1
|
Manara MC, Manferdini C, Cristalli C, Carrabotta M, Santi S, De Feo A, Caldoni G, Pasello M, Landuzzi L, Lollini PL, Salamanna F, Dominici S, Fiori V, Magnani M, Lisignoli G, Scotlandi K. Engagement of CD99 Activates Distinct Programs in Ewing Sarcoma and Macrophages. Cancer Immunol Res 2024; 12:247-260. [PMID: 38051221 PMCID: PMC10835215 DOI: 10.1158/2326-6066.cir-23-0440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Ewing sarcoma (EWS) is the second most common pediatric bone tumor. The EWS tumor microenvironment is largely recognized as immune-cold, with macrophages being the most abundant immune cells and their presence associated with worse patient prognosis. Expression of CD99 is a hallmark of EWS cells, and its targeting induces inhibition of EWS tumor growth through a poorly understood mechanism. In this study, we analyzed CD99 expression and functions on macrophages and investigated whether the concomitant targeting of CD99 on both tumor and macrophages could explain the inhibitory effect of this approach against EWS. Targeting CD99 on EWS cells downregulated expression of the "don't eat-me" CD47 molecule but increased levels of the "eat-me" phosphatidyl serine and calreticulin molecules on the outer leaflet of the tumor cell membrane, triggering phagocytosis and digestion of EWS cells by macrophages. In addition, CD99 ligation induced reprogramming of undifferentiated M0 macrophages and M2-like macrophages toward the inflammatory M1-like phenotype. These events resulted in the inhibition of EWS tumor growth. Thus, this study reveals what we believe to be a previously unrecognized function of CD99, which engenders a virtuous circle that delivers intrinsic cell death signals to EWS cells, favors tumor cell phagocytosis by macrophages, and promotes the expression of various molecules and cytokines, which are pro-inflammatory and usually associated with tumor regression. This raises the possibility that CD99 may be involved in boosting the antitumor activity of macrophages.
Collapse
Affiliation(s)
- Maria Cristina Manara
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Cristina Manferdini
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Spartaco Santi
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Caldoni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michela Pasello
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Gina Lisignoli
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
2
|
De Feo A, Manfredi M, Mancarella C, Maqueda JJ, De Giorgis V, Pignochino Y, Sciandra M, Cristalli C, Donadelli M, Scotlandi K. CD99 Modulates the Proteomic Landscape of Ewing Sarcoma Cells and Related Extracellular Vesicles. Int J Mol Sci 2024; 25:1588. [PMID: 38338867 PMCID: PMC10855178 DOI: 10.3390/ijms25031588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Ewing sarcoma (EWS) is an aggressive pediatric bone tumor characterized by unmet clinical needs and an incompletely understood epigenetic heterogeneity. Here, we considered CD99, a major surface molecule hallmark of EWS malignancy. Fluctuations in CD99 expression strongly impair cell dissemination, differentiation, and death. CD99 is also loaded within extracellular vesicles (EVs), and the delivery of CD99-positive or CD99-negative EVs dynamically exerts oncogenic or oncosuppressive functions to recipient cells, respectively. We undertook mass spectrometry and functional annotation analysis to investigate the consequences of CD99 silencing on the proteomic landscape of EWS cells and related EVs. Our data demonstrate that (i) the decrease in CD99 leads to major changes in the proteomic profile of EWS cells and EVs; (ii) intracellular and extracellular compartments display two distinct signatures of differentially expressed proteins; (iii) proteomic changes converge to the modulation of cell migration and immune-modulation biological processes; and (iv) CD99-silenced cells and related EVs are characterized by a migration-suppressive, pro-immunostimulatory proteomic profile. Overall, our data provide a novel source of CD99-associated protein biomarkers to be considered for further validation as mediators of EWS malignancy and as EWS disease liquid biopsy markers.
Collapse
Affiliation(s)
- Alessandra De Feo
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Joaquín J. Maqueda
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (M.M.); (V.D.G.)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Turin, Italy;
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060 Turin, Italy
| | - Marika Sciandra
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, 37134 Verona, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.F.); (C.M.); (J.J.M.); (M.S.); (C.C.)
| |
Collapse
|
3
|
Mercatelli D, Cabrelle C, Veltri P, Giorgi FM, Guzzi PH. Detection of pan-cancer surface protein biomarkers via a network-based approach on transcriptomics data. Brief Bioinform 2022; 23:6695270. [DOI: 10.1093/bib/bbac400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cell surface proteins have been used as diagnostic and prognostic markers in cancer research and as targets for the development of anticancer agents. Many of these proteins lie at the top of signaling cascades regulating cell responses and gene expression, therefore acting as ‘signaling hubs’. It has been previously demonstrated that the integrated network analysis on transcriptomic data is able to infer cell surface protein activity in breast cancer. Such an approach has been implemented in a publicly available method called ‘SURFACER’. SURFACER implements a network-based analysis of transcriptomic data focusing on the overall activity of curated surface proteins, with the final aim to identify those proteins driving major phenotypic changes at a network level, named surface signaling hubs. Here, we show the ability of SURFACER to discover relevant knowledge within and across cancer datasets. We also show how different cancers can be stratified in surface-activity-specific groups. Our strategy may identify cancer-wide markers to design targeted therapies and biomarker-based diagnostic approaches.
Collapse
Affiliation(s)
- Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Chiara Cabrelle
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Pierangelo Veltri
- Department of Surgical and Medical Sciences, Magna Graecia University , 88100 Catanzaro , Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna , 40138 Bologna , Italy
| | - Pietro H Guzzi
- Department of Surgical and Medical Sciences, Magna Graecia University , 88100 Catanzaro , Italy
| |
Collapse
|
4
|
De Feo A, Pazzaglia L, Ciuffarin L, Mangiagli F, Pasello M, Simonetti E, Pellegrini E, Ferrari C, Bianchi G, Spazzoli B, Scotlandi K. miR-214-3p Is Commonly Downregulated by EWS-FLI1 and by CD99 and Its Restoration Limits Ewing Sarcoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14071762. [PMID: 35406534 PMCID: PMC8997046 DOI: 10.3390/cancers14071762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Ewing’s sarcoma (EWS), the second most frequent primary tumor of bone in the pediatric population, is a very aggressive, undifferentiated mesenchymal malignancy with a high tendency to develop lung and/or bone metastasis. The prognosis of patients with metastasis remains dismal, and new strategies are needed to control the dissemination of EWS cells. EWS is driven by alterations induced by the EWS-FLI1 chimera which acts as an aberrant transcriptional factor that induces the complete reprograming of the gene expression. EWS cells are also characterized by high expression of CD99, a cell surface molecule that interacts with EWS-FLI1 to sustain EWS malignancy. This study shows that miR-214-3p is a common mediator of EWS-FLI1 and CD99, and we report that miR-214-3p acts as on oncosuppressor in EWS. MiR-214-3p is constitutively repressed in cell lines and clinical samples but is re-expressed after the silencing of EWS-FLI1 and/or CD99. The restoration of miR-214-3p limits EWS cell growth and migration and represses the expression of its target HMGA1, supporting the potential role of this miRNA as a marker of tumor aggressiveness. Abstract Ewing’s sarcoma (EWS), an aggressive pediatric bone and soft-tissue sarcoma, has a very stable genome with very few genetic alterations. Unlike in most cancers, the progression of EWS appears to depend on epigenetic alterations. EWS–FLI1 and CD99, the two hallmarks of EWS, are reported to severely impact the malignancy of EWS cells, at least partly by regulating the expression of several types of non-coding RNAs. Here, we identify miR-214-3p as a common mediator of either EWS-FLI1 or CD99 by in silico analysis. MiR-214-3p expression was lower in EWS cells and in clinical samples than in bone marrow mesenchymal stem cells, and this miRNA was barely expressed in metastatic lesions. Silencing of EWS-FLI1 or CD99 restored the expression of miR-214-3p, leading to a reduced cell growth and migration. Mechanistically, miR-214-3p restoration inhibits the expression of the high-mobility group AT-hook 1 (HMGA1) protein, a validated target of miR-214-3p and a major regulator of the transcriptional machinery. The decrease in HMGA1 expression reduced the growth and the migration of EWS cells. Taken together, our results support that the miR-214-3p is constitutively repressed by both EWS-FLI1 and CD99 because it acts as an oncosuppressor limiting the dissemination of EWS cells.
Collapse
Affiliation(s)
- Alessandra De Feo
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
- Correspondence: (A.D.F.); (K.S.); Tel.: +39-051-6366760 (K.S.); +39-051-6366937 (A.D.F.); Fax: +39-051-6366763 (A.D.F. & K.S.)
| | - Laura Pazzaglia
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Lisa Ciuffarin
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Fabio Mangiagli
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Michela Pasello
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Elisa Simonetti
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Evelin Pellegrini
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Cristina Ferrari
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Giuseppe Bianchi
- IRCCS Istituto Ortopedico Rizzoli, Third Orthopaedic Clinic and Traumatology, 40136 Bologna, Italy; (G.B.); (B.S.)
| | - Benedetta Spazzoli
- IRCCS Istituto Ortopedico Rizzoli, Third Orthopaedic Clinic and Traumatology, 40136 Bologna, Italy; (G.B.); (B.S.)
| | - Katia Scotlandi
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
- Correspondence: (A.D.F.); (K.S.); Tel.: +39-051-6366760 (K.S.); +39-051-6366937 (A.D.F.); Fax: +39-051-6366763 (A.D.F. & K.S.)
| |
Collapse
|