1
|
Leung KK, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158, United States
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Koo S, Cheley S, Bayley H. Redirecting Pore Assembly of Staphylococcal α-Hemolysin by Protein Engineering. ACS CENTRAL SCIENCE 2019; 5:629-639. [PMID: 31041382 PMCID: PMC6487460 DOI: 10.1021/acscentsci.8b00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 05/03/2023]
Abstract
α-Hemolysin (αHL), a β-barrel pore-forming toxin (βPFT), is secreted as a water-soluble monomer by Staphylococcus aureus. Upon binding to receptors on target cell membranes, αHL assembles to form heptameric membrane-spanning pores. We have previously engineered αHL to create a protease-activatable toxin that is activated by site-specific proteolysis including by tumor proteases. In this study, we redesigned αHL so that it requires 2-fold activation on target cells through (i) binding to specific receptors, and (ii) extracellular proteolytic cleavage. To assess our strategy, we constructed a fusion protein of αHL with galectin-1 (αHLG1, αHL-Galectin-1 chimera). αHLG1 was cytolytic toward cells that lack a receptor for wild-type αHL. We then constructed protease-activatable mutants of αHLG1 (PAMαHLG1s). PAMαHLG1s were activated by matrix metalloproteinase 2 (MMP-2) and had approximately 50-fold higher cytolytic activity toward MMP-2 overexpressing cells (HT-1080 cells) than toward non-overexpressing cells (HL-60 cells). Our approach provides a novel strategy for tailoring pore-forming toxins for therapeutic applications.
Collapse
Affiliation(s)
- Sunwoo Koo
- Department
of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, Texas 77807, United States
- E-mail: . Phone: 1-979-436-0381
| | - Stephen Cheley
- Department
of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1 Alberta, Canada
| | - Hagan Bayley
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield
Road, Oxford, OX1 3TA England, United Kingdom
- E-mail: . Phone: +44 1865 285101
| |
Collapse
|
3
|
Pore-forming spider venom peptides show cytotoxicity to hyperpolarized cancer cells expressing K+ channels: A lentiviral vector approach. PLoS One 2019; 14:e0215391. [PMID: 30978253 PMCID: PMC6461346 DOI: 10.1371/journal.pone.0215391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/01/2019] [Indexed: 12/03/2022] Open
Abstract
Recent studies demonstrated the upregulation of K+ channels in cancer cells. We have previously found that a pore-forming peptide LaFr26, purified from the venom of the Lachesana sp spider, was selectively incorporated into K+ channel expressing hyperpolarized cells. Therefore, it is expected that this peptide would have selective cytotoxicity to hyperpolarized cancer cells. Here we have tested whether LaFr26 and its related peptide, oxyopinin-2b, are selectively cytotoxic to K+ channel expressing cancer cells. These peptides were cytotoxic to the cells, of which resting membrane potential was hyperpolarized. The vulnerabilities of K+ channel-expressing cell lines correlated with their resting membrane potential. They were cytotoxic to lung cancer cell lines LX22 and BEN, which endogenously expressed K+ current. Contrastingly, these peptides were ineffective to glioblastoma cell lines, U87 and T98G, of which membrane potentials were depolarized. Peptides have a drawback, i.e. poor drug-delivery, that hinders their potential use as medicine. To overcome this drawback, we prepared lentiviral vectors that can express these pore-forming peptides and tested the cytotoxicity to K+ channel expressing cells. The transduction with these lentiviral vectors showed autotoxic activity to the channel expressing cells. Our study provides the basis for a new oncolytic viral therapy.
Collapse
|
4
|
Dudani JS, Warren AD, Bhatia SN. Harnessing Protease Activity to Improve Cancer Care. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050549] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew D. Warren
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
An enzyme-responsive conjugate improves the delivery of a PI3K inhibitor to prostate cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2373-2381. [DOI: 10.1016/j.nano.2016.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 01/07/2023]
|
6
|
Vandooren J, Opdenakker G, Loadman PM, Edwards DR. Proteases in cancer drug delivery. Adv Drug Deliv Rev 2016; 97:144-55. [PMID: 26756735 DOI: 10.1016/j.addr.2015.12.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 01/12/2023]
Abstract
Whereas protease inhibitors have been developed successfully against hypertension and viral infections, they have failed thus far as cancer drugs. With advances in cancer profiling we now better understand that the tumor "degradome" (i.e. the repertoire of proteases and their natural inhibitors and interaction partners) forms a complex network in which specific nodes determine the global outcome of manipulation of the protease web. However, knowing which proteases are active in the tumor micro-environment, we may tackle cancers with the use of Protease-Activated Prodrugs (PAPs). Here we exemplify this concept for metallo-, cysteine and serine proteases. PAPs not only exist as small molecular adducts, containing a cleavable substrate sequence and a latent prodrug, they are presently also manufactured as various types of nanoparticles. Although the emphasis of this review is on PAPs for treatment, it is clear that protease activatable probes and nanoparticles are also powerful tools for imaging purposes, including tumor diagnosis and staging, as well as visualization of tumor imaging during microsurgical resections.
Collapse
Affiliation(s)
- Jennifer Vandooren
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Immunobiology, B-3000 Leuven, Belgium
| | - Ghislain Opdenakker
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Immunobiology, B-3000 Leuven, Belgium
| | - Paul M Loadman
- Institute of Cancer Therapeutics, School of Life Sciences, University of Bradford, Bradford, Yorkshire BD7 1DP, UK
| | - Dylan R Edwards
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK; The Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
7
|
Jafari S, Maleki Dizaj S, Adibkia K. Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. ACTA ACUST UNITED AC 2015; 5:103-11. [PMID: 26191505 PMCID: PMC4492185 DOI: 10.15171/bi.2015.10] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/18/2015] [Accepted: 03/05/2015] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The impermeability of biological membranes is a major obstacle in drug delivery; however, some peptides have transition capabilities of biomembranes. In recent decades, cell-penetrating peptides (CPPs) have been introduced as novel biocarriers that are able to translocate into the cells. CPPs are biologically potent tools for non-invasive cellular internalization of cargo molecules. Nevertheless, the non-specificity of these peptides presents a restriction for targeting drug delivery; therefore, a peptidic nanocarrier sensitive to matrix metalloproteinase (MMP) has been prepared, called activatable cell-penetrating peptide (ACPP). In addition to the cell-penetrating peptide dendrimer (DCPP), other analogues of CPPs have been synthesized. METHODS In this study, the most recent literature in the field of biomedical application of CPPs and their analogues, ACPP and DCCP, were reviewed. RESULTS This review focuses on CPP and its analogues, ACPP and DCPP, as novel nanocarriers for drug delivery. In addition, nanoconjugates and bioconjugates of these peptide sequences are discussed. CONCLUSION DCCP, branched CPPs, compared to linear peptides have advantages such as resistance to rapid biodegradation, high loading capacities and large-scale production capability.
Collapse
Affiliation(s)
- Samira Jafari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran ; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|