing the best predictive biomarker for the identification of responding patients.
Collapse
Affiliation(s)
- Giovanna Finocchiaro
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Luca Toschi
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Letizia Gianoncelli
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Marina Baretti
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| | - Armando Santoro
- Department of Medical Oncology, Department of Medical Oncology, Istituto Clinico Humanitas IRCCS, Rozzano, Milan, Italy
| |
Collapse
|