1
|
Saga R, Matsuya Y, Takahashi R, Hasegawa K, Date H, Hosokawa Y. 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication. Sci Rep 2021; 11:8258. [PMID: 33859324 PMCID: PMC8050271 DOI: 10.1038/s41598-021-87850-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU) is a candidate of radiosensitizers which enables both anti-tumour and anti-metastasis effects in X-ray therapy. The curative effects under such 4-MU administration have been investigated in vitro; however, the radiosensitizing mechanisms remain unclear. Here, we investigated the radiosensitizing effects under 4-MU treatment from cell experiments and model estimations. We generated experimental surviving fractions of human fibrosarcoma cells (HT1080) after 4-MU treatment combined with X-ray irradiation. Meanwhilst, we also modelled the pharmacological effects of 4-MU treatment and theoretically analyzed the synergetic effects between 4-MU treatment and X-ray irradiation. The results show that the enhancement of cell killing by 4-MU treatment is the greatest in the intermediate dose range of around 4 Gy, which can be reproduced by considering intercellular communication (so called non-targeted effects) through the model analysis. As supposed to be the involvement of intercellular communication in radiosensitization, the oxidative stress level associated with reactive oxygen species (ROS), which leads to DNA damage induction, is significantly higher by the combination of 4-MU treatment and irradiation than only by X-ray irradiation, and the radiosensitization by 4-MU can be suppressed by the ROS inhibitors. These findings suggest that the synergetic effects between 4-MU treatment and irradiation are predominantly attributed to intercellular communication and provide more efficient tumour control than conventional X-ray therapy.
Collapse
Affiliation(s)
- Ryo Saga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Yusuke Matsuya
- Nuclear Science and Engineering Center, Research Group for Radiation Transport Analysis, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki, 319-1195, Japan.,Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Rei Takahashi
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Hiroyuki Date
- Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| |
Collapse
|
2
|
Vaidya FU, Sufiyan Chhipa A, Mishra V, Gupta VK, Rawat SG, Kumar A, Pathak C. Molecular and cellular paradigms of multidrug resistance in cancer. Cancer Rep (Hoboken) 2020; 5:e1291. [PMID: 33052041 PMCID: PMC9780431 DOI: 10.1002/cnr2.1291] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The acquisition of resistance to chemotherapy is a major hurdle in the successful application of cancer therapy. Several anticancer approaches, including chemotherapies, radiotherapy, surgery and targeted therapies are being employed for the treatment of cancer. However, cancer cells reprogram themselves in multiple ways to evade the effect of these therapies, and over a period of time, the drug becomes inactive due to the development of multi-drug resistance (MDR). MDR is a complex phenomenon where malignant cells become insensitive to anticancer drugs and attain the ability to survive even after several exposures of anticancer drugs. In this review, we have discussed the molecular and cellular paradigms of multidrug resistance in cancer. RECENT FINDINGS An Extensive research in cancer biology revealed that drug resistance in cancer is the result of perpetuated intracellular and extracellular mechanisms such as drug efflux, drug inactivation, drug target alteration, oncogenic mutations, altered DNA damage repair mechanism, inhibition of programmed cell death signaling, metabolic reprogramming, epithelial mesenchymal transition (EMT), inherent cell heterogeneity, epigenetic changes, redox imbalance, or any combination of these mechanisms. An inevitable cross-link between inflammation and drug resistance has been discussed. This review provided insight molecular mechanism to understand the vulnerabilities of cancer cells to develop drug resistance. CONCLUSION MDR is an outcome of interplays between multiple intricate pathways responsible for the inactivation of drug and development of resistance. MDR is a major obstacle in regimens of successful application of anti-cancer therapy. An improved understanding of the molecular mechanism of multi drug resistance and cellular reprogramming can provide a promising opportunity to combat drug resistance in cancer and intensify anti-cancer therapy for the upcoming future.
Collapse
Affiliation(s)
- Foram U. Vaidya
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Abu Sufiyan Chhipa
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | - Vinita Mishra
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| | | | | | - Ajay Kumar
- Department of ZoologyBanaras Hindu UniversityVaranasiIndia
| | - Chandramani Pathak
- Cell Biology Laboratory, School of Biological Sciences & BiotechnologyIndian Institute of Advanced ResearchGandhinagarIndia
| |
Collapse
|
3
|
Mercogliano MF, Bruni S, Elizalde PV, Schillaci R. Tumor Necrosis Factor α Blockade: An Opportunity to Tackle Breast Cancer. Front Oncol 2020; 10:584. [PMID: 32391269 PMCID: PMC7189060 DOI: 10.3389/fonc.2020.00584] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and the principal cause of mortality by malignancy in women and represents a main problem for public health worldwide. Tumor necrosis factor α (TNFα) is a pro-inflammatory cytokine whose expression is increased in a variety of cancers. In particular, in breast cancer it correlates with augmented tumor cell proliferation, higher malignancy grade, increased occurrence of metastasis and general poor prognosis for the patient. These characteristics highlight TNFα as an attractive therapeutic target, and consequently, the study of soluble and transmembrane TNFα effects and its receptors in breast cancer is an area of active research. In this review we summarize the recent findings on TNFα participation in luminal, HER2-positive and triple negative breast cancer progression and metastasis. Also, we describe TNFα role in immune response against tumors and in chemotherapy, hormone therapy, HER2-targeted therapy and anti-immune checkpoint therapy resistance in breast cancer. Furthermore, we discuss the use of TNFα blocking strategies as potential therapies and their clinical relevance for breast cancer. These TNFα blocking agents have long been used in the clinical setting to treat inflammatory and autoimmune diseases. TNFα blockade can be achieved by monoclonal antibodies (such as infliximab, adalimumab, etc.), fusion proteins (etanercept) and dominant negative proteins (INB03). Here we address the different effects of each compound and also analyze the use of potential biomarkers in the selection of patients who would benefit from a combination of TNFα blocking agents with HER2-targeted treatments to prevent or overcome therapy resistance in breast cancer.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Patricia V Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Jeong YJ, Oh HK, Choi HR. Methylation of the RELA Gene is Associated with Expression of NF-κB1 in Response to TNF-α in Breast Cancer. Molecules 2019; 24:E2834. [PMID: 31382678 PMCID: PMC6696039 DOI: 10.3390/molecules24152834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022] Open
Abstract
The nuclear factor (NF)-κB family of transcriptional factors plays a critical role in inflammation, immunoregulation, cell differentiation, and tumorigenesis. This study aims to investigate the role of methylation of genes encoding for the NF-κB family in breast cancer. We analyze the DNA methylation status of the NFKB1 gene and the RELA gene in breast cancer using pyrosequencing. The expression of NF-κB1 and RELA proteins is assessed and the level of RNA transcripts in frozen tissue is determined using RT-PCR. There is no statistically significant difference in the methylation status of the NFKB1 and the RELA genes between tumors and normal tissues. The methylation status of the NFKB1 gene and the RELA gene is not significantly associated with the levels of NF-κB1 transcripts in tumor tissues. However, the methylation level of the RELA gene is significantly associated with the level of tumor necrosis factor (TNF)-α. In addition, the level of NF-κB1 transcripts was associated with the levels of TNF-α and IL-4. In tumors with positive TNF-α, the increased methylation level of the RELA gene is significantly associated with the positive expression of NF-κB1 transcripts. These results demonstrate that the level of the RELA gene methylation is related to the levels of NF-κB1 transcripts under the influence of TNF-α. Further study is needed to determine how TNF-α is involved in the methylation of the RELA gene and the subsequent expression of NF-κB1.
Collapse
Affiliation(s)
- Young Ju Jeong
- Department of Surgery, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea.
| | - Hoon Kyu Oh
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| | - Hye Ryeon Choi
- Department of Surgery, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea
| |
Collapse
|
5
|
Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y, Tang J. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine 2018; 108:151-159. [PMID: 29609137 DOI: 10.1016/j.cyto.2018.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic resistance leading to tumor relapse is a major challenge in breast cancer (BCa) treatment. Numerous factors involved in multiple mechanisms promote the development of tumor chemo/radio-resistance. Cytokines/chemokines are important inflammatory factors and highly related to tumorigenesis, metastasis and tumors responses to treatment. A large number of studies have demonstrated that the network of cytokines activates multiple cell signaling pathways to promote tumor cell survival, proliferation, invasion, and migration. Particularly in BCa, cytokines-enhanced the epithelial-mesenchymal transition (EMT) process plays a pivotal role in the progression of metastatic phenotypes and resistance to the traditional chemo/radio-therapy. Virtually, therapeutic resistance is not entirely determined by tumor cell intrinsic characteristics but also dependent upon synchronized effects by numerous of local microenvironmental factors. Emerging evidence highlighted that exosomes secreted from various types of cells promote intercellular communication by transferring bioactive molecules including miRNAs and cytokines, suggesting that exosomes are essential for sustentation of tumor progression and therapeutic resistance within the tumor microenvironment. In this review, we discuss the mechanisms by which cytokines promote therapeutic resistance of BCa and suggest a potential approach for improving BCa therapeutics by inhibition of exosome function.
Collapse
Affiliation(s)
- Chunli Tan
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Weizi Hu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Yunjie He
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yong Xu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, PR China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| |
Collapse
|
6
|
Romani P, Ignesti M, Gargiulo G, Hsu T, Cavaliere V. Extracellular NME proteins: a player or a bystander? J Transl Med 2018; 98:248-257. [PMID: 29035383 DOI: 10.1038/labinvest.2017.102] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The Nm23/NME gene family has been under intensive study since Nm23H1/NME1 was identified as the first metastasis suppressor. Inverse correlation between the expression levels of NME1/2 and prognosis has indeed been demonstrated in different tumor cohorts. Interestingly, the presence of NME proteins in the extracellular environment in normal and tumoral conditions has also been noted. In many reported cases, however, these extracellular NME proteins exhibit anti-differentiation or oncogenic functions, contradicting their canonical anti-metastatic action. This emerging field thus warrants further investigation. In this review, we summarize the current understanding of extracellular NME proteins. A role in promoting stem cell pluripotency and inducing development of central nervous system as well as a neuroprotective function of extracellular NME have been suggested. Moreover, a tumor-promoting function of extracellular NME also emerged at least in some tumor cohorts. In this complex scenario, the secretory mechanism through which NME proteins exit cells is far from being understood. Recently, some evidence obtained in the Drosophila and cancer cell line models points to the involvement of Dynamin in controlling the balance between intra- and extracellular levels of NME. Further analyses on extracellular NME will lead to a better understanding of its physiological function and in turn will allow understanding of how its deregulation contributes to carcinogenesis.
Collapse
Affiliation(s)
- Patrizia Romani
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Marilena Ignesti
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Giuseppe Gargiulo
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| | - Tien Hsu
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA.,National Central University, Department of Biomedical Sciences and Technology, Jhongli, Taiwan
| | - Valeria Cavaliere
- Dipartimento di Farmacia e biotecnologie, Alma Mater Studiorum Università di Bologna, Bologna, Italia
| |
Collapse
|
7
|
Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N, Wirth C, Will R, Bott A, Cerwenka A, Wiemann S. MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis 2017; 8:e2973. [PMID: 28771222 PMCID: PMC5596553 DOI: 10.1038/cddis.2017.364] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
Abstract
Aggressive breast cancer is associated with poor patient outcome and characterized by the development of tumor cell variants that are able to escape from control of the immune system or are resistant to targeted therapies. The complex molecular mechanisms leading to immune escape and therapy resistance are incompletely understood. We have previously shown that high miR-519a-3p levels are associated with poor survival in breast cancer. Here, we demonstrate that miR-519a-3p confers resistance to apoptosis induced by TRAIL, FasL and granzyme B/perforin by interfering with apoptosis signaling in breast cancer cells. MiR-519a-3p diminished the expression of its direct target genes for TRAIL-R2 (TNFRSF10B) and for caspase-8 (CASP8) and its indirect target gene for caspase-7 (CASP7), resulting in reduced sensitivity and tumor cell apoptosis in response to apoptotic stimuli. Furthermore, miR-519a-3p impaired tumor cell killing by natural killer (NK) cells via downregulation of the NKG2D ligands ULBP2 and MICA on the surface of tumor cells that are crucial for the recognition of these tumor cells by NK cells. We determined that miR-519a-3p was overexpressed in more aggressive mutant TP53 breast cancer that was associated with poor survival. Furthermore, low levels of TRAIL-R2, caspase-7 and caspase-8 correlated with poor survival, suggesting that the inhibitory effect of miR-519a-3p on TRAIL-R2 and caspases may have direct clinical relevance in lowering patient’s prognosis. In conclusion, we demonstrate that miR-519a-3p is a critical factor in mediating resistance toward cancer cell apoptosis and impairing tumor cell recognition by NK cells. This joint regulation of apoptosis and immune cell recognition through miR-519a-3p supports the hypothesis that miRNAs are key regulators of cancer cell fate, facilitating cancer progression and evasion from immunosurveillance at multiple and interconnected levels.
Collapse
Affiliation(s)
- Christian Breunig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jens Pahl
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Küblbeck
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Miller
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela Antonelli
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nese Erdem
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Wirth
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Will
- Genomics &Proteomics Core Facilities, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
|
9
|
mTORC1 and -2 Coordinate Transcriptional and Translational Reprogramming in Resistance to DNA Damage and Replicative Stress in Breast Cancer Cells. Mol Cell Biol 2017; 37:MCB.00577-16. [PMID: 27956700 DOI: 10.1128/mcb.00577-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/02/2016] [Indexed: 01/04/2023] Open
Abstract
mTOR coordinates growth signals with metabolic pathways and protein synthesis and is hyperactivated in many human cancers. mTOR exists in two complexes: mTORC1, which stimulates protein, lipid, and ribosome biosynthesis, and mTORC2, which regulates cytoskeleton functions. While mTOR is known to be involved in the DNA damage response, little is actually known regarding the functions of mTORC1 compared to mTORC2 in this regard or the respective impacts on transcriptional versus translational regulation. We show that mTORC1 and mTORC2 are both required to enact DNA damage repair and cell survival, resulting in increased cancer cell survival during DNA damage. Together mTORC1 and -2 enact coordinated transcription and translation of protective cell cycle and DNA replication, recombination, and repair genes. This coordinated transcriptional-translational response to DNA damage was not impaired by rapalog inhibition of mTORC1 or independent inhibition of mTORC1 or mTORC2 but was blocked by inhibition of mTORC1/2. Only mTORC1/2 inhibition reversed cancer cell resistance to DNA damage and replicative stress and increased tumor cell killing and tumor control by DNA damage therapies in animal models. When combined with DNA damage, inhibition of mTORC1/2 blocked transcriptional induction more strongly than translation of DNA replication, survival, and DNA damage response mRNAs.
Collapse
|
10
|
Pal S, Yadav P, Sainis KB, Shankar BS. TNF-α and IGF-1 differentially modulate ionizing radiation responses of lung cancer cell lines. Cytokine 2016; 101:89-98. [PMID: 27344406 DOI: 10.1016/j.cyto.2016.06.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
Abstract
The mechanism by which tumor microenvironment derived cytokine network modulates therapy response is of great concern in lung cancer but is not completely understood. In this study, we evaluated the effects of tumor necrosis factor α (TNF-α) and insulin-like growth factor 1 (IGF-1) on response of lung cancer cell lines to ionizing radiation (IR). While TNF-α increased radio sensitivity and inhibited cell migration, treatment with IGF-1 promoted cell growth and increased migration. These effects of TNF- α were mediated by increased immediate activation of stress-activated protein kinases (SAPK)/jun amino-terminal kinases (JNK) and p38. IR induced DNA damage was increased by TNF- α and not altered by IGF-1. However, in IGF-1 treated cells, there was decreased γ- H2AX along with an increase in mitotic index, resulting in abnormal chromosomal segregation in the cells. Bio informatics analysis of 982 lung cancer patients revealed that higher expression of TNF- α was associated with low risk of cancer progression while overexpression of IGF-1 was correlated with high risk. Collectively, these results reveal that the cytokines in the tumor microenvironment differentially modulate radiation therapy through a variety of signaling mechanisms.
Collapse
Affiliation(s)
- Shyama Pal
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Poonam Yadav
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - K B Sainis
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| |
Collapse
|
11
|
PARP1 and phospho-p65 protein expression is increased in human HER2-positive breast cancers. Breast Cancer Res Treat 2015; 150:569-79. [PMID: 25833211 DOI: 10.1007/s10549-015-3359-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/24/2015] [Indexed: 12/30/2022]
Abstract
Previous studies have shown that basal breast cancers, which may have an inherent "BRCAness" phenotype and sensitivity to inhibitors of poly (ADP-Ribose) polymerase (PARP), express elevated levels of PARP1. Our lab recently reported that HER2+ breast cancers also exhibit sensitivity to PARP inhibitors (PARPi) by attenuating the NF-κB pathway. In this study, we assessed PARP1 and phospho-p65, a marker of activated NF-κB levels in human breast cancer tissues. PARP1 and PARP2 copy number, mRNA, and protein expression was assessed by interrogating the PAM-50 defined breast cancer patient set from the TCGA using cBioPortal. PARP1 and phospho-p65 immunohistochemistry and correlation to clinical parameters was conducted using 307 primary breast cancer specimens (132 basal, 82 luminal, 93 HER2+) through univariate and multivariate analyses. In the PAM50 breast cancer data set, PARP1 and 2 expression was altered in 24/58 (41 %) HER2+, 32/81 (40 %) basal, and 75/324 (23 %) luminal A/B breast cancer patients. This correlated with a statistically significant increase in PARP1 protein levels in HER2+ and basal but not luminal breast cancers (p = 0.003, p = 0.027, p = 0.289, respectively). No change in PARP2 protein level was observed. Interestingly, using breast cancer specimens from 307 patients, HER2 positivity correlated with elevated PARP1 expression (p < 0.0001) and was three times more likely than HER2 negative breast cancers to exhibit high PARP1 levels. No significant differences were noted between race, ER status, or PR status for PARP1 expression. Additionally, we found a significant correlation between HER2 status and phospho-p65 expression (p < 0.0001). Lastly, a direct correlation between PARP1 and phospho-p65 (p < 0.0001) was noted. These results indicate a potential connection between HER2, PARP1, and phospho-p65. Furthermore, these data suggest that the PARPi sensitivity we previously observed in HER2+ breast cancer cells may be due to elevated PARP1 expression.
Collapse
|
12
|
Zhou J, Ching YQ, Chng WJ. Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target. Oncotarget 2015; 6:5490-5500. [PMID: 25823927 PMCID: PMC4467382 DOI: 10.18632/oncotarget.3545] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/15/2015] [Indexed: 02/07/2023] Open
Abstract
The overall survival of patients with acute myeloid leukemia (AML) has not been improved significantly over the last decade. Molecularly targeted agents hold promise to change the therapeutic landscape in AML. The nuclear factor kappa B (NF-κB) controls a plethora of biological process through switching on and off its long list of target genes. In AML, constitutive NF-κB has been detected in 40% of cases and its aberrant activity enable leukemia cells to evade apoptosis and stimulate proliferation. These facts suggest that NF-κB signaling pathway plays a fundamental role in the development of AML and it represents an attractive target for the intervention of AML. This review summarizes our current knowledge of NF-κB signaling transduction including canonical and non-canonical NF-κB pathways. Then we specifically highlight what factors contribute to the aberrant activation of NF-κB activity in AML, followed by an overview of 8 important clinical trials of the first FDA approved proteasome inhibitor, Bortezomib (Velcade), which is a NF-κB inhibitor too, in combination with other therapeutic agents in patients with AML. Finally, this review discusses the future directions of NF-κB inhibitor in treatment of AML, especially in targeting leukemia stem cells (LSCs).
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Ying Qing Ching
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Republic of Singapore
| |
Collapse
|
13
|
Sotelo JL, Musselman D, Nemeroff C. The biology of depression in cancer and the relationship between depression and cancer progression. Int Rev Psychiatry 2014; 26:16-30. [PMID: 24716498 DOI: 10.3109/09540261.2013.875891] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The prevalence of depressive symptoms in patients with cancer exceeds that observed in the general population and depression is associated with a poorer prognosis in cancer patients. The increased prevalence is not solely explained by the psychosocial stress associated with the diagnosis. Pro-inflammatory cytokines, which induce sickness behaviour with symptoms overlapping those of clinical depression, are validated biomarkers of increased inflammation in patients with cancer. A growing literature reveals that chronic inflammatory processes associated with stress may also underlie depression symptoms in general, and in patients with cancer in particular. Therapeutic modalities, which are frequently poorly tolerated, are used in the treatment of cancer. These interventions are associated with inflammatory reactions, which may help to explain their toxicity. There is evidence that antidepressants can effectively treat symptoms of depression in cancer patients though the database is meager. Novel agents with anti-inflammatory properties may be effective alternatives for patients with treatment-resistant depression who exhibit evidence of increased inflammation.
Collapse
Affiliation(s)
- Jorge Luis Sotelo
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami Hospital , Miami, Florida
| | | | | |
Collapse
|
14
|
Rimessi A, Patergnani S, Ioannidi E, Pinton P. Chemoresistance and Cancer-Related Inflammation: Two Hallmarks of Cancer Connected by an Atypical Link, PKCζ. Front Oncol 2013; 3:232. [PMID: 24062985 PMCID: PMC3770915 DOI: 10.3389/fonc.2013.00232] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/24/2013] [Indexed: 12/25/2022] Open
Abstract
Atypical protein kinase C isoforms are serine threonine kinases involved in various pathological conditions. In recent years, the PKCζ isoform has emerged as an important regulator of multiple cellular processes operating in cancer. In this review, we will focus on the PKCζ isoform as an oxidative-sensing kinase involved in cancer-related inflammation and chemoresistance. We will discuss its nuclear localization and its possible pivotal role in connecting inflammation with drug resistance.
Collapse
Affiliation(s)
- Alessandro Rimessi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, Interdisciplinary Center for the Study of Inflammation (ICSI), University of Ferrara , Ferrara , Italy
| | | | | | | |
Collapse
|
15
|
Sinha S, Ghildiyal R, Mehta VS, Sen E. ATM-NFκB axis-driven TIGAR regulates sensitivity of glioma cells to radiomimetics in the presence of TNFα. Cell Death Dis 2013; 4:e615. [PMID: 23640457 PMCID: PMC3674344 DOI: 10.1038/cddis.2013.128] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gliomas are resistant to radiation therapy, as well as to TNFα induced killing. Radiation-induced TNFα triggers Nuclear factor κB (NFκB)-mediated radioresistance. As inhibition of NFκB activation sensitizes glioma cells to TNFα-induced apoptosis, we investigated whether TNFα modulates the responsiveness of glioma cells to ionizing radiation-mimetic Neocarzinostatin (NCS). TNFα enhanced the ability of NCS to induce glioma cell apoptosis. NCS-mediated death involved caspase-9 activation, reduction of mitochondrial copy number and lactate production. Death was concurrent with NFκB, Akt and Erk activation. Abrogation of Akt and NFκB activation further potentiated the death inducing ability of NCS in TNFα cotreated cells. NCS-induced p53 expression was accompanied by increase in TP53-induced glycolysis and apoptosis regulator (TIGAR) levels and ATM phosphorylation. siRNA-mediated knockdown of TIGAR abrogated NCS-induced apoptosis. While DN-IκB abrogated NCS-induced TIGAR both in the presence and absence of TNFα, TIGAR had no effect on NFκB activation. Transfection with TIGAR mutant (i) decreased apoptosis and γH2AX foci formation (ii) decreased p53 (iii) elevated ROS and (iv) increased Akt/Erk activation in cells cotreated with NCS and TNFα. Heightened TIGAR expression was observed in GBM tumors. While NCS induced ATM phosphorylation in a NFκB independent manner, ATM inhibition abrogated TIGAR and NFκB activation. Metabolic gene profiling indicated that TNFα affects NCS-mediated regulation of several genes associated with glycolysis. The existence of ATM-NFκB axis that regulate metabolic modeler TIGAR to overcome prosurvival response in NCS and TNFα cotreated cells, suggests mechanisms through which inflammation could affect resistance and adaptation to radiomimetics despite concurrent induction of death.
Collapse
Affiliation(s)
- S Sinha
- Cellular and Molecular Neuroscience Division, National Brain Research Centre, Manesar, Haryana, India
| | | | | | | |
Collapse
|
16
|
Torres MA, Pace TW, Liu T, Felger JC, Mister D, Doho GH, Kohn JN, Barsevick AM, Long Q, Miller AH. Predictors of depression in breast cancer patients treated with radiation: role of prior chemotherapy and nuclear factor kappa B. Cancer 2013; 119:1951-9. [PMID: 23512358 DOI: 10.1002/cncr.28003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/11/2013] [Accepted: 01/22/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Depression is common during and after breast cancer treatment. However, the role of specific therapeutic modalities and related biologic mechanisms remains unclear. Radiation is an essential component of breast-conserving therapy and may contribute to depression in patients with breast cancer through the activation of inflammatory pathways. METHODS Depressive symptoms and inflammatory mediators, including nuclear factor kappa B (NF-κB), were assessed at baseline (before radiation), during radiation, and 6 weeks after radiation in 64 women who had stage 0 through IIIA breast cancer. RESULTS No significant increases in depressive symptoms occurred during or after radiation, although a number of patients exhibited moderate-to-severe depression throughout the study. Multivariate analyses of baseline factors predictive of depression revealed that educational status, perceived stress, prior chemotherapy, and peripheral blood NF-κB DNA binding all were independent predictors of persistent depressive symptoms after radiation (all P < .05). Of these factors, only prior chemotherapy was associated with inflammatory mediators, including NF-κB DNA binding, soluble tumor necrosis factor-alpha receptor 2, and interleukin-6, which, in univariate analyses predicted depressive symptoms after radiation (all P < .05). Chemotherapy-treated patients also exhibited an over-representation of gene transcripts regulated by NF-κB. CONCLUSIONS Radiation was not associated with increased depressive symptoms in the current study, but of disease and treatment-related factors, prior chemotherapy predicted significant depression after radiation. Longitudinal studies are warranted to investigate the relationship among prior chemotherapy, inflammation, and persistent depression after breast cancer treatment.
Collapse
Affiliation(s)
- Mylin A Torres
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Curry MC, Luk NA, Kenny PA, Roberts-Thomson SJ, Monteith GR. Distinct regulation of cytoplasmic calcium signals and cell death pathways by different plasma membrane calcium ATPase isoforms in MDA-MB-231 breast cancer cells. J Biol Chem 2012; 287:28598-608. [PMID: 22733819 DOI: 10.1074/jbc.m112.364737] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane calcium ATPases (PMCAs) actively extrude Ca(2+) from the cell and are essential components in maintaining intracellular Ca(2+) homeostasis. There are four PMCA isoforms (PMCA1-4), and alternative splicing of the PMCA genes creates a suite of calcium efflux pumps. The role of these different PMCA isoforms in the control of calcium-regulated cell death pathways and the significance of the expression of multiple isoforms of PMCA in the same cell type are not well understood. In these studies, we assessed the impact of PMCA1 and PMCA4 silencing on cytoplasmic free Ca(2+) signals and cell viability in MDA-MB-231 breast cancer cells. The PMCA1 isoform was the predominant regulator of global Ca(2+) signals in MDA-MB-231 cells. PMCA4 played only a minor role in the regulation of bulk cytosolic Ca(2+), which was more evident at higher Ca(2+) loads. Although PMCA1 or PMCA4 knockdown alone had no effect on MDA-MB-231 cell viability, silencing of these isoforms had distinct consequences on caspase-independent (ionomycin) and -dependent (ABT-263) cell death. PMCA1 knockdown augmented necrosis mediated by the Ca(2+) ionophore ionomycin, whereas apoptosis mediated by the Bcl-2 inhibitor ABT-263 was enhanced by PMCA4 silencing. PMCA4 silencing was also associated with an inhibition of NFκB nuclear translocation, and an NFκB inhibitor phenocopied the effects of PMCA4 silencing in promoting ABT-263-induced cell death. This study demonstrates distinct roles for PMCA1 and PMCA4 in the regulation of calcium signaling and cell death pathways despite the widespread distribution of these two isoforms. The targeting of some PMCA isoforms may enhance the effectiveness of therapies that act through the promotion of cell death pathways in cancer cells.
Collapse
Affiliation(s)
- Merril C Curry
- School of Pharmacy, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
18
|
Hu N, Zhang J, Cui W, Kong G, Zhang S, Yue L, Bai X, Zhang Z, Zhang W, Zhang X, Ye L. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J Biol Chem 2011; 286:13714-22. [PMID: 21343296 DOI: 10.1074/jbc.m110.204131] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs play important roles in tumor metastasis. Recently, we reported that the level of miR-520b is inversely related to the metastatic potential of breast cancer cells. In this study, we investigated the role of miR-520b in breast cancer cell migration. We found that miR-520b suppressed the migration of breast cancer cells with high metastatic potential, including MDA-MB-231 and LM-MCF-7 cells, although the inhibition of miR-520b enhanced the migration of low metastatic potential MCF-7 cells. We further discovered that miR-520b directly targets the 3'-untranslated region (3'UTR) of either hepatitis B X-interacting protein (HBXIP) or interleukin-8 (IL-8), which has been reported to contribute to cell migration. Surprisingly, tissue array assays showed that 75% (38:49) and 94% (36:38) of breast cancer tissues and metastatic lymph tissues, respectively, were positive for HBXIP expression. Moreover, overexpression of HBXIP was able to promote the migration of MCF-7 cells. Interestingly, HBXIP was able to regulate IL-8 transcription by NF-κB, suggesting that the two target genes of miR-520b are functionally connected. In addition, we found that miR-520b could indirectly regulate IL-8 transcription by targeting HBXIP. Thus, we conclude that miR-520b is involved in regulating breast cancer cell migration by targeting HBXIP and IL-8 via a network in which HBXIP promotes migration by stimulating NF-κB-mediated IL-8 expression. These studies point to HBXIP as a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Activation of nuclear factor (NF)-κB, one of the most investigated transcription factors, has been found to control multiple cellular processes in cancer including inflammation, transformation, proliferation, angiogenesis, invasion, metastasis, chemoresistance and radioresistance. NF-κB is constitutively active in most tumor cells, and its suppression inhibits the growth of tumor cells, leading to the concept of 'NF-κB addiction' in cancer cells. Why NF-κB is constitutively and persistently active in cancer cells is not fully understood, but multiple mechanisms have been delineated including agents that activate NF-κB (such as viruses, viral proteins, bacteria and cytokines), signaling intermediates (such as mutant receptors, overexpression of kinases, mutant oncoproteins, degradation of IκBα, histone deacetylase, overexpression of transglutaminase and iNOS) and cross talk between NF-κB and other transcription factors (such as STAT3, HIF-1α, AP1, SP, p53, PPARγ, β-catenin, AR, GR and ER). As NF-κB is 'pre-active' in cancer cells through unrelated mechanisms, classic inhibitors of NF-κB (for example, bortezomib) are unlikely to mediate their anticancer effects through suppression of NF-κB. This review discusses multiple mechanisms of NF-κB activation and their regulation by multitargeted agents in contrast to monotargeted agents, thus 'one size does not fit all' cancers.
Collapse
|
20
|
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 2010; 49:1603-16. [PMID: 20840865 PMCID: PMC2990475 DOI: 10.1016/j.freeradbiomed.2010.09.006] [Citation(s) in RCA: 3628] [Impact Index Per Article: 241.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 02/06/2023]
Abstract
Extensive research during the past 2 decades has revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer, diabetes, and cardiovascular, neurological, and pulmonary diseases. Oxidative stress can activate a variety of transcription factors including NF-κB, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. Activation of these transcription factors can lead to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules. How oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion, angiogenesis, and stem cell survival is the focus of this review. Overall, observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked.
Collapse
Affiliation(s)
- Simone Reuter
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
21
|
NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 2010; 336:25-37. [PMID: 19823771 PMCID: PMC3148942 DOI: 10.1007/s11010-009-0267-2] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 09/15/2009] [Indexed: 02/03/2023]
Abstract
NF-kappaB, a transcription factor first discovered in 1986, is now known to be closely connected to the process of tumorogenesis based on a multiplicity of evidence. (1) NF-kappaB is activated in response to tobacco, stress, dietary agents, obesity, alcohol, infectious agents, irradiation, and environmental stimuli that account for as much as 95% of all cancers. (2) The transcription factor has been linked with transformation of cells. (3) It is constitutively active in most tumor cells. (4) It has also been linked with the survival of cancer stem cells, an early progenitor cell that has acquired self-renewal potential. (5) NF-kappaB regulates the expression of most anti-apoptotic gene products associated with the survival of the tumor. (6) It also regulates the gene products linked with proliferation of tumors. (7) The transcription factor controls the expression of gene products linked with invasion, angiogenesis, and metastasis of cancer. (8) While most carcinogens activate NF-kappaB, most chemopreventive agents suppress its activation. These observations suggest that NF-kappaB is intimately intertwined with cancer growth and metastasis. The mechanism that leads to constitutive activation of NF-kappaB in hematological, gastrointestinal, genitourinary, gynecological, thoracic head and neck, breast, and skin cancers, and the ways NF-kappaB is activated are the topics of discussion in this review.
Collapse
|
22
|
Daroczi B, Kari G, Ren Q, Dicker AP, Rodeck U. Nuclear factor kappaB inhibitors alleviate and the proteasome inhibitor PS-341 exacerbates radiation toxicity in zebrafish embryos. Mol Cancer Ther 2009; 8:2625-34. [PMID: 19723885 DOI: 10.1158/1535-7163.mct-09-0198] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inflammatory changes are a major component of the normal tissue response to ionizing radiation, and increased nuclear factor kappaB (NF-kappaB) activity is an important mediator of inflammatory responses. Here, we used zebrafish embryos to assess the capacity of two different classes of pharmacologic agents known to target NF-kappaB to modify radiation toxicity in the vertebrate organism. These were proteasome inhibitors, including lactacystin, MG132, and PS-341 (Bortezomib/VELCADE), and direct inhibitors of NF-kappaB activity, including ethyl pyruvate (EP) and the synthetic triterpenoid CDDO-TFEA (RTA401), among others. The proteasome inhibitors either did not significantly affect radiation sensitivity of zebrafish embryos (MG132, lactacystin) or rendered zebrafish embryos more sensitive to the lethal effects of ionizing radiation (PS-341). Radiosensitization by PS-341 was reduced in fish with impaired p53 expression or function but not associated with enhanced expression of select p53 target genes. In contrast, the direct NF-kappaB inhibitors EP and CDDO-TFEA significantly improved overall survival of lethally irradiated zebrafish embryos. In addition, direct NF-kappaB inhibition reduced radiation-induced apoptosis in the central nervous system, abrogated aberrations in body axis development, restored metabolization and secretion of a reporter lipid through the gastrointestinal system, and improved renal clearance compromised by radiation. In contrast to amifostine, EP and CDDO-TFEA not only protected against but also mitigated radiation toxicity when given 1 to 2 hours postexposure. Finally, four additional IkappaB kinase inhibitors with distinct mechanisms of action similarly improved overall survival of lethally irradiated zebrafish embryos. In conclusion, inhibitors of canonical pathways to NF-kappaB activation may be useful in alleviating radiation toxicity in patients.
Collapse
Affiliation(s)
- Borbala Daroczi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|