1
|
Zou W, Yin Q, Guo W, Dong Z, Guo Y. BBOX1-AS1 promotes gastric cardia adenocarcinoma progression via interaction with CtBP2 to facilitate the epithelial-mesenchymal transition process. Cancer Sci 2024; 115:3875-3889. [PMID: 39318101 PMCID: PMC11611761 DOI: 10.1111/cas.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
It is recognized that lncRNA BBOX1-AS1 exerts a crucial oncogenic property in several cancer types. However, the functions and underlying mechanisms of BBOX1-AS1 in the epithelial-mesenchymal transition (EMT) process of gastric cardia adenocarcinoma (GCA) have remained unclarified. The findings of this study demonstrated that GCA tissues had elevated BBOX1-AS1 expression levels, which was associated with a worse prognosis in GCA patients. BBOX1-AS1 dramatically enhanced cell proliferation, invasion, and TGF-β1-induced the EMT process in vitro. Further mechanism analysis revealed that BBOX1-AS1 could combine with CtBP2 and strengthen the interaction of CtBP2 and ZEB1. BBOX1-AS1 might regulate the E-cadherin expression through CtBP2/ZEB1 transcriptional complex-mediated transcriptional repression, further affecting the activation of the Wnt/β-catenin pathway and the EMT process. Overall, our findings demonstrate that BBOX1-AS1 might act as an lncRNA associated with EMT for facilitating GCA advancement via interaction with CtBP2 to facilitate the activation of Wnt/β-catenin pathway and the EMT process, which indicated that it might function as an exploitable treatment target for GCA patients.
Collapse
Affiliation(s)
- Wenxu Zou
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Qing Yin
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Wei Guo
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhiming Dong
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Yanli Guo
- Hebei Cancer InstituteThe Fourth Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|
2
|
Pai VJ, Lau CJ, Garcia-Ruiz A, Donaldson C, Vaughan JM, Miller B, De Souza EV, Pinto AM, Diedrich J, Gavva NR, Yu S, DeBoever C, Horman SR, Saghatelian A. Microprotein-encoding RNA regulation in cells treated with pro-inflammatory and pro-fibrotic stimuli. BMC Genomics 2024; 25:1034. [PMID: 39497054 PMCID: PMC11536906 DOI: 10.1186/s12864-024-10948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Recent analysis of the human proteome via proteogenomics and ribosome profiling of the transcriptome revealed the existence of thousands of previously unannotated microprotein-coding small open reading frames (smORFs). Most functional microproteins were chosen for characterization because of their evolutionary conservation. However, one example of a non-conserved immunomodulatory microprotein in mice suggests that strict sequence conservation misses some intriguing microproteins. RESULTS We examine the ability of gene regulation to identify human microproteins with potential roles in inflammation or fibrosis of the intestine. To do this, we collected ribosome profiling data of intestinal cell lines and peripheral blood mononuclear cells and used gene expression of microprotein-encoding transcripts to identify strongly regulated microproteins, including several examples of microproteins that are only conserved with primates. CONCLUSION This approach reveals a number of new microproteins worthy of additional functional characterization and provides a dataset that can be queried in different ways to find additional gut microproteins of interest.
Collapse
Affiliation(s)
- Victor J Pai
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Calvin J Lau
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Almudena Garcia-Ruiz
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Cynthia Donaldson
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Brendan Miller
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Eduardo V De Souza
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Antonio M Pinto
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Jolene Diedrich
- Mass Spectrometry Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Narender R Gavva
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | - Shan Yu
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA
| | | | - Shane R Horman
- Takeda Development Center Americas, Inc, San Diego, CA, 92121, USA.
| | - Alan Saghatelian
- Clayton Foundation Peptide Biology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Cheng C, Lin S, Zhu A, Hong Z, Shi Z, Deng H, Zhang G. Linc00239 Facilitates the Progress of Clear Cell Renal Cell Carcinoma via the miR-204-5p/RAB22A Axis. Mol Biotechnol 2024:10.1007/s12033-024-01202-w. [PMID: 38850457 DOI: 10.1007/s12033-024-01202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 06/10/2024]
Abstract
Long intergenic non-coding RNA 239 (Linc00239) acts as an oncogene in colorectal cancer (CRC), esophageal squamous cell carcinoma, and acute myeloid leukemia cells. However, its role and regulatory mechanisms in clear cell renal cell carcinoma (ccRCC) remain unknown. We used StarBase and The Cancer Genome Atlas databases to evaluate Linc00239 expression and its effect on ccRCC. Furthermore, the function of Linc00239 in ccRCC proliferation and metastasis was analyzed using Cell Counting Kit-8 and Transwell assays following Linc00239 knockdown. Subsequently, the Linc00239-miRNA-mRNA regulatory associations were selected based on miRanda, miTarbase, and previous references, and their expression levels and binding relationship were further validated using quantitative real-time polymerase chain reaction, western blotting and dual-luciferase reporter gene assay. Additionally, we transfected a miRNA inhibitor to evaluate whether the miR-204-5p/RAB22A (Ras-related proteins in brain 22a) axis was involved in Linc00239 function. Linc00239 was elevated in ccRCC and correlated with poor prognosis. Linc00239 knockdown inhibited ccRCC progression. Additionally, Linc00239 inhibition elevated miR-204-5p expression and repressed RAB22A levels. Moreover, miR-204-5p inhibitors attenuated this inhibitory effect on proliferation, migration, invasion, and RAB22A level when Linc00239 was knocked down. Linc00239 promotes ccRCC proliferation and metastasis by elevating RAB22A expression through the adsorption of miR-204-5p, which provides a clue for the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Shuangquan Lin
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Anyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| | - Zhengdong Hong
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Zimin Shi
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Huanhuan Deng
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Gan Zhang
- Department of Urology, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
4
|
Carbone D, Gallo C, Nuzzo G, Barra G, Dell'Isola M, Affuso M, Follero O, Albiani F, Sansone C, Manzo E, d'Ippolito G, Fontana A. Marine natural product lepadin A as a novel inducer of immunogenic cell death via CD91-dependent pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:34. [PMID: 37779162 PMCID: PMC10542626 DOI: 10.1007/s13659-023-00401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Immunogenic Cell Death (ICD) represents a mechanism of enhancing T cell-driven response against tumor cells. The process is enabled by release of damage-associated molecular patterns (DAMPs) and cytokines by dying cells. Based on molecular studies and clinical marker assessment, ICD can be a new target for cancer chemotherapy hitherto restricted to a few conventional anticancer drugs. In view of the development of small molecules in targeted cancer therapy, we reported the preliminary evidence on the role of the natural product lepadin A (1) as a novel ICD inducer. Here we describe the ICD mechanism of lepadin A (1) by proving the translocation of the protein calreticulin (CRT) to the plasma membrane of human A2058 melanoma cells. CRT exposure is an ICD marker in clinical studies and was associated with the activation of the intrinsic apoptotic pathway in A2058 cells with lepadin A (1). After the treatment, the tumour cells acquired the ability to activate dendritic cells (DCs) with cytokine release and costimulatory molecule expression that is consistent with a phenotypic profile committed to priming T lymphocytes via a CD91-dependent mechanism. The effect of lepadin A (1) was dose-dependent and comparable to the response of the chemotherapy drug doxorubicin (2), a well-established ICD inducer.
Collapse
Affiliation(s)
- Dalila Carbone
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Carmela Gallo
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy.
| | - Genoveffa Nuzzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Giusi Barra
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Mario Dell'Isola
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Mario Affuso
- Department of Biology, University of Naples "Federico II", Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Olimpia Follero
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Federica Albiani
- Department of Biology, University of Naples "Federico II", Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, University of Naples "Federico II", Villa Comunale, 80121, Naples, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Giuliana d'Ippolito
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
| | - Angelo Fontana
- Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche, Via Campi Flegrei 34, Pozzuoli, 80078, Naples, Italy
- Department of Biology, University of Naples "Federico II", Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| |
Collapse
|
5
|
Chen J, Chen Z, Hu W, Cai D. Tumor cell-derived exosomal lncRNA LOC441178 inhibits the tumorigenesis of esophageal carcinoma through suppressing macrophage M2 polarization. Eur J Histochem 2022; 66. [PMID: 36250676 PMCID: PMC9627538 DOI: 10.4081/ejh.2022.3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Esophageal carcinoma (EC) is a highly malignant type of tumor. In a previous study, the authors found that long non-coding RNA (lncRNA) LOC441178 inhibited the tumorigenesis of EC. Moreover, exosomes derived from tumor cells containing lncRNAs were found to play a key role in the tumor environment; however, whether exosomes can affect the tumor microenvironment by carrying LOC441178 remains unclear. Thus, the present study aimed to clarify this. In order to assess the effects of exosomal LOC441178 in EC, cell invasion and migration were examined using the Transwell assay. Exosomes were identified using transmission electron microscopy, Western blot analysis and nanoparticle tracking analysis. Furthermore, macrophage surface makers (CD206 and CD86) were analyzed using flow cytometry. Moreover, a subcutaneous xenograft mouse model was constructed to assess the role of TE-9 cells-derived exosomal LOC441178 in EC. The results revealed that LOC441178 overexpression notably suppressed the metastasis of EC cells. In addition, exosomes were successfully isolated from EC cells, and LOC441178 level was upregulated in exosomes derived from LOC441178- overexpressed EC cells. Exosomal LOC441178 also suppressed macrophage M2 polarization, and the polarized macrophages decreased EC cell invasion. Exosomes containing LOC441178 notably inhibited the growth of EC in mice. On the whole, the present study demonstrated that the delivery of LOC441178 by EC cell-secreted exosomes inhibited the tumorigenesis of EC by suppressing the polarization of M2 macrophages. These findings may provide a new theoretical basis for discovering new strategies against EC.
Collapse
|
6
|
Zhang H, Pan E, Zhang Y, Zhao C, Liu Q, Pu Y, Yin L. LncRNA RPL34-AS1 suppresses the proliferation, migration and invasion of esophageal squamous cell carcinoma via targeting miR-575/ACAA2 axis. BMC Cancer 2022; 22:1017. [PMID: 36162992 PMCID: PMC9511711 DOI: 10.1186/s12885-022-10104-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRNA RPL34-AS1 in the development and progression of ESCC. METHODS The expression level of RPL34-AS1 in ESCC tissues and cell lines was determined by RT-qPCR. Functional experiments in vitro and in vivo were employed to explore the effects of RPL34-AS1 on tumor growth in ESCC cells. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between RPL34-AS1, miR-575 and ACAA2. RESULTS RPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. Functionally, upregulation of RPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, invasion and migration in vitro, whereas knockdown of RPL34-AS1 elicited the opposite function. Consistently, overexpression of RPL34-AS1 inhibited tumor growth in vivo. Mechanistically, RPL34-AS1 acted as a competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. CONCLUSIONS Our results reveal a role for RPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using RPL34-AS1 as a potential biomarker and an effect target for patients with ESCC.
Collapse
Affiliation(s)
- Hu Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Enchun Pan
- Huaian Center for Disease Control and Prevention, Huaian, 223001, People's Republic of China
| | - Ying Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Chao Zhao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Qiwei Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Dingjiaqiao Street, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
7
|
Long noncoding RNA LINC00239 inhibits ferroptosis in colorectal cancer by binding to Keap1 to stabilize Nrf2. Cell Death Dis 2022; 13:742. [PMID: 36038548 PMCID: PMC9424287 DOI: 10.1038/s41419-022-05192-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis, a novel regulated cell death induced by iron-dependent lipid peroxidation, plays an important role in tumor development and drug resistance. Long noncoding RNAs (lncRNAs) are associated with various types of cancer. However, the precise roles of many lncRNAs in tumorigenesis remain elusive. Here we explored the transcriptomic profiles of lncRNAs in primary CRC tissues and corresponding paired adjacent non-tumor tissues by RNA-seq and found that LINC00239 was significantly overexpressed in colorectal cancer tissues. Abnormally high expression of LINC00239 predicts poorer survival and prognosis in colorectal cancer patients. Concurrently, we elucidated the role of LINC00239 as a tumor-promoting factor in CRC through in vitro functional studies and in vivo tumor xenograft models. Importantly, overexpression of LINC00239 decreased the anti-tumor activity of erastin and RSL3 by inhibiting ferroptosis. Collectively, these data suggest that LINC00239 plays a novel and indispensable role in ferroptosis by nucleotides 1-315 of LINC00239 to interact with the Kelch domain (Nrf2-binding site) of Keap1, inhibiting Nrf2 ubiquitination and increasing Nrf2 protein stability. Considering the recurrence and chemoresistance constitute the leading cause of death in colorectal cancer (CRC), ferroptosis induction may be a promising therapeutic strategy for CRC patients with low LINC00239 expression.
Collapse
|
8
|
A Pleiotropic Role of Long Non-Coding RNAs in the Modulation of Wnt/β-Catenin and PI3K/Akt/mTOR Signaling Pathways in Esophageal Squamous Cell Carcinoma: Implication in Chemotherapeutic Drug Response. Curr Oncol 2022; 29:2326-2349. [PMID: 35448163 PMCID: PMC9031703 DOI: 10.3390/curroncol29040189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/β-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/β-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.
Collapse
|
9
|
Wang G, Le Y, Wei L, Cheng L. CREB3 Transactivates lncRNA ZFAS1 to Promote Papillary Thyroid Carcinoma Metastasis by Modulating miR-373-3 p/MMP3 Regulatory Axis. Int J Endocrinol 2021; 2021:9981683. [PMID: 34249125 PMCID: PMC8238556 DOI: 10.1155/2021/9981683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/22/2021] [Accepted: 06/07/2021] [Indexed: 01/16/2023] Open
Abstract
The incidence rate of thyroid carcinoma ranks ninth among human malignancies, and it accounts for the most frequent malignancy in endocrine-related tumors. This study aimed to investigate the role of long noncoding RNA (lncRNA) ZFAS1 in the metastasis of papillary thyroid carcinoma (PTC) and the potential molecular mechanisms. Both ZFAS1 and MMP3 were highly expressed in thyroid carcinoma and PTC cell, as measured by the q-PCR and TCGA database. In addition, ZFAS1 induced TPC-1 metastasis through inducing the epithelial-mesenchymal transition (EMT) process. Besides, ZFAS1 knockdown by siRNA induced miR-373-3p expression and reduced MMP3 expression, as quantified by q-PCR and Western blotting. According to the luciferase assay, both ZFAS1 and MMP3 were classified as the direct targets of miR-373-3p. However, MMP3 itself did not affect ZFAS1. Using the online prediction tool, CREB3 was predicted as the transcription factor (TF) of ZFAS1 that contained two binding sites on its promoter region, and CREB3 was positively correlated with ZFAS1 in thyroid carcinoma cohorts. Results from the dual-luciferase assay and ChIP-qPCR indicated that both the two binding sites were essential for the transcription of ZFAS1. In conclusion, CREB3 activated lncRNA ZFAS1 at the transcriptional level to promote PTC metastasis by modulating miR-373-3p/MMP3.
Collapse
Affiliation(s)
- Gang Wang
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yuan Le
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Liping Wei
- Pediatric Surgery, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Lian Cheng
- Department of General Surgery (Thyroid Surgery), Affiliated Hospital of Southwest Medical University, Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|