1
|
HSP90 as a regulator of extracellular matrix dynamics. Biochem Soc Trans 2021; 49:2611-2625. [PMID: 34913470 DOI: 10.1042/bst20210374] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The extracellular matrix (ECM) is a dynamic and organised extracellular network assembled from proteins and carbohydrates exported from the cell. The ECM is critical for multicellular life, providing spatial and temporal cellular cues to maintain tissue homeostasis. Consequently, ECM production must be carefully balanced with turnover to ensure homeostasis; ECM dysfunction culminates in disease. Hsp90 is a molecular chaperone central to protein homeostasis, including in the ECM. Intracellular and extracellular Hsp90 isoforms collaborate to regulate the levels and status of proteins in the ECM via multiple mechanisms. In so doing, Hsp90 regulates ECM dynamics, and changes in Hsp90 levels or activity support the development of ECM-related diseases, like cancer and fibrosis. Consequently, Hsp90 levels may have prognostic value, while inhibition of Hsp90 may have therapeutic potential in conditions characterised by ECM dysfunction.
Collapse
|
2
|
Orth M, Albrecht V, Seidl K, Kinzel L, Unger K, Hess J, Kreutzer L, Sun N, Stegen B, Nieto A, Maas J, Winssinger N, Friedl AA, Walch AK, Belka C, Zitzelsberger H, Niyazi M, Lauber K. Inhibition of HSP90 as a Strategy to Radiosensitize Glioblastoma: Targeting the DNA Damage Response and Beyond. Front Oncol 2021; 11:612354. [PMID: 33816244 PMCID: PMC8011354 DOI: 10.3389/fonc.2021.612354] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is an essential component of multi-modality treatment of glioblastoma (GBM). However, treatment failure and recurrence are frequent and give rise to the dismal prognosis of this aggressive type of primary brain tumor. A high level of inherent treatment resistance is considered to be the major underlying reason, stemming from constantly activated DNA damage response (DDR) mechanisms as a consequence of oncogene overexpression, persistent replicative stress, and other so far unknown reasons. The molecular chaperone heat shock protein 90 (HSP90) plays an important role in the establishment and maintenance of treatment resistance, since it crucially assists the folding and stabilization of various DDR regulators. Accordingly, inhibition of HSP90 represents a multi-target strategy to interfere with DDR function and to sensitize cancer cells to radiotherapy. Using NW457, a pochoxime-based HSP90 inhibitor with favorable brain pharmacokinetic profile, we show here that HSP90 inhibition at low concentrations with per se limited cytotoxicity leads to downregulation of various DNA damage response factors on the protein level, distinct transcriptomic alterations, impaired DNA damage repair, and reduced clonogenic survival in response to ionizing irradiation in glioblastoma cells in vitro. In vivo, HSP90 inhibition by NW457 improved the therapeutic outcome of fractionated CBCT-based irradiation in an orthotopic, syngeneic GBM mouse model, both in terms of tumor progression and survival. Nevertheless, in view of the promising in vitro results the in vivo efficacy was not as strong as expected, although apart from the radiosensitizing effects HSP90 inhibition also reduced irradiation-induced GBM cell migration and tumor invasiveness. Hence, our findings identify the combination of HSP90 inhibition and radiotherapy in principle as a promising strategy for GBM treatment whose performance needs to be further optimized by improved inhibitor substances, better formulations and/or administration routes, and fine-tuned treatment sequences.
Collapse
Affiliation(s)
- Michael Orth
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Valerie Albrecht
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Karin Seidl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Linda Kinzel
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Lisa Kreutzer
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Benjamin Stegen
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium, Munich, Germany.,German Cancer Research Center, Heidelberg, Germany
| | - Alexander Nieto
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Jessica Maas
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Anna A Friedl
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Horst Zitzelsberger
- Research Unit Radiation Cytogenetics, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Center Munich, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
3
|
Pibuel MA, Poodts D, Díaz M, Hajos SE, Lompardía SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296:100549. [PMID: 33744285 PMCID: PMC8050860 DOI: 10.1016/j.jbc.2021.100549] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in cancer biology are revealing the importance of the cancer cell microenvironment on tumorigenesis and cancer progression. Hyaluronan (HA), the main glycosaminoglycan in the extracellular matrix, has been associated with the progression of glioblastoma (GBM), the most frequent and lethal primary tumor in the central nervous system, for several decades. However, the mechanisms by which HA impacts GBM properties and processes have been difficult to elucidate. In this review, we provide a comprehensive assessment of the current knowledge on HA's effects on GBM biology, introducing its primary receptors CD44 and RHAMM and the plethora of relevant downstream signaling pathways that can scramble efforts to directly link HA activity to biological outcomes. We consider the complexities of studying an extracellular polymer and the different strategies used to try to capture its function, including 2D and 3D in vitro studies, patient samples, and in vivo models. Given that HA affects not only migration and invasion, but also cell proliferation, adherence, and chemoresistance, we highlight the potential role of HA as a therapeutic target. Finally, we review the different existing approaches to diminish its protumor effects, such as the use of 4-methylumbelliferone, HA oligomers, and hyaluronidases and encourage further research along these lines in order to improve the survival and quality of life of GBM patients.
Collapse
Affiliation(s)
- Matías Arturo Pibuel
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| | - Daniela Poodts
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Mariángeles Díaz
- Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvia Elvira Hajos
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina
| | - Silvina Laura Lompardía
- Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Instituto de Estudios de la Inmunidad Humoral (IDEHU)-CONICET, Universidad de Buenos Aires, Capital Federal, Argentina.
| |
Collapse
|
4
|
Pai JT, Hsu CY, Hsieh YS, Tsai TY, Hua KT, Weng MS. Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6-mediated matrix metalloproteinase 9. Food Sci Nutr 2020; 8:1534-1545. [PMID: 32180962 PMCID: PMC7063368 DOI: 10.1002/fsn3.1439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the crucial mechanism to cause high mortality in lung cancer. Degradation of extracellular matrix (ECM) by proteolytic enzymes, especially matrix metalloproteinases (MMPs), is a key process for promoting cancer cell migration and invasion. Therefore, targeting MMPs might be a strategy for lung cancer metastasis suppression. Honokiol, a biological active component of Magnolia officinalis, has been indicated to suppress lung cancer tumorigenesis through epigenetic regulation. However, the regulation of MMPs‐mediated migration and invasion by honokiol through epigenetic regulation in lung cancer is still a mystery. In the present study, the migration and invasion ability of H1299 lung cancer was suppressed by noncytotoxic concentrations of honokiol treatment. The proteolytic activity of MMP‐9, rather than MMP‐2, was inhibited in honokiol‐treated H1299 cells. Honokiol‐inhibited MMP‐9 expression was through promoting MMP‐9 protein degradation rather than suppressing transcription mechanism. Furthermore, the expression of specific histone deacetylases 6 (HDAC6) substrate, acetyl‐α‐tubulin, was accumulated after honokiol incubation. The disassociation of MMP‐9 with hyper‐acetylated heat shock protein 90 (Hsp90) was observed resulting in MMP‐9 degradation after honokiol treatment. Meanwhile, honokiol‐suppressed MMP‐9 expression and invasion ability of H1299 lung cancer cells was rescued by HDAC6 overexpression. Accordingly, the results suggested that the suppression of migration and invasion activities by honokiol was through inhibiting HDAC6‐mediated Hsp90/MMP‐9 interaction and followed by MMP‐9 degradation in lung cancer.
Collapse
Affiliation(s)
- Jih-Tung Pai
- Division of Hematology and Oncology Tao-Yuan General Hospital Ministry of Health and Welfare Taoyuan City Taiwan
| | - Chia-Yun Hsu
- Department of Nutritional Science Fu Jen Catholic University New Taipei city Taiwan
| | - Yei-San Hsieh
- Department of Chest Surgery Tao-Yuan General Hospital Ministry of Health and Welfare Taoyuan City Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology College of Medicine National Taiwan University Taipei Taiwan
| | - Meng-Shih Weng
- Department of Nutritional Science Fu Jen Catholic University New Taipei city Taiwan
| |
Collapse
|
5
|
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des 2019; 93:760-786. [PMID: 30697932 DOI: 10.1111/cbdd.13486] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/31/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Hsp90 is a ubiquitous chaperone with important roles in the organization and maturation of client proteins that are involved in the progression and survival of cancer cells. Multiple oncogenic pathways can be affected by inhibition of Hsp90 function through degradation of its client proteins. That makes Hsp90 a therapeutic target for cancer treatment. 17-allylamino-17-demethoxy-geldanamycin (17-AAG) is a potent Hsp90 inhibitor that binds to Hsp90 and inhibits its chaperoning function, which results in the degradation of Hsp90's client proteins. There have been several preclinical studies of 17-AAG as a single agent or in combination with other anticancer agents for a wide range of human cancers. Data from various phases of clinical trials show that 17-AAG can be given safely at biologically active dosages with mild toxicity. Even though 17-AAG has suitable pharmacological potency, its low water solubility and high hepatotoxicity could significantly restrict its clinical use. Nanomaterials-based drug delivery carriers may overcome these drawbacks. In this paper, we review preclinical and clinical research on 17-AAG as a single agent and in combination with other anticancer agents. In addition, we highlight the potential of using nanocarriers and nanocombination therapy to improve therapeutic effects of 17-AAG.
Collapse
Affiliation(s)
- Sona Talaei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Mellatyar
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Lin K, Gao Z, Shang B, Sui S, Fu Q. Osthole suppresses the proliferation and accelerates the apoptosis of human glioma cells via the upregulation of microRNA-16 and downregulation of MMP-9. Mol Med Rep 2015; 12:4592-4597. [PMID: 26082082 DOI: 10.3892/mmr.2015.3929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 05/13/2015] [Indexed: 11/06/2022] Open
Abstract
Osthole (7-methoxy-8-isoamyl alkenyl coumarin) has been reported to exhibit marked anticancer effects on several types of cancer. The expression levels of matrix metalloproteinase-9 (MMP-9) are closely associated with the pathogenesis of glioma. Furthermore, it is reported that the upregulation of microRNA‑16 (miR‑16) by the MMP‑9 signaling pathway can restrain the proliferation of cancer cells. To examine whether osthole increases the anticancer effect on human glioma cells in the present study, the common glioma cell line, U87, was treated with osthole at concentrations of 0, 50, 100 and 200 µΜ. The effects of osthole on cell viability were determined using a 3‑(4,5‑dimethylthiazol‑2‑thiazolyl)‑2,5‑diphenyl‑tetrazolium bromide assay. The rate of cellular apoptosis was analyzed by measuring the activity of caspase‑3 and using flow cytometry. The expression of MMP‑9 was determined using gelatin zymography assays and the expression of miR‑16 was determined using reverse transcription‑quantitative polymerase chain reaction. The results demonstrated that osthole significantly suppressed the proliferation and accelerated the apoptosis of the U87 cells. Furthermore, increased expression levels of miR‑16 and reduced protein expression levels of MMP‑9 were found in the U87 cells. In addition, miR‑16 was found to regulate the expression of MMP‑9 in the U87 cells through transfection of miR‑16 precursor and anti‑miR‑16 into the U87 cells. In conclusion, these observations indicated that osthole suppressed the proliferation and accelerated the apoptosis of human glioma cells through upregulation of the expression of miR‑16 and downregulation of the expression of MMP-9.
Collapse
Affiliation(s)
- Kai Lin
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Zhiyu Gao
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Bin Shang
- Department of Neurosurgery, Central Hospital of Nanchong, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shaohua Sui
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Qiang Fu
- Department of Neurosurgery, Liaocheng People's Hospital and Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
7
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
8
|
Drappatz J, Norden AD, Wen PY. Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Rev Neurother 2014; 9:519-34. [DOI: 10.1586/ern.09.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Kast RE, Boockvar JA, Brüning A, Cappello F, Chang WW, Cvek B, Dou QP, Duenas-Gonzalez A, Efferth T, Focosi D, Ghaffari SH, Karpel-Massler G, Ketola K, Khoshnevisan A, Keizman D, Magné N, Marosi C, McDonald K, Muñoz M, Paranjpe A, Pourgholami MH, Sardi I, Sella A, Srivenugopal KS, Tuccori M, Wang W, Wirtz CR, Halatsch ME. A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget 2013; 4:502-30. [PMID: 23594434 PMCID: PMC3720600 DOI: 10.18632/oncotarget.969] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
To improve prognosis in recurrent glioblastoma we developed a treatment protocol based on a combination of drugs not traditionally thought of as cytotoxic chemotherapy agents but that have a robust history of being well-tolerated and are already marketed and used for other non-cancer indications. Focus was on adding drugs which met these criteria: a) were pharmacologically well characterized, b) had low likelihood of adding to patient side effect burden, c) had evidence for interfering with a recognized, well-characterized growth promoting element of glioblastoma, and d) were coordinated, as an ensemble had reasonable likelihood of concerted activity against key biological features of glioblastoma growth. We found nine drugs meeting these criteria and propose adding them to continuous low dose temozolomide, a currently accepted treatment for relapsed glioblastoma, in patients with recurrent disease after primary treatment with the Stupp Protocol. The nine adjuvant drug regimen, Coordinated Undermining of Survival Paths, CUSP9, then are aprepitant, artesunate, auranofin, captopril, copper gluconate, disulfiram, ketoconazole, nelfinavir, sertraline, to be added to continuous low dose temozolomide. We discuss each drug in turn and the specific rationale for use- how each drug is expected to retard glioblastoma growth and undermine glioblastoma's compensatory mechanisms engaged during temozolomide treatment. The risks of pharmacological interactions and why we believe this drug mix will increase both quality of life and overall survival are reviewed.
Collapse
Affiliation(s)
| | | | | | | | - Wen-Wei Chang
- Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Boris Cvek
- Palacky University, Olomouc, Czech Republic
| | | | - Alfonso Duenas-Gonzalez
- Instituto de Investigaciones Biomedicas UNAM, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | | | - Kirsi Ketola
- University of British Columbia, Vancouver, Canada
| | | | - Daniel Keizman
- Oncology Department, Meir Medical Center, Tel Aviv University, Israel
| | - Nicolas Magné
- Institut de Cancérologie Lucien Neuwirth, Saint-Priest en Jarez, France
| | | | | | - Miguel Muñoz
- Virgen del Rocío University Hospital, Sevilla, Spain
| | - Ameya Paranjpe
- Texas Tech University Health Sciences Center, Amarillo, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yang XS, Liu SA, Liu JW, Yan Q. Fucosyltransferase IV enhances expression of MMP-12 stimulated by EGF via the ERK1/2, p38 and NF-κB pathways in A431 cells. Asian Pac J Cancer Prev 2013; 13:1657-62. [PMID: 22799384 DOI: 10.7314/apjcp.2012.13.4.1657] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Fucosyltransferase IV (FUT4) has been implicated in cell adhesion, motility, and tumor progression in human epidermoid carcinoma A431 cells. We previously reported that it promotes cell proliferation through the ERK/MAPK and PI3K/Akt signaling pathways; however, the molecular mechanisms underlying FUT4- induced cell invasion remain unknown. In this study we determined the effect of FUT4 on expression of matrix metalloproteinase (MMP)-12 induced by EGF in A431 cells. Treatment with EGF resulted in an alteration of cell morphology and induced an increase in the expression of MMP-12. EGF induced nuclear translocation of nuclear factor κB (NF-κB) and resulted in phosphorylation of IκBα in a time-dependent manner. In addition, ERK1/2 and p38 MAPK were shown to play a crucial role in mediating EGF-induced NF-κB translocation and phosphorylation of IκBα when treated with the MAPK inhibitors, PD98059 and SB203580, which resulted in increased MMP-12 expression. Importantly, we showed that FUT4 up-regulated EGF-induced MMP-12 expression by promoting the phosphorylation of ERK1/2 and p38 MAPK, thereby inducing phosphorylation/ degradation of IκBα, NF-κB activation. Base on our data, we propose that FUT4 up-regulates expression of MMP-12 via a MAPK-NF-κB-dependent mechanism.
Collapse
Affiliation(s)
- Xue-Song Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, China.
| | | | | | | |
Collapse
|
11
|
Zohn IE, Sarkar AA. Does the cranial mesenchyme contribute to neural fold elevation during neurulation? ACTA ACUST UNITED AC 2012; 94:841-8. [PMID: 22945385 DOI: 10.1002/bdra.23073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 07/23/2012] [Accepted: 07/17/2012] [Indexed: 11/06/2022]
Abstract
The central nervous system is derived from the neural plate, which undergoes a series of complex morphogenetic events resulting in formation of the neural tube in a process known as neurulation. The cellular behaviors driving neurulation in the cranial region involve forces generated by the neural tissue itself as well as the surrounding epithelium and mesenchyme. Of interest, the cranial mesenchyme underlying the neural plate undergoes stereotypical rearrangements hypothesized to drive elevation of the neural folds. As the neural folds rise, the hyaluronate-rich extracellular matrix greatly expands resulting in increased space between individual cranial mesenchyme cells. Based on inhibitor studies, expansion of the extracellular matrix has been implicated in driving neural fold elevation; however, because the surrounding neural and epidermal ectoderm were also affected by inhibitor exposure, these studies are inconclusive. Similarly, treatment of neurulating embryos with teratogenic doses of retinoic acid results in altered organization of the cranial mesenchyme, but alterations in surrounding tissues are also observed. The strongest evidence for a critical role for the cranial mesenchyme in neural fold elevation comes from studies of genes expressed exclusively in the cranial mesenchyme that when mutated result in exencephaly associated with abnormal organization of the cranial mesenchyme. Twist is the best studied of these and is expressed in both the paraxial mesoderm and neural crest derived cranial mesenchyme. In this article, we review the evidence implicating the cranial mesenchyme in providing a driving force for neural fold elevation to evaluate whether there are sufficient data to support this hypothesis.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | |
Collapse
|
12
|
Teng Y, Ngoka L, Mei Y, Lesoon L, Cowell JK. HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. J Biol Chem 2012; 287:10051-10059. [PMID: 22315230 DOI: 10.1074/jbc.m111.335000] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inactivation of HSP90 and HSP70 leads to loss of invasion in a variety of cancer cell types, presumably as a result of destabilization of, as yet, undefined clients of these molecular chaperones that influence this phenotype. The WASF3 gene has been shown to be up-regulated in high-grade tumors and its down-regulation leads to loss of invasion and metastasis. WASF3 phosphorylation by ABL kinase is essential for its ability to regulate invasion. Mass spectroscopy analysis now shows that HSP90 is present in the WASF3 immunocomplex from prostate cancer cells. Inactivation of HSP90 in these and other cell types does not affect WASF3 stability but prevents its phosphoactivation as a result of destabilization of ABL. HSP70 was also found in the WASF3 immunocomplex and inactivation of HSP70 results in destabilization of WASF3 through proteasome degradation. Knockdown of WASF3, HSP90, and HSP70 individually, all lead to loss of invasion but as knockdown of WASF3 in the presence of robust expression of HSP90/70 has the same effect, it seems that the influence these chaperone proteins have on invasion is mediated, at least in part, by their control over the critical invasion promoting capacity of the WASF3 protein. Overexpression of HSP70 in WASF3 null cells does not enhance invasion. These observations suggest that targeting HSP90/70 may have efficacy in reducing cancer cell invasion.
Collapse
Affiliation(s)
- Yong Teng
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912
| | - Lambert Ngoka
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912
| | - Yun Mei
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912
| | - Leslieann Lesoon
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912
| | - John K Cowell
- Georgia Health Sciences University Cancer Center, Augusta, Georgia 30912.
| |
Collapse
|
13
|
Walsh N, Larkin A, Swan N, Conlon K, Dowling P, McDermott R, Clynes M. RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett 2011; 306:180-9. [PMID: 21470770 DOI: 10.1016/j.canlet.2011.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/18/2022]
Abstract
We previously identified Hop as over expressed in invasive pancreatic cancer cell lines and malignant tissues of pancreatic cancer patients, suggesting an important role for Hop in the biology of invasive pancreatic cancer. Hop is a co-chaperone protein that binds to both Hsp70/Hsp90. We hypothesised that by targeting Hop, signalling pathways modulating invasion and client protein stabilisation involving Hsp90-dependent complexes may be altered. In this study, we show that Hop knockdown by small interfering (si)RNA reduces the invasion of pancreatic cancer cells, resulting in decreased expression of the downstream target gene, matrix metalloproteinases-2 (MMP-2). Hop in conditioned media co-immunoprecipitates with MMP-2, implicating a possible extracellular function for Hop. Knockdown of Hop expression also reduced expression levels of Hsp90 client proteins, HER2, Bcr-Abl, c-MET and v-Src. Furthermore, Hop is strongly expressed in high grade PanINs compared to lower PanIN grades, displaying differential localisation in invasive ductal pancreatic cancer, indicating that the localisation of Hop is an important factor in pancreatic tumours. Our data suggests that the attenuation of Hop expression inactivates key signal transduction proteins which may decrease the invasiveness of pancreatic cancer cells possibly through the modulation of Hsp90 activity. Therefore, targeting Hop in pancreatic cancer may constitute a viable strategy for targeted cancer therapy.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/metabolism
- Adenocarcinoma, Mucinous/prevention & control
- Adenocarcinoma, Mucinous/secondary
- Blotting, Western
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/prevention & control
- Carcinoma, Pancreatic Ductal/secondary
- Cell Adhesion
- Cell Movement
- Down-Regulation
- Gene Expression Regulation, Neoplastic
- HSP70 Heat-Shock Proteins/metabolism
- HSP90 Heat-Shock Proteins/metabolism
- Heat-Shock Proteins/antagonists & inhibitors
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase Inhibitors
- Molecular Chaperones
- Neoplasm Invasiveness
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/prevention & control
- RNA, Small Interfering/genetics
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Naomi Walsh
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
The benzoylurea derivative F13 inhibits cell growth, migration and invasion through inducing expression of ERK1/2-mediated RECK in fibrosarcoma HT-1080 cells. Anticancer Drugs 2010; 21:372-80. [DOI: 10.1097/cad.0b013e3283357c44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Schwock J, Dhani N, Hedley DW. Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 2010; 14:77-94. [PMID: 20001212 DOI: 10.1517/14728220903460340] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
IMPORTANCE OF THE FIELD Focal adhesion kinase (FAK), a crucial mediator of integrin and growth factor signaling, is a novel and promising target in cancer therapy. FAK resides within focal adhesions which are contact points between extracellular matrix (ECM) and cytoskeleton, and increased expression of the kinase has been linked with cancer cell migration, proliferation and survival. The aim of this review is to summarize the current research in the area and to assess the potential of different FAK-targeting strategies for cancer therapy. AREAS COVERED IN THIS REVIEW We briefly examine the evidence pointing towards FAK as potential anti-cancer target since its discovery in 1992. Then, we summarize different approaches developed to interfere with FAK signaling and important results reported from these experiments. Finally, we discuss the potential of these strategies to accomplish inhibition of tumor growth and distant spread as well as potentially meaningful combinations with other therapeutic modalities in the context of the currently available evidence. WHAT THE READER WILL GAIN The review emphasizes the link between FAK biology and the consequences of interference with FAK signaling. Based on this foundation an opinion is formed with regard to the future of FAK as therapeutic target. TAKE HOME MESSAGE Inhibition of FAK harbours the potential to restrain malignant growth and progression with minimal side effects in normal tissues. Small molecule inhibitors of the kinase should be examined in further clinical studies and combinations with existing therapies need to be explored. More efforts are required to identify markers which predict response towards FAK inhibition.
Collapse
Affiliation(s)
- Joerg Schwock
- Princess Margaret Hospital/Ontario Cancer Institute (PMH/OCI), Toronto M5G 2M9, Ontario, Canada
| | | | | |
Collapse
|
17
|
Tsutsumi S, Beebe K, Neckers L. Impact of heat-shock protein 90 on cancer metastasis. Future Oncol 2009; 5:679-88. [PMID: 19519207 DOI: 10.2217/fon.09.30] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cancer metastasis is the result of complex processes, including alteration of cell adhesion/motility in the microenvironment and neoangiogenesis, that are necessary to support cancer growth in tissues distant from the primary tumor. The molecular chaperone heat-shock protein 90 (Hsp90), also termed the 'cancer chaperone', plays a crucial role in maintaining the stability and activity of numerous signaling proteins involved in these processes. Small-molecule Hsp90 inhibitors display anticancer activity both in vitro and in vivo, and multiple Phase II and Phase III clinical trials of several structurally distinct Hsp90 inhibitors are currently underway. In this review, we will highlight the importance of Hsp90 in cancer metastasis and the therapeutic potential of Hsp90 inhibitors as antimetastasis drugs.
Collapse
Affiliation(s)
- Shinji Tsutsumi
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892-1107, USA
| | | | | |
Collapse
|