1
|
Hicks HM, Nassar VL, Lund J, Rose MM, Schweppe RE. The effects of Aurora Kinase inhibition on thyroid cancer growth and sensitivity to MAPK-directed therapies. Cancer Biol Ther 2024; 25:2332000. [PMID: 38521968 PMCID: PMC10962586 DOI: 10.1080/15384047.2024.2332000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Thyroid cancer is one of the deadliest endocrine cancers, and its incidence has been increasing. While mutations in BRAF are common in thyroid cancer, advanced PTC patients currently lack therapeutic options targeting the MAPK pathway, and despite the approved combination of BRAF and MEK1/2 inhibition for BRAF-mutant ATC, resistance often occurs. Here, we assess growth and signaling responses to combined BRAF and MEK1/2 inhibition in a panel of BRAF-mutant thyroid cancer cell lines. We first showed that combined BRAF and MEK1/2 inhibition synergistically inhibits cell growth in four out of six of the -BRAF-mutant thyroid cancer cell lines tested. Western blotting showed that the MAPK pathway was robustly inhibited in all cell lines. Therefore, to identify potential mechanisms of resistance, we performed RNA-sequencing in cells sensitive or resistant to MEK1/2 inhibition. In response to MEK1/2 inhibition, we identified a downregulation of Aurora Kinase B (AURKB) in sensitive but not resistant cells. We further demonstrated that combined MEK1/2 and AURKB inhibition slowed cell growth, which was phenocopied by inhibiting AURKB and ERK1/2. Finally, we show that combined AURKB and ERK1/2 inhibition induces apoptosis in BRAF-mutant thyroid cancer cell lines, together suggesting a potential combination therapy for BRAF-mutant thyroid cancer patients.
Collapse
Affiliation(s)
- Hannah M. Hicks
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Veronica L. Nassar
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jane Lund
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Madison M. Rose
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rebecca E. Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
2
|
de Mello DC, Menezes JM, de Oliveira ATF, Cristovão MM, Kimura ET, Fuziwara CS. Modulating gene expression as a strategy to investigate thyroid cancer biology. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2024; 68:e240073. [PMID: 39876973 PMCID: PMC11771757 DOI: 10.20945/2359-4292-2024-0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 01/31/2025]
Abstract
Modulating the expression of a coding or noncoding gene is a key tool in scientific research. This strategy has evolved methodologically due to advances in cloning approaches, modeling/algorithms in short hairpin RNA (shRNA) design for knockdown efficiency, and biochemical modifications in RNA synthesis, among other developments. Overall, these modifications have improved the ways to either reduce or induce the expression of a given gene with efficiency and facility for implementation in the lab. Allied with that, the existence of various human cell line models for cancer covering different histotypes and biological behaviors, especially for thyroid cancer, has helped improve the understanding of cancer biology. In this review, we cover the most frequently used current techniques for gene modulation in the thyroid cancer field, such as RNA interference (RNAi), short hairpin RNA (shRNA), and gene editing with CRISPR/Cas9 for inhibiting a target gene, and strategies to overexpress a gene, such as plasmid cloning and CRISPRa. Exploring the possibilities for gene modulation allows the improvement of the scientific quality of the studies and the integration of clinicians and basic scientists, leading to better development of translational research.
Collapse
Affiliation(s)
- Diego Claro de Mello
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Joice Moraes Menezes
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Antonio Tarelo Freitas de Oliveira
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marcella Maringolo Cristovão
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Edna Teruko Kimura
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Cesar Seigi Fuziwara
- Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de Biologia Celular e do DesenvolvimentoSão PauloSPBrasilDepartamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
3
|
Crescenzi E, Leonardi A, Pacifico F. NF-κB in Thyroid Cancer: An Update. Int J Mol Sci 2024; 25:11464. [PMID: 39519020 PMCID: PMC11546487 DOI: 10.3390/ijms252111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The dysregulated NF-κB basal activity is a common feature of human thyroid carcinomas, especially in poorly differentiated or undifferentiated forms that, even if rare, are often resistant to standard therapies, and, therefore, are uncurable. Despite the molecular mechanisms leading to NF-κB activation in thyroid cancer being only partially understood, during the last few years, it has become clear that NF-κB contributes in different ways to the oncogenic potential of thyroid neoplastic cells. Indeed, it enhances their proliferation and viability, promotes their migration to and colonization of distant organs, and fuels their microenvironment. In addition, NF-κB signaling plays an important role in cancer stem cells from more aggressive thyroid carcinomas. Interfering with the different upstream and/or downstream pathways that drive NF-κB activity in thyroid neoplastic cells is an attractive strategy for the development of novel therapeutic drugs capable of overcoming the therapy resistance of advanced thyroid carcinomas. This review focuses on the recent findings about the key functions of NF-κB in thyroid cancer and discusses the potential implications of targeting NF-κB in advanced thyroid carcinomas.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini, 5, 80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini, 5, 80131 Naples, Italy;
| |
Collapse
|
4
|
Cavallo MR, Yo JC, Gallant KC, Cunanan CJ, Amirfallah A, Daniali M, Sanders AB, Aplin AE, Pribitkin EA, Hartsough EJ. Mcl-1 mediates intrinsic resistance to RAF inhibitors in mutant BRAF papillary thyroid carcinoma. Cell Death Discov 2024; 10:175. [PMID: 38622136 PMCID: PMC11018618 DOI: 10.1038/s41420-024-01945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most frequent form of thyroid cancer. PTC commonly presents with mutations of the serine/threonine kinase BRAF (BRAFV600E), which drive ERK1/2 pathway activation to support growth and suppress apoptosis. PTC patients often undergo surgical resection; however, since the average age of PTC patients is under 50, adverse effects associated with prolonged maintenance therapy following total thyroidectomy are a concern. The development of mutant-selective BRAF inhibitors (BRAFi), like vemurafenib, has been efficacious in patients with metastatic melanoma, but the response rate is low for mutant BRAF PTC patients. Here, we assay the therapeutic response of BRAFi in a panel of human PTC cell lines and freshly biopsied patient samples. We observed heterogeneous responses to BRAFi, and multi-omic comparisons between susceptible and resistant mutant BRAF PTC revealed overrepresented stress response pathways and the absence of compensatory RTK activation - features that may underpin innate resistance. Importantly, resistant cell lines and patient samples had increased hallmarks of failed apoptosis; a cellular state defined by sublethal caspase activation and DNA damage. Further analysis suggests that the failed apoptotic phenotypes may have features of "minority mitochondrial outer membrane permeabilization (MOMP)" - a stress-related response characterized by fragmented and porous mitochondria known to contribute to cancer aggressiveness. We found that cells presenting with minority MOMP-like phenotypes are dependent on the apoptotic regulator, Mcl-1, as treatment with the Mcl-1 inhibitor, AZD5991, potently induced cell death in resistant cells. Furthermore, PI3K/AKT inhibitors sensitized resistant cells to BRAFi; an effect that was at least in part associated with reduced Mcl-1 levels. Together, these data implicate minority MOMP as a mechanism associated with intrinsic drug resistance and underscore the benefits of targeting Mcl-1 in mutant BRAF PTC.
Collapse
Affiliation(s)
- Maria R Cavallo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Jacob C Yo
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Kayla C Gallant
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Camille J Cunanan
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Amirali Amirfallah
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Marzieh Daniali
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Alyssa B Sanders
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Andrew E Aplin
- Sidney Kimmel Cancer Center, Philadelphia, PA, 19107, USA
- Departments of Pharmacology, Physiology and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Edmund A Pribitkin
- Departments of Otolargynology-Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
- Sidney Kimmel Cancer Center, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Guo M, Sun Y, Wei Y, Xu J, Zhang C. Advances in targeted therapy and biomarker research in thyroid cancer. Front Endocrinol (Lausanne) 2024; 15:1372553. [PMID: 38501105 PMCID: PMC10944873 DOI: 10.3389/fendo.2024.1372553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Driven by the intricacy of the illness and the need for individualized treatments, targeted therapy and biomarker research in thyroid cancer represent an important frontier in oncology. The variety of genetic changes associated with thyroid cancer demand more investigation to elucidate molecular details. This research is clinically significant since it can be used to develop customized treatment plans. A more focused approach is provided by targeted therapies, which target certain molecular targets such as mutant BRAF or RET proteins. This strategy minimizes collateral harm to healthy tissues and may also reduce adverse effects. Simultaneously, patient categorization based on molecular profiles is made possible by biomarker exploration, which allows for customized therapy regimens and maximizes therapeutic results. The benefits of targeted therapy and biomarker research go beyond their immediate clinical impact to encompass the whole cancer landscape. Comprehending the genetic underpinnings of thyroid cancer facilitates the creation of novel treatments that specifically target aberrant molecules. This advances the treatment of thyroid cancer and advances precision medicine, paving the way for the treatment of other cancers. Taken simply, more study on thyroid cancer is promising for better patient care. The concepts discovered during this investigation have the potential to completely transform the way that care is provided, bringing in a new era of personalized, precision medicine. This paradigm shift could improve the prognosis and quality of life for individuals with thyroid cancer and act as an inspiration for advances in other cancer types.
Collapse
Affiliation(s)
- Mei Guo
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuyao Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianxin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chun Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Hicks HM, Pozdeyev N, Sams SB, Pugazhenthi U, Bales ES, Hofmann MC, McKenna LR, Schweppe RE. Fibronectin Contributes to a BRAF Inhibitor-driven Invasive Phenotype in Thyroid Cancer through EGR1, Which Can Be Blocked by Inhibition of ERK1/2. Mol Cancer Res 2023; 21:867-880. [PMID: 37219859 PMCID: PMC10524745 DOI: 10.1158/1541-7786.mcr-22-1031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
Mutations in BRAF are common in advanced papillary and anaplastic thyroid cancer (PTC and ATC). However, patients with BRAF-mutant PTC currently lack therapies targeting this pathway. Despite the approved combination of BRAF and MEK1/2 inhibition for patients with BRAF-mutant ATC, these patients often progress. Thus, we screened a panel of BRAF-mutant thyroid cancer cell lines to identify new therapeutic strategies. We showed that thyroid cancer cells resistant to BRAF inhibition (BRAFi) exhibit an increase in invasion and a proinvasive secretome in response to BRAFi. Using reverse-phase protein array (RPPA), we identified a nearly 2-fold increase in expression of the extracellular matrix protein, fibronectin, in response to BRAFi treatment, and a corresponding 1.8- to 3.0-fold increase in fibronectin secretion. Accordingly, the addition of exogenous fibronectin phenocopied the BRAFi-induced increase in invasion while depletion of fibronectin in resistant cells resulted in loss of increased invasion. We further showed that BRAFi-induced invasion can be blocked by inhibition of ERK1/2. In a BRAFi-resistant patient-derived xenograft model, we found that dual inhibition of BRAF and ERK1/2 slowed tumor growth and decreased circulating fibronectin. Using RNA sequencing, we identified EGR1 as a top downregulated gene in response to combined BRAF/ERK1/2 inhibition, and we further showed that EGR1 is necessary for a BRAFi-induced increase in invasion and for induction of fibronectin in response to BRAFi. IMPLICATIONS Together, these data show that increased invasion represents a new mechanism of resistance to BRAF inhibition in thyroid cancer that can be targeted with an ERK1/2 inhibitor.
Collapse
Affiliation(s)
- Hannah M. Hicks
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Sharon B. Sams
- Department of Pathology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Umarani Pugazhenthi
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Elise S. Bales
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders – Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Logan R. McKenna
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Rebecca E. Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| |
Collapse
|
7
|
Jungels C, Pita JM, Costante G. Anaplastic thyroid carcinoma: advances in molecular profiling and targeted therapy. Curr Opin Oncol 2023; 35:1-9. [PMID: 36398690 DOI: 10.1097/cco.0000000000000918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE OF REVIEW Anaplastic thyroid carcinomas (ATCs) are rare cancers with a globally very poor prognosis, because of their immensely aggressive behaviour, resulting in predominantly advanced stage of disease at diagnosis. Response to available therapies is still disappointing. Aim of the present review is to illustrate the diverse new strategies under investigation, to improve the poor outcome of these patients. RECENT FINDINGS Applying molecular analysis in ATC is unravelling potentially actionable targets of therapy. If a mutation of BRAF V600E is found, a combination of Dabrafenib and Trametinib is the recommended treatment. In the presence of another druggable mutation, a specific targeted therapy may be proposed. In the absence of druggable mutations, immunotherapy is an alternative approach, especially in case of significant PD-L1 expression. SUMMARY The molecular profiling of tumour samples is elucidating the genetic alterations involved in ATC development, and new preclinical models are under study to define innovative approaches for individualized treatment of such patients. Hopefully this approach could improve ATC prognosis.
Collapse
Affiliation(s)
- Christiane Jungels
- Department of Oncologic Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Jaime Miguel Pita
- Institute of Interdisciplinary Research (IRIBHM) and ULB-Cancer Research Center (U-CRC), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Giuseppe Costante
- Department of Oncologic Medicine, Institut Jules Bordet, Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Endocrinology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
8
|
Maniakas A, Henderson YC, Hei H, Peng S, Chen Y, Jiang Y, Ji S, Cardenas M, Chiu Y, Bell D, Williams MD, Hofmann MC, Scherer SE, Wheeler DA, Busaidy NL, Dadu R, Wang JR, Cabanillas ME, Zafereo M, Johnson FM, Lai SY. Novel Anaplastic Thyroid Cancer PDXs and Cell Lines: Expanding Preclinical Models of Genetic Diversity. J Clin Endocrinol Metab 2021; 106:e4652-e4665. [PMID: 34147031 PMCID: PMC8530744 DOI: 10.1210/clinem/dgab453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Anaplastic thyroid cancer (ATC) is a rare, aggressive, and deadly disease. Robust preclinical thyroid cancer models are needed to adequately develop and study novel therapeutic agents. Patient-derived xenograft (PDX) models may resemble patient tumors by recapitulating key genetic alterations and gene expression patterns, making them excellent preclinical models for drug response evaluation. OBJECTIVE We developed distinct ATC PDX models concurrently with cell lines and characterized them in vitro and in vivo. METHODS Fresh thyroid tumor from patients with a preoperative diagnosis of ATC was surgically collected and divided for concurrent cell line and PDX model development. Cell lines were created by generating single cells through enzymatic digestion. PDX models were developed following direct subcutaneous implantation of fresh tumor on the flank of immune compromised/athymic mice. RESULTS Six ATC PDX models and 4 cell lines were developed with distinct genetic profiles. Mutational characterization showed one BRAF/TP53/CDKN2A, one BRAF/CDKN2A, one BRAF/TP53, one TP53 only, one TERT-promoter/HRAS, and one TERT-promoter/KRAS/TP53/NF2/NFE2L2 mutated phenotype. Hematoxylin-eosin staining comparing the PDX models to the original patient surgical specimens show remarkable resemblance, while immunohistochemistry stains for important biomarkers were in full concordance (cytokeratin, TTF-1, PAX8, BRAF). Short tandem repeats DNA fingerprinting analysis of all PDX models and cell lines showed strong concordance with the original tumor. PDX successful establishment rate was 32%. CONCLUSION We have developed and characterized 6 novel ATC PDX models with 4 matching cell lines. Each PDX model harbors a distinct genetic profile, making them excellent tools for preclinical therapeutic trials.
Collapse
Affiliation(s)
- Anastasios Maniakas
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Division of Oto-rhino-laryngology-Head and Neck Surgery, Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, Quebec, H1T 2M4, Canada
| | - Ying C Henderson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hu Hei
- Department of Thyroid and Neck, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Shaohua Peng
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Yujie Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shuangxi Ji
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Maria Cardenas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yulun Chiu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Diana Bell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Steve E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jennifer R Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephen Y Lai
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
- Correspondence: Stephen Y. Lai, MD, PhD, Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1445, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Wang WJ, Yuan Y, Zhang D, Liu P, Liu F. miR-671-5p repressed progression of papillary thyroid carcinoma via TRIM14. Kaohsiung J Med Sci 2021; 37:983-990. [PMID: 34292652 DOI: 10.1002/kjm2.12424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022] Open
Abstract
The pivotal role of dysregulated miRNAs in development of papillary thyroid carcinoma has been emphasized in recent research. miR-671-5p was previously documented to function as a tumor suppressor. However, the role and mechanism of miR-671-5p in progression of papillary thyroid carcinoma remain to be further studied. Data from functional assays indicated that forced expression of miR-671-5p decreased cell viability, repressed cell proliferation, migration, and invasion in papillary thyroid carcinoma cells. In vivo study showed that miR-671-5p overexpression inhibited tumor growth, downregulated Ki67, and decreased tumor volume and weight. Tripartite motif containing 14 (TRIM14) was verified as downstream target of miR-671-5p. The expression of TRIM14 was suppressed by miR-671-5p in papillary thyroid carcinoma. Overexpression of TRIM14 increased cell viability, and promoted the proliferation, migration, and invasion of papillary thyroid carcinoma. Moreover, TRIM14 counteracted the suppressive effect of miR-671-5p overexpression on papillary thyroid carcinoma cell growth. In conclusion, miR-671-5p repressed progression of papillary thyroid carcinoma through downregulation of TRIM14, providing a promising target for therapy of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Wan-Ju Wang
- Department of General Surgery, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan City, China
| | - Yuan Yuan
- Department of Thyroid and Breast Surgery, Wuhan No. 1 Hospital, Wuhan City, China
| | - Dong Zhang
- Department of General Surgery, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan City, China
| | - Piao Liu
- Department of General Surgery, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan City, China
| | - Fang Liu
- Department of General Surgery, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan City, China
| |
Collapse
|
10
|
Caperton CO, Jolly LA, Massoll N, Bauer AJ, Franco AT. Development of Novel Follicular Thyroid Cancer Models Which Progress to Poorly Differentiated and Anaplastic Thyroid Cancer. Cancers (Basel) 2021; 13:cancers13051094. [PMID: 33806425 PMCID: PMC7961488 DOI: 10.3390/cancers13051094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Recent developments in thyroid cancer research have been hindered by a lack of validated in vitro models, allowing for preclinical experimentation and the screening of prospective therapeutics. The goal of this work is to develop and characterize three novel follicular thyroid cancer (FTC) cell lines developed from relevant animal models. These cell lines recapitulate the genetics and histopathological features of FTC, as well as progression to a poorly differentiated state. We demonstrate that these cell lines can be used for a variety of in vitro applications and maintain the potential for in vivo transplantation into immunocompetent hosts. Further, cell lines exhibit differing degrees of dysregulated growth and invasive behavior that may help define mechanisms of pathogenesis underlying the heterogeneity present in the patient population. We believe these novel cell lines will provide powerful tools for investigating the molecular basis of thyroid cancer progression and lead to the development of more personalized diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caitlin O. Caperton
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.O.C.); (L.A.J.)
| | - Lee Ann Jolly
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.O.C.); (L.A.J.)
| | - Nicole Massoll
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Andrew J. Bauer
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Aime T. Franco
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Correspondence:
| |
Collapse
|
11
|
Chong ST, Tan KM, Kok CYL, Guan SP, Lai SH, Lim C, Hu J, Sturgis C, Eng C, Lam PYP, Ngeow J. IL13RA2 Is Differentially Regulated in Papillary Thyroid Carcinoma vs Follicular Thyroid Carcinoma. J Clin Endocrinol Metab 2019; 104:5573-5584. [PMID: 31290966 DOI: 10.1210/jc.2019-00040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
CONTEXT The interleukin-13 receptor alpha2 (IL13RA2), which is known to be overexpressed in glioblastoma multiforme, plays a role in various cellular processes such as cell migration that may contribute to tumor progression. Studies have attributed IL13RA2 to invasion and metastasis in cancers of the ovary, breast, and pancreas, but the pathological role of IL13RA2 in thyroid cancer is still unclear. OBJECTIVE This study aims to evaluate IL13RA2 expression in thyroid carcinomas and to examine the role of IL13RA2 in the progression of papillary thyroid carcinoma (PTC). METHODS IL13RA2 immunochemical staining was performed on tissue microarrays of 137 thyroid carcinomas from patients, and the differential profile of IL13RA2 was validated in thyroid cancer cell lines. In PTC cell lines, we functionally assessed the effects of IL13RA2 underexpression and overexpression on cell proliferation, cell migration, and epithelial-mesenchymal transition (EMT) by using CCK-8, transwell migration assay, quantitative RT-PCR, and Western blot analysis. RESULTS IL13RA2 expression was significantly correlated with advanced tumor T stage (pT3 or pT4; P = 0.001) and regional lymph node metastasis (pN1; P < 0.001). The staining scores of IL13RA2 were significantly higher in PTC compared with follicular subtypes (P < 0.001) and correlated with advanced tumor stage among PTC samples (pT3 or pT4; P = 0.028). Knockdown of IL13RA2 in B-CPAP cells significantly reduced cell viability, cell migration, and EMT markers including N-cadherin, Vimentin, and Snail. Exogenous overexpression of IL13RA2 in K1 cells increased cell migration and EMT, although cell proliferation was not affected. CONCLUSION IL13RA2 is differentially regulated in PTC and is involved in cell migration by enhancing EMT.
Collapse
Affiliation(s)
- Siao Ting Chong
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore
| | - Khee Ming Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Catherine Y L Kok
- Cellular and Molecular Research Division, National Cancer Centre, Singapore
| | - Shou Ping Guan
- Cellular and Molecular Research Division, National Cancer Centre, Singapore
| | - Siang Hui Lai
- Department of Pathology, Singapore General Hospital, Singapore
| | - Cindy Lim
- Department of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore
| | - Jiancheng Hu
- Cellular and Molecular Research Division, National Cancer Centre, Singapore
| | - Charles Sturgis
- Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Genetics and Genome Sciences, and Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Paula Y P Lam
- Cellular and Molecular Research Division, National Cancer Centre, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Institute of Molecular and Cell Biology, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School Singapore, Singapore
| |
Collapse
|
12
|
Jin Y, Liu M, Sa R, Fu H, Cheng L, Chen L. Mouse models of thyroid cancer: Bridging pathogenesis and novel therapeutics. Cancer Lett 2019; 469:35-53. [PMID: 31589905 DOI: 10.1016/j.canlet.2019.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
Due to a global increase in the incidence of thyroid cancer, numerous novel mouse models were established to reveal thyroid cancer pathogenesis and test promising therapeutic strategies, necessitating a comprehensive review of translational medicine that covers (i) the role of mouse models in the research of thyroid cancer pathogenesis, and (ii) preclinical testing of potential anti-thyroid cancer therapeutics. The present review article aims to: (i) describe the current approaches for mouse modeling of thyroid cancer, (ii) provide insight into the biology and genetics of thyroid cancers, and (iii) offer guidance on the use of mouse models for testing potential therapeutics in preclinical settings. Based on research with mouse models of thyroid cancer pathogenesis involving the RTK, RAS/RAF/MEK/ERK, PI3K/AKT/mTOR, SRC, and JAK-STAT signaling pathways, inhibitors of VEGFR, MEK, mTOR, SRC, and STAT3 have been developed as anti-thyroid cancer drugs for "bench-to-bedside" translation. In the future, mouse models of thyroid cancer will be designed to be ''humanized" and "patient-like," offering opportunities to: (i) investigate the pathogenesis of thyroid cancer through target screening based on the CRISPR/Cas system, (ii) test drugs based on new mouse models, and (iii) explore the underlying mechanisms based on multi-omics.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China; Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
13
|
Landa I, Pozdeyev N, Korch C, Marlow LA, Smallridge RC, Copland JA, Henderson YC, Lai SY, Clayman GL, Onoda N, Tan AC, Garcia-Rendueles MER, Knauf JA, Haugen BR, Fagin JA, Schweppe RE. Comprehensive Genetic Characterization of Human Thyroid Cancer Cell Lines: A Validated Panel for Preclinical Studies. Clin Cancer Res 2019; 25:3141-3151. [PMID: 30737244 DOI: 10.1158/1078-0432.ccr-18-2953] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/26/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Thyroid cancer cell lines are valuable models but have been neglected in pancancer genomic studies. Moreover, their misidentification has been a significant problem. We aim to provide a validated dataset for thyroid cancer researchers. EXPERIMENTAL DESIGN We performed next-generation sequencing (NGS) and analyzed the transcriptome of 60 authenticated thyroid cell lines and compared our findings with the known genomic defects in human thyroid cancers. RESULTS Unsupervised transcriptomic analysis showed that 94% of thyroid cell lines clustered distinctly from other lineages. Thyroid cancer cell line mutations recapitulate those found in primary tumors (e.g., BRAF, RAS, or gene fusions). Mutations in the TERT promoter (83%) and TP53 (71%) were highly prevalent. There were frequent alterations in PTEN, PIK3CA, and of members of the SWI/SNF chromatin remodeling complex, mismatch repair, cell-cycle checkpoint, and histone methyl- and acetyltransferase functional groups. Copy number alterations (CNA) were more prevalent in cell lines derived from advanced versus differentiated cancers, as reported in primary tumors, although the precise CNAs were only partially recapitulated. Transcriptomic analysis showed that all cell lines were profoundly dedifferentiated, regardless of their derivation, making them good models for advanced disease. However, they maintained the BRAFV600E versus RAS-dependent consequences on MAPK transcriptional output, which correlated with differential sensitivity to MEK inhibitors. Paired primary tumor-cell line samples showed high concordance of mutations. Complete loss of p53 function in TP53 heterozygous tumors was the most prominent event selected during in vitro immortalization. CONCLUSIONS This cell line resource will help inform future preclinical studies exploring tumor-specific dependencies.
Collapse
Affiliation(s)
- Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Laura A Marlow
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Robert C Smallridge
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida.,Division of Endocrinology, Internal Medicine Department, Mayo Clinic, Jacksonville, Florida
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Ying C Henderson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen Y Lai
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Naoyoshi Onoda
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Aik Choon Tan
- University of Colorado Cancer Center, Aurora, Colorado
| | | | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bryan R Haugen
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|