1
|
Noguchi A, Kimura M, Saiki Y, Ishikawa T, Kokumai T, Omori Y, Ono Y, Miszukami Y, Ishida M, Mizuma M, Nakagawa K, Unno M, Furukawa T. Transcriptional regulation of ETV5 by mitogen-activated protein kinase via ETS-1 in human pancreatic cancer cells. Sci Rep 2025; 15:12128. [PMID: 40204967 PMCID: PMC11982384 DOI: 10.1038/s41598-025-97166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Pancreatic cancer is characterized by constitutive activation of mitogen-activated protein kinase /extracellular signal-regulated kinase 1/2 (ERK1/2) driven by gain-of-function mutations of KRAS. Our previous transcriptome sequencing of ERK1/2-attenuated cultured pancreatic cancer cells unveiled numerous downstream genes activated by ERK1/2 including ETV5. In this study, we explored the mechanism of transcriptional regulation of ETV5 by ERK1/2 in human pancreatic cancer cells. Detailed reporter assays uncovered a core promoter region spanning between - 350 and - 985 from the transcription start site of ETV5 as a strong responsive element to ERK1/2 activity. Moreover, ETS proto-oncogene 1, transcription factor (ETS-1) was found to bind to one of consensus binding sites in the core region and to promote ERK1/2-mediated upregulation of ETV5. Investigation of functional significances of ETS variant transcription factor 5 (ETV5) expression in the pancreatic cancer cells revealed that ETV5 was associated with resistance to gemcitabine; while no significance in proliferation, migration, and invasion. ETV5 expression in pancreatic ductal adenocarcinoma tissues resected from patients undergoing neoadjuvant chemotherapy was associated with KRAS mutations, which was consistent with ETV5 as a downstream upregulated molecule of RAS-ERK1/2 pathway. This study elucidated the mechanism of ERK1/2-mediated transcriptional regulation of ETV5 in human cancer cells, which could contribute to understand pancreatic cancer pathobiology.
Collapse
Affiliation(s)
- Aya Noguchi
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8575, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masanobu Kimura
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8575, Japan
| | - Yuriko Saiki
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8575, Japan
| | - Tomohiko Ishikawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8575, Japan
| | - Takashi Kokumai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Yuko Omori
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8575, Japan
| | - Yusuke Ono
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
- Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yusuke Miszukami
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo, Japan
- Division of Gastroenterology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masaharu Ishida
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Masamichi Mizuma
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Kei Nakagawa
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574, Japan
| | - Toru Furukawa
- Department of Investigative Pathology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aobaku, Sendai, 980-8575, Japan.
| |
Collapse
|
2
|
Schaaf RE, Quirke JCK, Ghavami M, Tonogai EJ, Lee HY, Barlock SL, Trzupek TR, Abo KR, Rees MG, Ronan MM, Roth JA, Hergenrother PJ. Identification of a Selective Anticancer Agent from a Collection of Complex-And-Diverse Compounds Synthesized from Stevioside. J Am Chem Soc 2025; 147:10647-10661. [PMID: 40070033 DOI: 10.1021/jacs.5c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Compounds constructed by distorting the ring systems of natural products serve as a ready source of complex and diverse molecules, useful for a variety of applications. Herein is presented the use of the diterpenoids steviol and isosteviol as starting points for the construction of >50 new compounds through this complexity-to-diversity approach, featuring novel ring system distortions and a noteworthy thallium(III) nitrate (TTN)-mediated ring fusion. Evaluation of this collection identified SteviX4 as a potent and selective anticancer compound, inducing cell death at low nanomolar concentrations against some cancer cell lines in culture, compared to micromolar activity against others. SteviX4 induces ferroptotic cell death in susceptible cell lines, and target identification experiments reveal SteviX4 acts as an inhibitor of glutathione peroxidase 4 (GPX4), a critical protein that protects cancer cells against ferroptosis. In its induction of cell death, SteviX4 displays enhanced cell line selectivity relative to most known GPX4 inhibitors. SteviX4 was used to reveal dependency on GPX4 as a vulnerability of certain cancer cell lines, not tied to any one type of cancer, suggesting GPX4 inhibition as a cancer type-agnostic anticancer strategy. With its high fraction of sp3-hybridized carbons and considerable cell line selectivity and potency, SteviX4 is unique among GPX4 inhibitors, serving as an outstanding probe compound and basis for further translational development.
Collapse
Affiliation(s)
- Rachel E Schaaf
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan C K Quirke
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Maryam Ghavami
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emily J Tonogai
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyang Yeon Lee
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Samantha L Barlock
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thomas R Trzupek
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyle R Abo
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paul J Hergenrother
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Su H, Zhao L, Fang T, Han W, Fan H. Identification of ETV5 as a prognostic marker related to epigenetic modification in pan-cancer and facilitates tumor progression in hepatocellular carcinoma. Sci Rep 2024; 14:29695. [PMID: 39614096 DOI: 10.1038/s41598-024-81642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/27/2024] [Indexed: 12/01/2024] Open
Abstract
ETS variant transcription factor 5 (ETV5), a master transcription factor during development, exerts vital function on the occurrence and progression of various cancers. In order to systematically analyze and explore ETV5 potential specific regulatory mechanisms in pan-cancer, RNA sequencing data and clinicopathological features of patients with various tumors were obtained through the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, and an integrated data mining analysis was carried out, including the association of ETV5 expression with patient prognosis, drug sensitivity and epigenetic modification. The results revealed that abnormally highly expressed ETV5 resulted in unfavorable prognosis and differential drug sensitivity in multiple malignancies, and its expression was associated with epigenetic modification modulators including EZH2. ETV5 related genes were enriched in tumorigenesis biological processes and signaling pathways. In hepatocellular carcinoma, ETV5 expression was correlated with patients' tumor pathological stage and resulted in adverse outcome of patients. Our further experiments evidences indicated that ETV5 facilitated cell proliferation and reduced sensitivity to GSK126 via regulating EZH2. Collectively, this study comprehensively elucidates the carcinogenic effects and molecular mechanisms of ETV5 in tumorigenesis and development, and provides theoretical basis and guidance for tumor diagnosis, targeted therapy for ETV5 and clinical epigenetic drug research.
Collapse
Affiliation(s)
- Hongmeng Su
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Luyu Zhao
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Tianle Fang
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Wenhao Han
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Neel NC, Sicklick JK, Zare S, Boles SG. Near-Complete Pathological Response to Abemaciclib in the Treatment of Well-Differentiated/Dedifferentiated Liposarcoma: A Case Report. JCO Precis Oncol 2023; 7:e2100482. [PMID: 37343202 DOI: 10.1200/po.21.00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/26/2022] [Accepted: 03/20/2023] [Indexed: 06/23/2023] Open
Affiliation(s)
- Nicholas C Neel
- University of California, San Diego School of Medicine, San Diego, CA
| | - Jason K Sicklick
- University of California, San Diego School of Medicine, San Diego, CA
- UC San Diego Moores Cancer Center, La Jolla, CA
- Department of Surgery, Division of Surgical Oncology, UC San Diego Health, San Diego, CA
| | - Somaye Zare
- University of California, San Diego School of Medicine, San Diego, CA
- Department of Pathology, UC San Diego Health, San Diego, CA
| | - Sarah G Boles
- University of California, San Diego School of Medicine, San Diego, CA
- UC San Diego Moores Cancer Center, La Jolla, CA
- Department of Medicine, Division of Medical Oncology, UC San Diego Health, San Diego, CA
| |
Collapse
|
5
|
Jang S, Strickland B, Finis L, Kooijman JJ, Melis JJTM, Zaman GJR, Van Tornout J. Comparative biochemical kinase activity analysis identifies rivoceranib as a highly selective VEGFR2 inhibitor. Cancer Chemother Pharmacol 2023; 91:491-499. [PMID: 37148323 DOI: 10.1007/s00280-023-04534-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/23/2023] [Indexed: 05/08/2023]
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2), a key regulator of tumor angiogenesis, is highly expressed across numerous tumor types and has been an attractive target for anti-cancer therapy. However, clinical application of available VEGFR2 inhibitors has been challenged by limited efficacy and a wide range of side effects, potentially due to inadequate selectivity for VEGFR2. Thus, development of potent VEGFR2 inhibitors with improved selectivity is needed. Rivoceranib is an orally administered tyrosine kinase inhibitor that potently and selectively targets VEGFR2. A comparative understanding of the potency and selectivity of rivoceranib and approved inhibitors of VEGFR2 is valuable to inform rationale for therapy selection in the clinic. Here, we performed biochemical analyses of the kinase activity of VEGFR2 and of a panel of 270 kinases to compare rivoceranib to 10 FDA-approved kinase inhibitors ("reference inhibitors") with known activity against VEGFR2. Rivoceranib demonstrated potency within the range of the reference inhibitors, with a VEGFR2 kinase inhibition IC50 value of 16 nM. However, analysis of residual kinase activity of the panel of 270 kinases showed that rivoceranib displayed greater selectivity for VEGFR2 compared with the reference inhibitors. Differences in selectivity among compounds within the observed range of potency of VEGFR2 kinase inhibition are clinically relevant, as toxicities associated with available VEGFR2 inhibitors are thought to be partly due to their effects against kinases other than VEGFR2. Together, this comparative biochemical analysis highlights the potential for rivoceranib to address clinical limitations associated with off-target effects of currently available VEGFR2 inhibitors.
Collapse
|
6
|
Wei Y, Han S, Wen J, Liao J, Liang J, Yu J, Chen X, Xiang S, Huang Z, Zhang B. E26 transformation-specific transcription variant 5 in development and cancer: modification, regulation and function. J Biomed Sci 2023; 30:17. [PMID: 36872348 PMCID: PMC9987099 DOI: 10.1186/s12929-023-00909-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
E26 transformation-specific (ETS) transcription variant 5 (ETV5), also known as ETS-related molecule (ERM), exerts versatile functions in normal physiological processes, including branching morphogenesis, neural system development, fertility, embryonic development, immune regulation, and cell metabolism. In addition, ETV5 is repeatedly found to be overexpressed in multiple malignant tumors, where it is involved in cancer progression as an oncogenic transcription factor. Its roles in cancer metastasis, proliferation, oxidative stress response and drug resistance indicate that it is a potential prognostic biomarker, as well as a therapeutic target for cancer treatment. Post-translational modifications, gene fusion events, sophisticated cellular signaling crosstalk and non-coding RNAs contribute to the dysregulation and abnormal activities of ETV5. However, few studies to date systematically summarized the role and molecular mechanisms of ETV5 in benign diseases and in oncogenic progression. In this review, we specify the molecular structure and post-translational modifications of ETV5. In addition, its critical roles in benign and malignant diseases are summarized to draw a panorama for specialists and clinicians. The updated molecular mechanisms of ETV5 in cancer biology and tumor progression are delineated. Finally, we prospect the further direction of ETV5 research in oncology and its potential translational applications in the clinic.
Collapse
Affiliation(s)
- Yi Wei
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyuan Wen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuai Xiang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.
- Key Laboratory of Organ Transplantation, National Health Commission, Wuhan, China.
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
7
|
Kooijman JJ, van Riel WE, Dylus J, Prinsen MBW, Grobben Y, de Bitter TJJ, van Doornmalen AM, Melis JJTM, Uitdehaag JCM, Narumi Y, Kawase Y, de Roos JADM, Willemsen-Seegers N, Zaman GJR. Comparative kinase and cancer cell panel profiling of kinase inhibitors approved for clinical use from 2018 to 2020. Front Oncol 2022; 12:953013. [PMID: 36185300 PMCID: PMC9516332 DOI: 10.3389/fonc.2022.953013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
During the last two decades, kinase inhibitors have become the major drug class for targeted cancer therapy. Although the number of approved kinase inhibitors increases rapidly, comprehensive in vitro profiling and comparison of inhibitor activities is often lacking in the public domain. Here we report the extensive profiling and comparison of 21 kinase inhibitors approved by the FDA for oncology indications since June 2018 and 13 previously approved comparators on panels of 255 biochemical kinase assays and 134 cancer cell line viability assays. Comparison of the cellular inhibition profiles of the EGFR inhibitors gefitinib, dacomitinib, and osimertinib identified the uncommon EGFR p.G719S mutation as a common response marker for EGFR inhibitors. Additionally, the FGFR inhibitors erdafitinib, infigratinib, and pemigatinib potently inhibited the viability of cell lines which harbored oncogenic alterations in FGFR1-3, irrespective of the specific clinical indications of the FGFR inhibitors. These results underscore the utility of in vitro kinase inhibitor profiling in cells for identifying new potential stratification markers for patient selection. Furthermore, comparison of the in vitro inhibition profiles of the RET inhibitors pralsetinib and selpercatinib revealed they had very similar biochemical and cellular selectivity. As an exception, an NTRK3 fusion-positive cell line was potently inhibited by pralsetinib but not by selpercatinib, which could be explained by the targeting of TRK kinases in biochemical assays by pralsetinib but not selpercatinib. This illustrates that unexpected differences in cellular activities between inhibitors that act through the same primary target can be explained by subtle differences in biochemical targeting. Lastly, FLT3-mutant cell lines were responsive to both FLT3 inhibitors gilteritinib and midostaurin, and the PI3K inhibitor duvelisib. Biochemical profiling revealed that the FLT3 and PI3K inhibitors targeted distinct kinases, indicating that unique dependencies can be identified by combined biochemical and cellular profiling of kinase inhibitors. This study provides the first large scale kinase assay or cell panel profiling study for newly approved kinase inhibitors, and shows that comprehensive in vitro profiling of kinase inhibitors can provide rationales for therapy selection and indication expansion of approved kinase inhibitors.
Collapse
|
8
|
Lieshout R, Faria AVS, Peppelenbosch MP, van der Laan LJW, Verstegen MMA, Fuhler GM. Kinome profiling of cholangiocarcinoma organoids reveals potential druggable targets that hold promise for treatment stratification. Mol Med 2022; 28:74. [PMID: 35764936 PMCID: PMC9238224 DOI: 10.1186/s10020-022-00498-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background Cholangiocarcinoma is a rare but lethal cancer of the biliary tract. Its first-line treatment is currently restricted to chemotherapy, which provides limited clinical benefit. Kinase inhibitors targeting oncogenic intracellular signaling have changed the treatment paradigm of cancer over the last decades. However, they are yet to be widely applied in cholangiocarcinoma therapy. Cholangiocarcinoma has marked molecular heterogeneity, which complicates the discovery of new treatments and requires patient stratification. Therefore, we investigated whether a commercial kinome profiling platform could predict druggable targets in cholangiocarcinoma. Methods Kinase activity in patient-derived cholangiocarcinoma organoids, non-tumorous adjacent tissue-derived and healthy donor-derived intrahepatic cholangiocyte organoids was determined using the PamChip® phosphotyrosine kinase microarray platform. Kinome profiles were compared and correlated with RNA sequencing and (multi-)kinase inhibitor screening of the cholangiocarcinoma organoids. Results Kinase activity profiles of individual cholangiocarcinoma organoids are different and do not cluster together. However, growth factor signaling (EGFR, PDGFRβ) and downstream effectors (MAPK pathway) are more active in cholangiocarcinoma organoids and could provide potential druggable targets. Screening of 31 kinase inhibitors revealed several promising pan-effective inhibitors and compounds that show patient-specific efficacy. Kinase inhibitor sensitivity correlated to the activity of its target kinases for several inhibitors, signifying them as potential predictors of response. Moreover, we identified correlations between drug response and kinases not directly targeted by those drugs. Conclusions In conclusion, kinome profiling is a feasible method to identify druggable targets for cholangiocarcinoma. Future studies should confirm the potential of kinase activity profiles as biomarkers for patient stratification and precision medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00498-1.
Collapse
Affiliation(s)
- Ruby Lieshout
- Erasmus MC Transplant Institute, Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Erasmus MC Transplant Institute, Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monique M A Verstegen
- Erasmus MC Transplant Institute, Department of Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Ayele AG, Enyew EF, Kifle ZD. Roles of existing drug and drug targets for COVID-19 management. Metabol Open 2021; 11:100103. [PMID: 34222852 PMCID: PMC8239316 DOI: 10.1016/j.metop.2021.100103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023] Open
Abstract
In December 2019, a highly transmissible, pneumonia epidemic caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), erupted in China and other countries, resulting in devastation and health crisis worldwide currently. The search and using existing drugs support to curb the current highly contagious viral infection is spirally increasing since the pandemic began. This is based on these drugs had against other related RNA-viruses such as MERS-Cov, and SARS-Cov. Moreover, researchers are scrambling to identify novel drug targets and discover novel therapeutic options to vanquish the current pandemic. Since there is no definitive treatment to control Covid-19 vaccines are remain to be a lifeline. Currently, many vaccine candidates are being developed with most of them are reported to have positive results. Therapeutic targets such as helicases, transmembrane serine protease 2, cathepsin L, cyclin G-associated kinase, adaptor-associated kinase 1, two-pore channel, viral virulence factors, 3-chymotrypsin-like protease, suppression of excessive inflammatory response, inhibition of viral membrane, nucleocapsid, envelope, and accessory proteins, and inhibition of endocytosis were identified as a potential target against COVID-19 infection. This review also summarizes plant-based medicines for the treatment of COVID-19 such as saposhnikoviae divaricata, lonicerae japonicae flos, scutellaria baicalensis, lonicera japonicae, and some others. Thus, this review aimed to focus on the most promising therapeutic targets being repurposed against COVID-19 and viral elements that are used in COVID-19 vaccine candidates.
Collapse
Key Words
- 3CLpro, 3-chymotrypsin-like protease
- AAK1, adaptor-associated kinase 1
- ACE-2, Angiotensin-Converting Enzyme-2
- CEF, Cepharanthine
- COVID-19
- COVID-19, coronavirus disease-2019
- Existing drug
- GAK, cyclin G-associated kinase
- MERS-CoV, Middle East respiratory syndrome coronavirus
- Management
- Nsp, non-structure protein
- ORF, open reading frame
- PLpro, papain-like protease
- RdRp, RNA-dependence RNA-polymerase
- SARS-COV-2, severe acute respiratory syndrome coronavirus-2
- TMPRSS2, transmembrane Serine Protease 2
- TPC2, two-pore channel 2
- Therapeutic target
Collapse
Affiliation(s)
- Akeberegn Gorems Ayele
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Engidaw Fentahun Enyew
- Department of Human Anatomy, School of Medicine, College of Medicine and Health Sciences, Gondar, Ethiopia
| | - Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
10
|
Preclinical Evaluation of the Association of the Cyclin-Dependent Kinase 4/6 Inhibitor, Ribociclib, and Cetuximab in Squamous Cell Carcinoma of the Head and Neck. Cancers (Basel) 2021; 13:cancers13061251. [PMID: 33809148 PMCID: PMC7998503 DOI: 10.3390/cancers13061251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary We previously showed that ribociclib induces cell cycle arrest in some human papillomavirus (HPV)-negative squamous cell carcinomas of the head and neck (SCCHN) models. However, in vivo, ribociclib has only a cytostatic effect, suggesting that its activity needs to be optimized in combination with other treatments. We investigated the activity of ribociclib in combination with cetuximab in several HPV-negative SCCHN patient-derived tumor xenograft (PDTX) models. We found that the combination of cetuximab and ribociclib was not significantly more active than cetuximab monotherapy. In addition, our observations also suggest that the combination of cetuximab with a cyclin-dependent kinase (CDK) 4/6 inhibitor may reduce the activity of the CDK4/6 inhibitor in some cetuximab-resistant models. Our work has significant clinical implications since combinations of anti-epidermal growth factor receptor (EGFR) therapy and CDK4/6 inhibitors are currently being investigated in clinical trials. Abstract Epidermal growth factor receptor (EGFR) overexpression is observed in 90% of human papillomavirus (HPV)-negative squamous cell carcinomas of the head and neck (SCCHN). Cell cycle pathway impairments resulting in cyclin-dependent kinase (CDK) 4 and 6 activation, are frequently observed in SCCHN. We investigated the efficacy of ribociclib, a CDK4/6 inhibitor, in combination with cetuximab, a monoclonal antibody targeting the EGFR, in HPV-negative SCCHN patient-derived tumor xenograft (PDTX) models. The combination of cetuximab and ribociclib was not significantly more active than cetuximab monotherapy in all models investigated. In addition, the combination of cetuximab and ribociclib was less active than ribociclib monotherapy in the cetuximab-resistant PDTX models. In these models, a significant downregulation of the retinoblastoma (Rb) protein was observed in cetuximab-treated mice. We also observed Rb downregulation in the SCCHN cell lines chronically exposed and resistant to cetuximab. In addition, Rb downregulation induced interleukin 6 (Il-6) secretion and the Janus kinase family member/signal transducer and activator of transcription (JAK/STAT) pathway activation that might be implicated in the cetuximab resistance of these cell lines. To conclude, cetuximab is not an appropriate partner for ribociclib in cetuximab-resistant SCCHN models. Our work has significant clinical implications since the combination of anti-EGFR therapy with CDK4/6 inhibitors is currently being investigated in clinical trials.
Collapse
|
11
|
Conlon NT, Kooijman JJ, van Gerwen SJC, Mulder WR, Zaman GJR, Diala I, Eli LD, Lalani AS, Crown J, Collins DM. Comparative analysis of drug response and gene profiling of HER2-targeted tyrosine kinase inhibitors. Br J Cancer 2021; 124:1249-1259. [PMID: 33473169 PMCID: PMC8007737 DOI: 10.1038/s41416-020-01257-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Human epidermal growth factor 2 (HER2/ERBB2) is frequently amplified/mutated in cancer. The tyrosine kinase inhibitors (TKIs) lapatinib, neratinib, and tucatinib are FDA-approved for the treatment of HER2-positive breast cancer. Direct comparisons of the preclinical efficacy of the TKIs have been limited to small-scale studies. Novel biomarkers are required to define beneficial patient populations. METHODS In this study, the anti-proliferative effects of the three TKIs were directly compared using a 115 cancer cell line panel. Novel TKI response/resistance markers were identified through cross-analysis of drug response profiles with mutation, gene copy number and expression data. RESULTS All three TKIs were effective against HER2-amplified breast cancer models; neratinib showing the most potent activity, followed by tucatinib then lapatinib. Neratinib displayed the greatest activity in HER2-mutant and EGFR-mutant cells. High expression of HER2, VTCN1, CDK12, and RAC1 correlated with response to all three TKIs. DNA damage repair genes were associated with TKI resistance. BRCA2 mutations were correlated with neratinib and tucatinib response, and high expression of ATM, BRCA2, and BRCA1 were associated with neratinib resistance. CONCLUSIONS Neratinib was the most effective HER2-targeted TKI against HER2-amplified, -mutant, and EGFR-mutant cell lines. This analysis revealed novel resistance mechanisms that may be exploited using combinatorial strategies.
Collapse
Affiliation(s)
- Neil T Conlon
- National Institute of Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland.
| | - Jeffrey J Kooijman
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Suzanne J C van Gerwen
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Winfried R Mulder
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Guido J R Zaman
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349 AB, Oss, The Netherlands
| | - Irmina Diala
- Puma Biotechnology, Inc., 10880 Wilshire Boulevard, Suite 2150, Los Angeles, CA, 90024, USA
| | - Lisa D Eli
- Puma Biotechnology, Inc., 10880 Wilshire Boulevard, Suite 2150, Los Angeles, CA, 90024, USA
| | - Alshad S Lalani
- Puma Biotechnology, Inc., 10880 Wilshire Boulevard, Suite 2150, Los Angeles, CA, 90024, USA
| | - John Crown
- National Institute of Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Denis M Collins
- National Institute of Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
12
|
Hendrychová D, Jorda R, Kryštof V. How selective are clinical CDK4/6 inhibitors? Med Res Rev 2020; 41:1578-1598. [PMID: 33300617 DOI: 10.1002/med.21769] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 11/29/2020] [Indexed: 12/29/2022]
Abstract
Pharmacological inhibition of cyclin-dependent kinase 4/6 (CDK4/6) has emerged as an efficient approach for treating breast cancer, and its clinical potential is expanding to other cancers. CDK4/6 inhibitors were originally believed to act by arresting proliferation in the G1 phase, but it is gradually becoming clear that the cellular response to these compounds is far more complex than this. Multiple context-dependent mechanisms of action are emerging, involving modulation of quiescence, senescence, autophagy, cellular metabolism, and enhanced tumor cell immunogenicity. These mechanisms may be driven by interactions with unexpected targets. We review cellular responses to the Food and Drug Administration-approved CDK4/6 inhibitors palbociclib, ribociclib, and abemaciclib, and summarize available knowledge of other drugs undergoing clinical trials, including data on their off-target landscapes. We emphasize the importance of comprehensively characterizing drugs' selectivity profiles to maximize their clinical efficacy and safety and to facilitate their repurposing to treat additional diseases based on their target spectrum.
Collapse
Affiliation(s)
- Denisa Hendrychová
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
13
|
Abstract
The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insurmountable damage both to the human lives and global economy. There is an immediate need for identification of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing to identify the best drug combination to address the disease. In this review, an attempt has been made to understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts from the scientific community to effectively address the issue and prevent further loss of human lives and health.
Collapse
Affiliation(s)
- Ambrish Saxena
- Indian Institute of Technology Tirupati, Tirupati, India
| |
Collapse
|
14
|
Metzler JM, Burla L, Fink D, Imesch P. Ibrutinib in Gynecological Malignancies and Breast Cancer: A Systematic Review. Int J Mol Sci 2020; 21:ijms21114154. [PMID: 32532074 PMCID: PMC7312555 DOI: 10.3390/ijms21114154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Ibrutinib is an orally available, small-molecule tyrosine kinase inhibitor. Its main purpose is to inhibit Bruton's tyrosine kinase (BTK), an enzyme that is crucial in B cell development. It is FDA approved for the treatment of certain hematological malignancies. Several promising off-target drug effects have led to multiple, mostly preclinical investigations regarding its use in solid tumors. Unfortunately, data on its effectiveness in gynecological malignancies are limited, and (systematic) reviews are missing. The objective of this review was to summarize the existing literature and to analyze the evidence of ibrutinib as a treatment option in gynecological malignancies, including breast cancer. Studies were identified in MEDLINE and EMBASE using a defined search strategy, and preclinical or clinical research projects investigating ibrutinib in connection with these malignancies were considered eligible for inclusion. Our findings showed that preclinical studies generally confirm ibrutinib's efficacy in cell lines and animal models of ovarian, breast, and endometrial cancer. Ibrutinib exerts multiple antineoplastic effects, such as on-target BTK inhibition, off-target kinase inhibition, and immunomodulation by interference with myeloid-derived suppressor cells (MDSCs), programmed death-ligand 1 (PD-L1), and T cell response. These mechanisms were elaborated and discussed in the context of the evidence available. Further research is needed in order to transfer the preclinical results to a broader clinical appliance.
Collapse
|
15
|
Lu X, Smaill JB, Ding K. Medicinal Chemistry Strategies for the Development of Kinase Inhibitors Targeting Point Mutations. J Med Chem 2020; 63:10726-10741. [PMID: 32432477 DOI: 10.1021/acs.jmedchem.0c00507] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinically acquired resistance to small molecule kinase inhibitors (SMKIs) has become a major "unmet clinical need" in cancer therapy. To date, there are six SMKIs to be approved for the treatment of cancer patients through targeting of clinically acquired resistance caused by on-target mutations. These are mainly focused on the mutant kinases Bcr-Abl T315I, EGFR T790M, and ALK L1196M. Herein, we summarize the major medicinal chemistry strategies employed in the discovery of these representative SMKIs, such as avoiding steric hindrance, making additional interactions with mutated residues, and forming a covalent bond with an active site cysteine to override resistance observed for reversible inhibitors. Additionally, we also briefly describe allosteric kinase inhibitors and proteolysis targeting chimera (PROTAC) as two other potential strategies while addressing future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
16
|
Palve V, Liao Y, Remsing Rix LL, Rix U. Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Semin Cancer Biol 2020; 68:209-229. [PMID: 32044472 DOI: 10.1016/j.semcancer.2020.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Targeted drugs and precision medicine have transformed the landscape of cancer therapy and significantly improved patient outcomes in many cases. However, as therapies are becoming more and more tailored to smaller patient populations and acquired resistance is limiting the duration of clinical responses, there is an ever increasing demand for new drugs, which is not easily met considering steadily rising drug attrition rates and development costs. Considering these challenges drug repurposing is an attractive complementary approach to traditional drug discovery that can satisfy some of these needs. This is facilitated by the fact that most targeted drugs, despite their implicit connotation, are not singularly specific, but rather display a wide spectrum of target selectivity. Importantly, some of the unintended drug "off-targets" are known anticancer targets in their own right. Others are becoming recognized as such in the process of elucidating off-target mechanisms that in fact are responsible for a drug's anticancer activity, thereby revealing potentially new cancer vulnerabilities. Harnessing such beneficial off-target effects can therefore lead to novel and promising precision medicine approaches. Here, we will discuss experimental and computational methods that are employed to specifically develop single target and network-based off-target repurposing strategies, for instance with drug combinations or polypharmacology drugs. By illustrating concrete examples that have led to clinical translation we will furthermore examine the various scientific and non-scientific factors that cumulatively determine the success of these efforts and thus can inform the future development of new and potentially lifesaving off-target based drug repurposing strategies for cancers that constitute important unmet medical needs.
Collapse
Affiliation(s)
- Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Yi Liao
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|