1
|
de Camargo Magalhães ES, Hubner SE, Brown BD, Qiu Y, Kornblau SM. Proteomics for optimizing therapy in acute myeloid leukemia: venetoclax plus hypomethylating agents versus conventional chemotherapy. Leukemia 2024; 38:1046-1056. [PMID: 38531950 DOI: 10.1038/s41375-024-02208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
The use of Hypomethylating agents combined with Venetoclax (VH) for the treatment of Acute Myeloid Leukemia (AML) has greatly improved outcomes in recent years. However not all patients benefit from the VH regimen and a way to rationally select between VH and Conventional Chemotherapy (CC) for individual AML patients is needed. Here, we developed a proteomic-based triaging strategy using Reverse-phase Protein Arrays (RPPA) to optimize therapy selection. We evaluated the expression of 411 proteins in 810 newly diagnosed adult AML patients, identifying 109 prognostic proteins, that divided into five patient expression profiles, which are useful for optimizing therapy selection. Furthermore, using machine learning algorithms, we determined a set of 14 proteins, among those 109, that were able to accurately recommend therapy, making it feasible for clinical application. Next, we identified a group of patients who did not benefit from either VH or CC and proposed target-based approaches to improve outcomes. Finally, we calculated that the clinical use of our proteomic strategy would have led to a change in therapy for 30% of patients, resulting in a 43% improvement in OS, resulting in around 2600 more cures from AML per year in the United States.
Collapse
Affiliation(s)
| | - Stefan Edward Hubner
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - Brandon Douglas Brown
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA
| | - Yihua Qiu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA
| | - Steven Mitchell Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030-4009, USA.
| |
Collapse
|
2
|
van Dijk AD, Hoff FW, Qiu Y, Hubner SE, Go RL, Ruvolo VR, Leonti AR, Gerbing RB, Gamis AS, Aplenc R, Kolb EA, Alonzo TA, Meshinchi S, de Bont ESJM, Horton TM, Kornblau SM. Chromatin Profiles Are Prognostic of Clinical Response to Bortezomib-Containing Chemotherapy in Pediatric Acute Myeloid Leukemia: Results from the COG AAML1031 Trial. Cancers (Basel) 2024; 16:1448. [PMID: 38672531 PMCID: PMC11048007 DOI: 10.3390/cancers16081448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The addition of the proteasome inhibitor bortezomib to standard chemotherapy did not improve survival in pediatric acute myeloid leukemia (AML) when all patients were analyzed as a group in the Children's Oncology Group phase 3 trial AAML1031 (NCT01371981). Proteasome inhibition influences the chromatin landscape and proteostasis, and we hypothesized that baseline proteomic analysis of histone- and chromatin-modifying enzymes (HMEs) would identify AML subgroups that benefitted from bortezomib addition. A proteomic profile of 483 patients treated with AAML1031 chemotherapy was generated using a reverse-phase protein array. A relatively high expression of 16 HME was associated with lower EFS and higher 3-year relapse risk after AML standard treatment compared to low expressions (52% vs. 29%, p = 0.005). The high-HME profile correlated with more transposase-accessible chromatin, as demonstrated via ATAC-sequencing, and the bortezomib addition improved the 3-year overall survival compared with standard therapy (62% vs. 75%, p = 0.033). These data suggest that there are pediatric AML populations that respond well to bortezomib-containing chemotherapy.
Collapse
Affiliation(s)
- Anneke D. van Dijk
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Fieke W. Hoff
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Yihua Qiu
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Stefan E. Hubner
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Robin L. Go
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Vivian R. Ruvolo
- Department of Molecular Therapy and Hematology, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| | - Amanda R. Leonti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Alan S. Gamis
- Department of Hematology-Oncology, Children’s Mercy Hospitals and Clinics, Kansas City, MO 64108, USA
| | - Richard Aplenc
- Division of Pediatric Oncology and Stem Cell Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward A. Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE 19803, USA
| | - Todd A. Alonzo
- COG Statistics and Data Center, Monrovia, CA 91016, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Eveline S. J. M. de Bont
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (F.W.H.)
| | - Terzah M. Horton
- Texas Children’s Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven M. Kornblau
- Department of Leukemia, M.D. Anderson Cancer Center, The University of Texas, Houston, TX 78712, USA
| |
Collapse
|
3
|
Lorentzian AC, Rever J, Ergin EK, Guo M, Akella NM, Rolf N, James Lim C, Reid GSD, Maxwell CA, Lange PF. Targetable lesions and proteomes predict therapy sensitivity through disease evolution in pediatric acute lymphoblastic leukemia. Nat Commun 2023; 14:7161. [PMID: 37989729 PMCID: PMC10663560 DOI: 10.1038/s41467-023-42701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) genomes show that relapses often arise from subclonal outgrowths. However, the impact of clonal evolution on the actionable proteome and response to targeted therapy is not known. Here, we present a comprehensive retrospective analysis of paired ALL diagnosis and relapsed specimen. Targeted next generation sequencing and proteome analysis indicate persistence of actionable genome variants and stable proteomes through disease progression. Paired viably-frozen biopsies show high correlation of drug response to variant-targeted therapies but in vitro selectivity is low. Proteome analysis prioritizes PARP1 as a pan-ALL target candidate needed for survival following cellular stress; diagnostic and relapsed ALL samples demonstrate robust sensitivity to treatment with two PARP1/2 inhibitors. Together, these findings support initiating prospective precision oncology approaches at ALL diagnosis and emphasize the need to incorporate proteome analysis to prospectively determine tumor sensitivities, which are likely to be retained at disease relapse.
Collapse
Affiliation(s)
- Amanda C Lorentzian
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Jenna Rever
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Enes K Ergin
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Meiyun Guo
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Neha M Akella
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Nina Rolf
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - C James Lim
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Gregor S D Reid
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, Canada.
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada.
| | - Philipp F Lange
- Michael Cuccione Childhood Cancer Research Program at the BC Children's Hospital Research Institute, Vancouver, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
5
|
Proteomic profiling based classification of CLL provides prognostication for modern therapy and identifies novel therapeutic targets. Blood Cancer J 2022; 12:43. [PMID: 35301276 PMCID: PMC8931092 DOI: 10.1038/s41408-022-00623-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 01/04/2023] Open
Abstract
Protein expression for 384 total and post-translationally modified proteins was assessed in 871 CLL and MSBL patients and was integrated with clinical data to identify strategies for improving diagnostics and therapy, making this the largest CLL proteomics study to date. Proteomics identified six recurrent signatures that were highly prognostic of survival and time to first or second treatment at three levels: individual proteins, when grouped into 40 functionally related groups (PFGs), and systemically in signatures (SGs). A novel SG characterized by hairy cell leukemia like proteomics but poor therapy response was discovered. SG membership superseded other prognostic factors (Rai Staging, IGHV Status) and were prognostic for response to modern (BTK inhibition) and older CLL therapies. SGs and PFGs membership provided novel drug targets and defined optimal candidates for Watch and Wait vs. early intervention. Collectively proteomics demonstrates promise for improving classification, therapeutic strategy selection, and identifying novel therapeutic targets.
Collapse
|
6
|
van Dijk AD, Hoff FW, Qiu Y, Gerbing RB, Gamis AS, Aplenc R, Kolb EA, Alonzo TA, Meshinchi S, Jenkins G, de Bont ESJM, Kornblau SM, Horton TM. Bortezomib is significantly beneficial for de novo pediatric AML patients with low phosphorylation of the NF-κB subunit RelA. Proteomics Clin Appl 2022; 16:e2100072. [PMID: 34719869 PMCID: PMC9041833 DOI: 10.1002/prca.202100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The addition of the proteasome inhibitor (PI) bortezomib to standard chemotherapy (ADE: cytarabine [Ara-C], daunorubicin, and etoposide) did not improve overall outcome of pediatric AML patients in the Children's Oncology Group AAML1031 phase 3 randomized clinical trial (AAML1031) . Bortezomib prevents protein degradation, including RelA via the intracellular NF-kB pathway. In this study, we hypothesized that subgroups of pediatric AML patients benefitting from standard therapy plus bortezomib (ADEB) could be identified based on pre-treatment RelA expression and phosphorylation status. EXPERIMENTAL DESIGN RelA-total and phosphorylation at serine 536 (RelA-pSer536 ) were measured in 483 patient samples using reverse phase protein array technology. RESULTS In ADEB-treated patients, low-RelA-pSer536 was favorably prognostic when compared to high-RelA-pSer536 (3-yr overall survival (OS): 81% vs. 68%, p = 0.032; relapse risk (RR): 30% vs. 49%, p = 0.004). Among low-RelA-pSer536 patients, RR significantly decreased with ADEB compared to ADE (RR: 30% vs. 44%, p = 0.035). Correlation between RelA-pSer536 and 295 other assayed proteins identified a strong correlation with HSF1-pSer326 , another protein previously identified as modifying ADEB response. The combination of low-RelA-pSer536 and low-HSF1-pSer326 was a significant predictor of ADEB response (3-yr OS: 86% vs. 67%, p = 0.013). CONCLUSION AND CLINICAL RELEVANCE Bortezomib may improve clinical outcome in a subgroup of AML patients identified by low-RelA-pSer536 and low-HSF1-pSer326 .
Collapse
Affiliation(s)
- Anneke D. van Dijk
- Divison of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fieke W. Hoff
- Divison of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yihua Qiu
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | | | - Alan S. Gamis
- Department of Hematology-Oncology, Children’s Mercy Hospitals and Clinics, Kansas City, MO
| | - Richard Aplenc
- Division of Pediatric Oncology/Stem Cell Transplant, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - E. Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE
| | - Todd A. Alonzo
- Keck School of Medicine, University of Southern California, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Gaye Jenkins
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children’s Cancer Center, Houston, Texas
| | - Eveline S. J. M. de Bont
- Divison of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX
| | - Terzah M. Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children’s Cancer Center, Houston, Texas
| |
Collapse
|
7
|
Hoff FW, Horton TM, Kornblau SM. Reverse phase protein arrays in acute leukemia: investigative and methodological challenges. Expert Rev Proteomics 2021; 18:1087-1097. [PMID: 34965151 PMCID: PMC9148717 DOI: 10.1080/14789450.2021.2020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute leukemia results from a series of mutational events that alter cell growth and proliferation. Mutations result in protein changes that orchestrate growth alterations characteristic of leukemia. Proteomics is a methodology appropriate for study of protein changes found in leukemia. The high-throughput reverse phase protein array (RPPA) technology is particularly well-suited for the assessment of protein changes in samples derived from clinical trials. AREAS COVERED This review discusses the technical, methodological, and analytical issues related to the successful development of acute leukemia RPPAs. EXPERT COMMENTARY To obtain representative protein sample lysates, samples should be prepared from freshly collected blood or bone marrow material. Variables such as sample shipment, transit time, and holding temperature only have minimal effects on protein expression. CellSave preservation tubes are preferred for cells collected after exposure to chemotherapy, and incorporation of standardized guidelines for antibody validation is recommended. A more systematic biological approach to analyze protein expression is desired, searching for recurrent patterns of protein expression that allow classification of patients into risk groups, or groups of patients that may be treated similarly. Comparing RPPA protein analysis between cell lines and primary samples shows that cell lines are not representative of patient proteomic patterns.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Internal Medicine, UT Southwestern Medical Center, TX, USA
| | - Terzah M. Horton
- Department of Pediatrics, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
8
|
van Dijk AD, de Bont ESJM, Kornblau SM. Targeted therapy in acute myeloid leukemia: current status and new insights from a proteomic perspective. Expert Rev Proteomics 2020; 17:1-10. [PMID: 31945303 DOI: 10.1080/14789450.2020.1717951] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The biological heterogeneity of acute myeloid leukemia (AML) complicates personalized medicine. Individual prognosis is typically based on the presence of chromosomal and genetic lesions. Nevertheless, these classifications often lack a priori information about response to therapy. Since the protein expression landscape reflects the functional activity state of cells, we hypothesize that analyzing this can be used for the identification of protein activity markers to provide better risk stratification as well as may provide targeted therapeutic guidance in AML.Areas covered: Herein, we review recently new adopted drugs in the treatment for AML and discuss how quantitative proteomic techniques may contribute to better therapeutic selection in AML.Expert commentary: The net functional state of the cell is defined by the activity of protein within all the pathways that are active in the cell. Recognition of the proteomic profile of the leukemic blast could, therefore, complement current classification systems by providing a better a priori description of what pathways are important within a cell as a guide to the selection of therapy for the patient.
Collapse
Affiliation(s)
- Anneke D van Dijk
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Eveline S J M de Bont
- Division of Pediatric Oncology/Hematology, Department of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Steven M Kornblau
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Hoff FW, Hu CW, Qutub AA, Qiu Y, Hornbaker MJ, Bueso‐Ramos C, Abbas HA, Post SM, de Bont ESJM, Kornblau SM. Proteomic Profiling of Acute Promyelocytic Leukemia Identifies Two Protein Signatures Associated with Relapse. Proteomics Clin Appl 2019; 13:e1800133. [PMID: 30650251 PMCID: PMC6635093 DOI: 10.1002/prca.201800133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/21/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Acute promyelocytic leukemia (APL) is the most prognostically favorable subtype of Acute myeloid leukemia (AML). Defining the features that allow identification of APL patients likely to relapse after therapy remains challenging. EXPERIMENTAL DESIGN Proteomic profiling is performed on 20 newly diagnosed APL, 205 non-APL AML, and 10 normal CD34+ samples using Reverse Phase Protein Arrays probed with 230 antibodies. RESULTS Comparison between APL and non-APL AML samples identifies 8.3% of the proteins to be differentially expressed. Proteins higher expressed in APL are involved in the pro-apoptotic pathways or are linked to higher proliferation. The "MetaGalaxy" approach that considers proteins in relation to other assayed proteins stratifies the APL patients into two protein signatures. All of the relapse patients (n = 4/4) are in protein signature 2 (S2). Comparison of proteins between the signatures shows significant differences in relative expression for 38 proteins. Protein expression summary plots suggest less translational activity in combination with a less proliferative character for S2 compared to signature 1. CONCLUSIONS AND CLINICAL RELEVANCE This study provides a potential proteomic-based classification of APL patients that may be useful for risk stratification and therapeutic guidance. Validation in a larger independent cohort is required.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Pediatric Oncology/HematologyBeatrix Children's HospitalUniversity Medical Center GroningenUniversity of GroningenGroningen9713The Netherlands
| | - Chenyue W. Hu
- Department of BioengineeringRice UniversityHoustonTX77030USA
| | - Amina A. Qutub
- Department of Biomedical EngineeringUniversity of Texas San AntonioSan AntonioTX78429USA
| | - Yihua Qiu
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTX77030‐4009USA
| | - Marisa J. Hornbaker
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTX77030‐4009USA
- The University of Texas Graduate School of Biomedical Sciences at HoustonHoustonTX77030USA
| | - Carlos Bueso‐Ramos
- Department of HematopathologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Hussein A. Abbas
- Hematology and Oncology Fellowship ProgramCancer Medicine DivisionThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Sean M. Post
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTX77030‐4009USA
| | - Eveline S. J. M. de Bont
- Department of Pediatric Oncology/HematologyBeatrix Children's HospitalUniversity Medical Center GroningenUniversity of GroningenGroningen9713The Netherlands
| | - Steven M. Kornblau
- Department of LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTX77030‐4009USA
| |
Collapse
|
10
|
Hoff FW, Hu CW, Qutub AA, de Bont ESJM, Horton TM, Kornblau SM. Shining a light on cell signaling in leukemia through proteomics: relevance for the clinic. Expert Rev Proteomics 2018; 15:613-622. [PMID: 29898608 PMCID: PMC6444923 DOI: 10.1080/14789450.2018.1487781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Although cure rates for acute leukemia have steadily improved over the past decades, leukemia remains a deadly disease. Enhanced risk stratification and new therapies are needed to improve outcome. Extensive genetic analyses have identified many mutations that contribute to the development of leukemia. However, most mutations occur infrequently and most gene alterations have been difficult to target. Most patients have more than one driver mutation in combination with secondary mutations, that result in a leukemic transformation via the alteration of proteins. The proteomics of acute leukemia could more directly identify proteins to facilitate risk stratification, predict chemoresistance and aid selection of therapy. Areas covered: This review discusses aberrantly expressed proteins identified by mass spectrometry and reverse phase protein arrays and their relationship to survival. In addition, we will discuss proteins in the context of functionally related protein groups. Expert commentary: Proteomics is a powerful tool to analyze protein abundance and functional alterations simultaneously for large numbers of patients. In the forthcoming years, validation of tools to quickly assess protein levels to enable routine rapid profiling of proteins with differential abundance and functional activation may be used as adjuncts to aid in therapy selection and to provide additional prognostic insights.
Collapse
Affiliation(s)
- Fieke W. Hoff
- Department of Pediatric Oncology/Hematology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Chenyue W. Hu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Amina A. Qutub
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Eveline S. J. M. de Bont
- Department of Pediatric Oncology/Hematology, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Terzah M. Horton
- Department of Pediatrics, Baylor College of Medicine, Texas Children’s Cancer Center, Houston, TX, USA
- Co-senior author
| | - Steven M. Kornblau
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- Co-senior author
| |
Collapse
|