1
|
Lin C, Xie S, Wang M, Yang B, Shen J. Angiogenesis-related gene signature for prognostic prediction and immune microenvironment characterization in diffuse large B-cell lymphoma. Clin Exp Med 2025; 25:108. [PMID: 40198448 PMCID: PMC11978719 DOI: 10.1007/s10238-025-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
Diseases often result from multiple factors, and angiogenesis-related genes (ARGs) have been demonstrated to be associated with cancer. However, their role in diffuse large B-cell lymphoma (DLBCL) has not been fully elucidated. ARGs associated with DLBCL prognosis were identified utilizing Cox regression and LASSO analyses. A prognostic model was constructed based on 7 ARGs, and its biological function was analyzed. Differences in the tumor immune microenvironment based on the prognostic signature were evaluated. Finally, DLBCL cell experiments confirmed the differential expression of genes in DLBCL. The prognostic value of ARGs in DLBCL patients was comprehensively analyzed for the first time, identifying 7 ARGs with prognostic significance. A prognostic risk model was constructed based on these 7 ARGs and validated on an independent external DLBCL dataset. In DLBCL patients, this prognostic feature was an independent risk factor and significantly correlated with clinical characteristics. This feature was also associated with the immune microenvironment of DLBCL. DLBCL cell experiments confirmed significant expression of the 7 ARGs in DLBCL cells. This research provides a fundamental theoretical basis for improving the diagnosis and treatment of DLBCL in clinical practice.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Prognosis
- Neovascularization, Pathologic/genetics
- Male
- Female
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Gene Expression Profiling
- Biomarkers, Tumor/genetics
- Transcriptome
- Aged
- Cell Line, Tumor
- Angiogenesis
Collapse
Affiliation(s)
- Chuanming Lin
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Shuiling Xie
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Menger Wang
- Gannan Medical University, Ganzhou, 341000, China
| | - Bin Yang
- Gannan Medical University, Ganzhou, 341000, China
| | - Jianzhen Shen
- Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Dong J, Li L, Zhang X, Yin X, Chen Z. CtBP2 Regulates Wnt Signal Through EGR1 to Influence the Proliferation and Apoptosis of DLBCL Cells. Mol Carcinog 2025. [PMID: 40099624 DOI: 10.1002/mc.23901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most prevalent form of lymphoma. The overexpression of CtBP2 in tissues may contribute to tumor occurrence and progression. The expression of EGR1 in DLBCL is elevated, suggesting its potential role as an oncogene that promotes the proliferation of DLBCL cells. Database predictions indicate that CtBP2 can bind to EGR1. The objective of the present study was to investigate whether CtBP2 can influence the proliferation and apoptosis of DLBCL cells by regulating the Wnt signaling pathway through EGR1. Western blot assay showed that CtBP2 expression was upregulated in DLBCL cells. Cell proliferation level was detected by CCK8 assay and EdU staining, and the apoptosis level and cycle distribution were analyzed through flow cytometry. Our data indicated that interference with CtBP2 and EGR1 can inhibit the proliferation and cell cycle progression of DLBCL cells while promoting apoptosis. The predictions from the HDOCK server, along with the results of Co-IP experiments, suggested that EGR1 and CtBP2 can effectively bind to each other, with EGR1 positioned downstream of CtBP2 and regulated by it. Furthermore, interference with CtBP2 could also inhibit the expression of the Wnt/β-catenin signaling pathway. Overexpression of EGR1 counteracted the effects of siRNA-CtBP2, promoting cell proliferation and cycle, inhibiting apoptosis and upregulating the expression of the Wnt/β-catenin signaling pathway. From the above experiments, we found that CtBP2 can regulate the Wnt/β-catenin signaling pathway through EGR1 to influence the proliferation and apoptosis of DLBCL cells. Therefore, EGR1 may be one of the key contributors involved in the regulation of Wnt/β-catenin signaling by CtBP2.
Collapse
Affiliation(s)
- Jianfang Dong
- Department of Hematology, The People's Hospital of Dehong, Dehong Hospital Affiliated of Kunming Medical University, Dehong, Yunnan Province, China
| | - Lihua Li
- Department of Hematology, The People's Hospital of Dehong, Dehong Hospital Affiliated of Kunming Medical University, Dehong, Yunnan Province, China
| | - Xuefei Zhang
- Department of Hematology, The People's Hospital of Dehong, Dehong Hospital Affiliated of Kunming Medical University, Dehong, Yunnan Province, China
| | - Xijing Yin
- Department of Hematology, The People's Hospital of Dehong, Dehong Hospital Affiliated of Kunming Medical University, Dehong, Yunnan Province, China
| | - Zucong Chen
- Department of Hematology, The People's Hospital of Dehong, Dehong Hospital Affiliated of Kunming Medical University, Dehong, Yunnan Province, China
| |
Collapse
|
3
|
Liu H, Liu G, Guo R, Li S, Chang T. Identification of Potential Key Genes for the Comorbidity of Myasthenia Gravis With Thymoma by Integrated Bioinformatics Analysis and Machine Learning. Bioinform Biol Insights 2024; 18:11779322241281652. [PMID: 39345724 PMCID: PMC11437577 DOI: 10.1177/11779322241281652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Background Thymoma is a key risk factor for myasthenia gravis (MG). The purpose of our study was to investigate the potential key genes responsible for MG patients with thymoma. Methods We obtained MG and thymoma dataset from GEO database. Differentially expressed genes (DEGs) were determined and functional enrichment analyses were conducted by R packages. Weighted gene co-expression network analysis (WGCNA) was used to screen out the crucial module genes related to thymoma. Candidate genes were obtained by integrating DEGs of MG and module genes. Subsequently, we identified several candidate key genes by machine learning for diagnosing MG patients with thymoma. The nomogram and receiver operating characteristics (ROC) curves were applied to assess the diagnostic value of candidate key genes. Finally, we investigated the infiltration of immunocytes and analyzed the relationship among key genes and immune cells. Results We obtained 337 DEGs in MG dataset and 2150 DEGs in thymoma dataset. Biological function analyses indicated that DEGs of MG and thymoma were enriched in many common pathways. Black module (containing 207 genes) analyzed by WGCNA was considered as the most correlated with thymoma. Then, 12 candidate genes were identified by intersecting with MG DEGs and thymoma module genes as potential causes of thymoma-associated MG pathogenesis. Furthermore, five candidate key genes (JAM3, MS4A4A, MS4A6A, EGR1, and FOS) were screened out through integrating least absolute shrinkage and selection operator (LASSO) regression and Random forest (RF). The nomogram and ROC curves (area under the curve from 0.833 to 0.929) suggested all five candidate key genes had high diagnostic values. Finally, we found that five key genes and immune cell infiltrations presented varying degrees of correlation. Conclusions Our study identified five key potential pathogenic genes that predisposed thymoma to the development of MG, which provided potential diagnostic biomarkers and promising therapeutic targets for MG patients with thymoma.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology, Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Geyu Liu
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Clinical Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Li Y, Ma A, Wang Y, Guo Q, Wang C, Fu H, Liu B, Ma Q. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data. Brief Bioinform 2024; 25:bbae369. [PMID: 39082647 PMCID: PMC11289686 DOI: 10.1093/bib/bbae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Deciphering the intricate relationships between transcription factors (TFs), enhancers, and genes through the inference of enhancer-driven gene regulatory networks (eGRNs) is crucial in understanding gene regulatory programs in a complex biological system. This study introduces STREAM, a novel method that leverages a Steiner forest problem model, a hybrid biclustering pipeline, and submodular optimization to infer eGRNs from jointly profiled single-cell transcriptome and chromatin accessibility data. Compared to existing methods, STREAM demonstrates enhanced performance in terms of TF recovery, TF-enhancer linkage prediction, and enhancer-gene relation discovery. Application of STREAM to an Alzheimer's disease dataset and a diffuse small lymphocytic lymphoma dataset reveals its ability to identify TF-enhancer-gene relations associated with pseudotime, as well as key TF-enhancer-gene relations and TF cooperation underlying tumor cells.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Yizhong Wang
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
5
|
Hoang NM, Liu Y, Bates PD, Heaton AR, Lopez AF, Liu P, Zhu F, Chen R, Kondapelli A, Zhang X, Selberg PE, Ngo VN, Skala MC, Capitini CM, Rui L. Targeting DNMT3A-mediated oxidative phosphorylation to overcome ibrutinib resistance in mantle cell lymphoma. Cell Rep Med 2024; 5:101484. [PMID: 38554704 PMCID: PMC11031386 DOI: 10.1016/j.xcrm.2024.101484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
The use of Bruton tyrosine kinase (BTK) inhibitors such as ibrutinib achieves a remarkable clinical response in mantle cell lymphoma (MCL). Acquired drug resistance, however, is significant and affects long-term survival of MCL patients. Here, we demonstrate that DNA methyltransferase 3A (DNMT3A) is involved in ibrutinib resistance. We find that DNMT3A expression is upregulated upon ibrutinib treatment in ibrutinib-resistant MCL cells. Genetic and pharmacological analyses reveal that DNMT3A mediates ibrutinib resistance independent of its DNA-methylation function. Mechanistically, DNMT3A induces the expression of MYC target genes through interaction with the transcription factors MEF2B and MYC, thus mediating metabolic reprogramming to oxidative phosphorylation (OXPHOS). Targeting DNMT3A with low-dose decitabine inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting DNMT3A-mediated metabolic reprogramming to OXPHOS with decitabine provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory MCL.
Collapse
Affiliation(s)
- Nguyet-Minh Hoang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Yunxia Liu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul D Bates
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Alexa R Heaton
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Angelica F Lopez
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706, USA
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Fen Zhu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Ruoyu Chen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Apoorv Kondapelli
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Xiyu Zhang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Paul E Selberg
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Vu N Ngo
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Melissa C Skala
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53715, USA; Department of Biomedical Engineering, University of Wisconsin-Madison College of Engineering, Madison, WI 53706, USA
| | - Christian M Capitini
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA; Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| |
Collapse
|
6
|
Liu Y, Kimpara S, Hoang NM, Daenthanasanmak A, Li Y, Lu L, Ngo VN, Bates PD, Song L, Gao X, Bebel S, Chen M, Chen R, Zhang X, Selberg PE, Kenkre VP, Waldmann TA, Capitini CM, Rui L. EGR1-mediated metabolic reprogramming to oxidative phosphorylation contributes to ibrutinib resistance in B-cell lymphoma. Blood 2023; 142:1879-1894. [PMID: 37738652 PMCID: PMC10731920 DOI: 10.1182/blood.2023020142] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/23/2023] [Accepted: 09/02/2023] [Indexed: 09/24/2023] Open
Abstract
The use of Bruton tyrosine kinase inhibitors, such as ibrutinib, to block B-cell receptor signaling has achieved a remarkable clinical response in several B-cell malignancies, including mantle cell lymphoma (MCL) and diffuse large B-cell lymphoma (DLBCL). Acquired drug resistance, however, is significant and affects the long-term survival of these patients. Here, we demonstrate that the transcription factor early growth response gene 1 (EGR1) is involved in ibrutinib resistance. We found that EGR1 expression is elevated in ibrutinib-resistant activated B-cell-like subtype DLBCL and MCL cells and can be further upregulated upon ibrutinib treatment. Genetic and pharmacological analyses revealed that overexpressed EGR1 mediates ibrutinib resistance. Mechanistically, TCF4 and EGR1 self-regulation induce EGR1 overexpression that mediates metabolic reprogramming to oxidative phosphorylation (OXPHOS) through the transcriptional activation of PDP1, a phosphatase that dephosphorylates and activates the E1 component of the large pyruvate dehydrogenase complex. Therefore, EGR1-mediated PDP1 activation increases intracellular adenosine triphosphate production, leading to sufficient energy to enhance the proliferation and survival of ibrutinib-resistant lymphoma cells. Finally, we demonstrate that targeting OXPHOS with metformin or IM156, a newly developed OXPHOS inhibitor, inhibits the growth of ibrutinib-resistant lymphoma cells both in vitro and in a patient-derived xenograft mouse model. These findings suggest that targeting EGR1-mediated metabolic reprogramming to OXPHOS with metformin or IM156 provides a potential therapeutic strategy to overcome ibrutinib resistance in relapsed/refractory DLBCL or MCL.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Shuichi Kimpara
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Nguyet M. Hoang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Anusara Daenthanasanmak
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yangguang Li
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Li Lu
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Vu N. Ngo
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA
| | - Paul D. Bates
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Longzhen Song
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Xiaoyue Gao
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Samantha Bebel
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Madelyn Chen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Ruoyu Chen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Xiyu Zhang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Paul E. Selberg
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Vaishalee P. Kenkre
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Thomas A. Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christian M. Capitini
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Lixin Rui
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
7
|
Wang C, Zhang X, Chen R, Zhu X, Lian N. EGR1 mediates METTL3/m 6A/CHI3L1 to promote osteoclastogenesis in osteoporosis. Genomics 2023; 115:110696. [PMID: 37558013 DOI: 10.1016/j.ygeno.2023.110696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
OBJECTIVE To investigate EGR1-mediated METTL3/m6A/CHI3L1 axis in osteoporosis. METHODS Ovariectomy (OVX) was performed on mice to induce osteoporosis, followed by μ-CT scanning of femurs, histological staining, immunohistochemistry analysis of MMP9 and NFATc1, and ELISA of serum BGP, ALP, Ca, and CTXI. The isolated mouse bone marrow mononuclear macrophages (BMMs) were differentiated into osteoclasts under cytokine stimulation. TRAP staining was performed to quantify osteoclasts. The levels of Nfatc1, c-Fos, Acp5, and Ctsk in osteoclasts, m6A level, and the relationships among EGR1, METTL3, and CHI3L1 were analyzed. RESULTS The EGR1/METTL3/CHI3L1 levels and m6A level were upregulated in osteoporotic mice and the derived BMMs. EGR1 was a transcription factor of METTL3. METTL3 promoted the post-transcriptional regulation of CHI3L1 by increasing m6A methylation. EGR1 downregulation reduced BMMs-differentiated osteoclasts and alleviated OVX-induced osteoporosis by regulating the METTL3/m6A/CHI3L1 axis. CONCLUSION EGR1 promotes METTL3 transcription and increases m6A-modified CHI3L1 level, thereby stimulating osteoclast differentiation and osteoporosis development.
Collapse
Affiliation(s)
- Changsheng Wang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China.
| | - Xiaobo Zhang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Rongsheng Chen
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xitian Zhu
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Nancheng Lian
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| |
Collapse
|
8
|
Qu T, He S, Wu Y, Wang Y, Ni C, Wen S, Cui B, Cheng Y, Wen L. Transcriptome Analysis Reveals the Immunoregulatory Activity of Rice Seed-Derived Peptide PEP1 on Dendritic Cells. Molecules 2023; 28:5224. [PMID: 37446885 DOI: 10.3390/molecules28135224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Some food-derived bioactive peptides exhibit prominent immunoregulatory activity. We previously demonstrated that the rice-derived PEP1 peptide, GIAASPFLQSAAFQLR, has strong immunological activity. However, the mechanism of this action is still unclear. In the present study, full-length transcripts of mouse dendritic cells (DC2.4) treated with PEP1 were sequenced using the PacBio sequencing platform, and the transcriptomes were compared via RNA sequencing (RNA-Seq). The characteristic markers of mature DCs, the cluster of differentiation CD86, and the major histocompatibility complex (MHC-II), were significantly upregulated after the PEP1 treatment. The molecular docking suggested that hydrogen bonding and electrostatic interactions played important roles in the binding between PEP1, MHC-II, and the T-cell receptor (TCR). In addition, the PEP1 peptide increased the release of anti-inflammatory factors (interleukin-4 and interleukin-10) and decreased the release of pro-inflammatory factors (interleukin-6 and tumor necrosis factor-α). Furthermore, the RNA-seq results showed the expression of genes involved in several signaling pathways, such as the NF-κB, MAPK, JAK-STAT, and TGF-β pathways, were regulated by the PEP1 treatment, and the changes confirmed the immunomodulatory effect of PEP1 on DC2.4 cells. This findings revealed that the PEP1 peptide, derived from the byproduct of rice processing, is a potential natural immunoregulatory alternative for the treatment of inflammation.
Collapse
Affiliation(s)
- Tingmin Qu
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Shuwen He
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Ying Wu
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Yingying Wang
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Ce Ni
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Shiyu Wen
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Li Wen
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
9
|
Ren Y, Xu YP, Fan XY, Murtaza B, Wang YN, Li Z, Javed MT, Wang ZH, Li Q. Transcriptome analysis reveals key transcription factors and pathways of polian vesicle associated with cell proliferation in Vibrio splendidus-challenged Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101082. [PMID: 37146451 DOI: 10.1016/j.cbd.2023.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
Polian vesicle is thought to produce coelomocytes and contribute to the sea cucumber's immune system. Our previous work has indicated that polian vesicle was responsible for cell proliferation at 72 h post pathogenic challenge. However, the transcription factors related to the activation of effector factors and the molecular process behind this remained unknown. In this study, to reveal the early functions of polian vesicle in response to the microbe, a comparative transcriptome sequencing of polian vesicle in V. splendidus-challenged Apostichopus japonicus, including normal group (PV 0 h), pathogen challenging for 6 h (PV 6 h) and 12 h (PV 12 h) was performed. Compared PV 0 h to PV 6 h, PV 0 h to PV 12 h, and PV 6 h to PV 12 h, we found 69, 211, and 175 differentially expressed genes (DEGs), respectively. KEGG enrichment analysis revealed the DEGs, including several transcription factors such as fos, FOS-FOX, ATF2, egr1, KLF2, and Notch3 between PV 6 h and PV 12 h were consistently enriched in MAPK, Apelin and Notch3 signaling pathways related to cell proliferation compared with that in PV 0 h. Important DEGs involved in cell growth were chosen, and their expression patterns were almost the same as the transcriptome profile analysis by qPCR. Protein interaction network analysis indicated that two DEGs of fos and egr1 were probably significant as key candidate genes controlling cell proliferation and differentiation in polian vesicle after pathogenic infection in A. japonicus. Overall, our analysis demonstrates that polian vesicles may play an essential role in regulating proliferation via transcription factors-mediated signaling pathway in A. japonicus and provide new insights into hematopoietic modulation of polian vesicles in response to pathogen infection.
Collapse
Affiliation(s)
- Yuan Ren
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Yong-Ping Xu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xu-Yuan Fan
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yi-Nan Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhen Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Muhammad Tariq Javed
- Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zhen-Hui Wang
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Qiang Li
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
10
|
Qi F, Wang X, Zhao S, Wang C, Sun R, Wang H, Du P, Wang J, Wang X, Jiang G. miR‑let‑7c‑3p targeting on Egr‑1 contributes to the committed differentiation of leukemia cells into monocyte/macrophages. Oncol Lett 2022; 24:273. [PMID: 35782903 PMCID: PMC9247672 DOI: 10.3892/ol.2022.13393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
In preliminary experiments, it was found that the expression of early growth response-1 (Egr-1) was upregulated during the committed differentiation of leukemia cells into monocytes/macrophages. The cross-analysis of gene chip detection and database prediction indicated that Egr-1 was associated with upstream microRNA (miR)-let-7c-3p, thus the present study focused on the role of the miR-let-7c-3p/Egr-1 signaling axis in the committed differentiation of leukemia cells into monocytes/macrophages. Phorbol 12-myristate 13-acetate (PMA) was used to induce the directed differentiation of human K562 leukemia cells into monocytes/macrophages and the differentiation of K562 leukemia cells was determined by cell morphology observation and expression of differentiation antigens CD11b and CD14 by flow cytometry. The expression levels of Egr-1 and miR-let-7c-3p were detected by reverse transcription-quantitative PCR and the protein expression of Egr-1 was detected by western blotting. The effect of Egr-1 on the differentiation of K562 cells was detected by short interfering (si)RNA interference assay. A dual-luciferase reporter assay was used to detect target binding of miR-let-7c-3p on the 3′UTR of Egr-1. Cell transfection of miR-let-7c-3p mimics and inhibitors was used to modulate the expression of miR-let-7c-3p, as indicated by RT-qPCR assays. Western blotting was also used to examine the effect of miR-let-7c-3p on Egr-1 expression. The PMA-induced differentiation of K562 cells was transfected with miR-let-7c-3p and the expression of differentiation antigen was detected by flow cytometry. A differentiation model of K562 leukemia cells into monocytes/macrophages was induced by PMA, which was indicated by morphological observations and upregulation of CD11b and CD14 antigens. The gene or protein expression of Egr-1 was significantly higher compared with that of the control group, while the expression of miR-let-7c-3p was significantly lower compared with that of the control group. siRNA interference experiments showed that the expression of cell differentiation antigen CD14 in the 100 µg/ml PMA + si-Egr-1 group was significantly lower compared with that in the 100 µg/ml PMA + si-ctrl group. The dual luciferase reporter gene results showed that the luciferase activity of the co-transfected mimic and Egr-1 WT groups was significantly lower than that of the NC control group, while the luciferase activity of the co-transfected mimic and Egr-1 MUT groups was comparable to that of the NC control group. Therefore, the dual-luciferase reporter gene assay confirmed that miR-let-7c-3p can target Egr-1. Western blotting showed that the expression of Egr-1 following transfection with miR-let-7c-3p inhibitor was significantly higher compared with that of the negative control and the expression of Egr-1 after transfection with miR-let-7c-3p mimic was significantly lower than that of the negative control. Following exposure to PMA, the expressions of CD11b and CD14 in the miR-let-7c-3p inhibitor group were significantly higher than those in the miR-let-7c-3p NC group, as indicated by CD11b and CD14 respectively. In conclusion, miR-let-7c-3p could bind to the 3′UTR of Egr-1 and negatively regulated Egr-1 expression. The miR-let-7c-3p/Egr-1 signaling axis was closely associated with the committed differentiation of K562 cells from leukemia cells to monocytes/macrophages.
Collapse
Affiliation(s)
- Fu Qi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Xinping Wang
- Department of Laboratory Medicine, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264000, P.R. China
| | - Shouzhen Zhao
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chaozhe Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Ruijing Sun
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Huan Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Pengchao Du
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| | - Jing Wang
- Department of Cellular Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250109, P.R. China
| | - Xidi Wang
- Laboratory of Precision Medicine, Zhangqiu District People's Hospital of Jinan Affiliated to Jining Medical University, Jinan, Shandong 250200, P.R. China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|