1
|
Omidi A, Bahrami M, Dastgheib SA, Golshan-Tafti A, Masoudi A, Shiri A, Aghasipour M, Shahbazi A, Aghili K, Neamatzadeh H. A thorough analysis of data on the correlation between IL-16 polymorphisms and the susceptibility to knee osteoarthritis: A meta-analysis. Cytokine 2025; 190:156929. [PMID: 40188655 DOI: 10.1016/j.cyto.2025.156929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Knee osteoarthritis (KOA) is a multifactorial condition affected by genetic and environmental factors. Studies have explored the relationship between IL-16 genetic polymorphisms and KOA risk, but findings have been inconclusive. This meta-analysis seeks to assess the association between IL-16 polymorphisms and KOA risk. METHODS A systematic literature search was conducted in several databases, including PubMed, Web of Science, EMBASE, SciELO, and CNKI, for studies published until June 1, 2024. Two independent researchers identified peer-reviewed articles in English, Portuguese, and Chinese using keywords related to "Knee Osteoarthritis" and "Interleukin 16." Relevant references were also manually reviewed for additional studies. Pooled odds ratios (ORs) and 95 % confidence intervals (CIs) were calculated to assess the association strength. Additionally, minor allele frequencies (MAFs), Hardy-Weinberg equilibrium (HWE) data, heterogeneity, publication bias, and Newcastle-Ottawa scores (NOS) were evaluated. RESULTS This analysis included 15 case-control studies, encompassing 1747 individuals with KOA and 1627 healthy controls. Within these studies, five investigated the genetic variations rs11556218 (584 cases, 542 controls), rs4778889 (583 cases, 543 controls), and rs4072111 (580 cases, 542 controls). The findings suggest that the IL-16 variants rs11556218 and rs4072111 may offer protection against KOA development, while no link exists between the rs4778889 variant and KOA susceptibility. The variability in IL-16 polymorphisms, particularly in Asian and Chinese populations, indicates different genetic associations with KOA risk. Strong results, supported by sensitivity analyses and the absence of significant publication bias, emphasize the influence of study methods on the relationship between these polymorphisms and KOA risk. CONCLUSIONS The analysis of three polymorphisms-rs11556218, rs4778889, and rs4072111-shows varying associations with KOA. Rs11556218 and rs4072111 offer protective effects in non-Asian populations, while rs4778889 shows no significant association across cohorts. Notably, rs11556218 and rs4072111 do not correlate with KOA susceptibility in Asian and Chinese populations, suggesting ethnic differences in genetic influences on KOA.
Collapse
Affiliation(s)
- Amirhossein Omidi
- General Practitioner, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Bahrami
- General Practitioner, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Ali Masoudi
- General Practitioner, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirmasoud Shiri
- General Practitioner, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Aghasipour
- Department of Cancer Biology, College of Medicine, University of Cincinnati, OH, USA
| | | | - Kazem Aghili
- Department of Radiology, Shahid Rahnamoun Hospital, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Akshaya RL, Saranya I, Selvamurugan N. MicroRNAs mediated interaction of tumor microenvironment cells with breast cancer cells during bone metastasis. Breast Cancer 2023; 30:910-925. [PMID: 37578597 DOI: 10.1007/s12282-023-01491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
Breast cancer (BC) bone metastasis is primarily osteolytic and has limited therapeutic options. Metastasized BC cells prime the secondary environment in bone by forming a tumor niche, which favors their homing and colonization. The tumor microenvironment (TME) is primarily generated by the cancer cells. Bone TME is an intricate network of multiple cells, including altered bone, tumor, stromal, and immune cells. Recent findings highlight the significance of small non-coding microRNAs (miRNAs) in influencing TME during tumor metastasis. MiRNAs from TME-resident cells facilitate the interaction between the tumor and its microenvironment, thereby regulating the biological processes of tumors. These miRNAs can serve as oncogenes or tumor suppressors. Hence, both miRNA inhibitors and mimics are extensively utilized in pre-clinical trials for modulating the phenotypes of tumor cells and associated stromal cells. This review briefly summarizes the recent developments on the functional role of miRNAs secreted directly or indirectly from the TME-resident cells in facilitating tumor growth, progression, and metastasis. This information would be beneficial in developing novel targeted therapies for BC.
Collapse
Affiliation(s)
- R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India.
| |
Collapse
|
3
|
Kshirsagar A, Doroshev SM, Gorelik A, Olender T, Sapir T, Tsuboi D, Rosenhek-Goldian I, Malitsky S, Itkin M, Argoetti A, Mandel-Gutfreund Y, Cohen SR, Hanna JH, Ulitsky I, Kaibuchi K, Reiner O. LIS1 RNA-binding orchestrates the mechanosensitive properties of embryonic stem cells in AGO2-dependent and independent ways. Nat Commun 2023; 14:3293. [PMID: 37280197 DOI: 10.1038/s41467-023-38797-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/15/2023] [Indexed: 06/08/2023] Open
Abstract
Lissencephaly-1 (LIS1) is associated with neurodevelopmental diseases and is known to regulate the molecular motor cytoplasmic dynein activity. Here we show that LIS1 is essential for the viability of mouse embryonic stem cells (mESCs), and it governs the physical properties of these cells. LIS1 dosage substantially affects gene expression, and we uncovered an unexpected interaction of LIS1 with RNA and RNA-binding proteins, most prominently the Argonaute complex. We demonstrate that LIS1 overexpression partially rescued the extracellular matrix (ECM) expression and mechanosensitive genes conferring stiffness to Argonaute null mESCs. Collectively, our data transforms the current perspective on the roles of LIS1 in post-transcriptional regulation underlying development and mechanosensitive processes.
Collapse
Affiliation(s)
- Aditya Kshirsagar
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Svetlana Maslov Doroshev
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Gorelik
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tsviya Olender
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Sapir
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daisuke Tsuboi
- International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Irit Rosenhek-Goldian
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Argoetti
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Jacob H Hanna
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Orly Reiner
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Farshbaf A, Mohajertehran F, Sahebkar A, Garmei Y, Sabbagh P, Mohtasham N. The role of altered microRNA expression in premalignant and malignant head and neck lesions with epithelial origin. Health Sci Rep 2022; 5:e921. [PMID: 36381409 PMCID: PMC9637951 DOI: 10.1002/hsr2.921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Aims The premalignant lesions of the oral cavity carry a risk of transformation to malignancy. Hence, early diagnosis followed by timely intervention remarkably affects the prognosis of patients. During tumorigenesis, particular microRNAs (miRNAs) show altered expressions and because of their post transcriptionally regulatory role could provide favorable diagnostic, therapeutic, or prognostic values in head and neck cancers. Methods In this review, we have demonstrated diagnostic, prognostic, and potential therapeutic roles of some miRNAs associated with oral premalignant and malignant lesions based on previous validate studies. Results It is previously documented that dysregulation of miRNAs contributes to cancer development and progression. MiRNAs could be tumor suppressors that normally suppress cell proliferation, differentiation, and apoptosis or play as oncogenes that improved tumorigenesis process. Altered expression of miRNAs has also been reported in premalignant oral epithelial lesions such as leukoplakia, oral submucous fibrosis, oral lichen planus and some malignant carcinoma like oral squamous cell, verrucous, spindle cell, Merkel cell carcinoma and basal cell. Conclusion Some of miRNAs could be new therapeutic candidates in miRNA-based target gene therapy. Although more investigations are required to identify the most favorable miRNA candidate, altered expression of some miRNAs could be used as biomarkers in premalignant lesions and oral cancers with high sensitivity and specificity.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
| | - Farnaz Mohajertehran
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Yasaman Garmei
- Department of Biology, Faculty of ScienceSistan and Balouchestan UniversityZahedanIran
| | - Parisa Sabbagh
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Nooshin Mohtasham
- Dental Research CenterMashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial Pathology, School of DentistryMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
5
|
Mehdizadeh M, Farhadihosseinabadi B, Nikoonezhad M, Sankanian G, Soleimani M, Sayad A. Phosphatidylinositol 3-kinase signaling inhibitors for treatment of multiple myeloma: From small molecules to microRNAs. J Oncol Pharm Pract 2021; 28:149-158. [PMID: 34612744 DOI: 10.1177/10781552211035369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple myeloma is one of the most hard-to-treat cancers among blood malignancies due to the high rate of drug resistance and relapse. The researchers are trying to find more effective drugs for treatment of the disease. Hence, the use of drugs targeting signaling pathways has become a powerful weapon. Overactivation of phosphatidylinositol 3-kinase signaling pathways is frequently observed in multiple myeloma cancer cells, which increases survival, proliferation, and even drug resistance in such cells. In recent years, drugs that inhibit the mediators involved in this biological pathway have shown promising results in the treatment of multiple myeloma. In the present study, we aimed to introduce phosphatidylinositol 3-kinase signaling inhibitors which include small molecules, herbal compounds, and microRNAs.
Collapse
Affiliation(s)
- Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| | | | - Maryam Nikoonezhad
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| | - Masoud Soleimani
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| | - Arezou Sayad
- Hematopoietic Stem Cell Research Center, 556492Shahid Beheshti University of Medical Sciences, Iran
| |
Collapse
|
6
|
Jafari A, Rezaei-Tavirani M, Karami S, Yazdani M, Zali H, Jafari Z. Cancer Care Management During the COVID-19 Pandemic. Risk Manag Healthc Policy 2020; 13:1711-1721. [PMID: 33061705 PMCID: PMC7520144 DOI: 10.2147/rmhp.s261357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
New cases of the novel coronavirus, also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are increasing around the world. Currently, health care services are mainly focused on responding to and controlling the unique challenges of the coronavirus disease 2019 (COVID-19) pandemic. These changes, along with the higher susceptibility of patients with cancer to infections, have profound effects on other critical aspects of care and pose a serious challenge for the treatment of such patients. During the COVID-19 pandemic, it is important to provide strategies for managing the treatment of patients with cancer to limit COVID-19-associated risks at this difficult time. The present study set out to summarize the latest research on epidemiology, pathogenesis, and clinical features of COVID-19. We also address some of the current challenges associated with the management of patients with cancer during the COVID-19 pandemic and provide practical guidance to clinically deal with these challenges.
Collapse
Affiliation(s)
- Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samira Karami
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdani
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Jafari
- 9Dey Manzariye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|