1
|
Russo M, Chen M, Mariella E, Peng H, Rehman SK, Sancho E, Sogari A, Toh TS, Balaban NQ, Batlle E, Bernards R, Garnett MJ, Hangauer M, Leucci E, Marine JC, O'Brien CA, Oren Y, Patton EE, Robert C, Rosenberg SM, Shen S, Bardelli A. Cancer drug-tolerant persister cells: from biological questions to clinical opportunities. Nat Rev Cancer 2024; 24:694-717. [PMID: 39223250 DOI: 10.1038/s41568-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The emergence of drug resistance is the most substantial challenge to the effectiveness of anticancer therapies. Orthogonal approaches have revealed that a subset of cells, known as drug-tolerant 'persister' (DTP) cells, have a prominent role in drug resistance. Although long recognized in bacterial populations which have acquired resistance to antibiotics, the presence of DTPs in various cancer types has come to light only in the past two decades, yet several aspects of their biology remain enigmatic. Here, we delve into the biological characteristics of DTPs and explore potential strategies for tracking and targeting them. Recent findings suggest that DTPs exhibit remarkable plasticity, being capable of transitioning between different cellular states, resulting in distinct DTP phenotypes within a single tumour. However, defining the biological features of DTPs has been challenging, partly due to the complex interplay between clonal dynamics and tissue-specific factors influencing their phenotype. Moreover, the interactions between DTPs and the tumour microenvironment, including their potential to evade immune surveillance, remain to be discovered. Finally, the mechanisms underlying DTP-derived drug resistance and their correlation with clinical outcomes remain poorly understood. This Roadmap aims to provide a comprehensive overview of the field of DTPs, encompassing past achievements and current endeavours in elucidating their biology. We also discuss the prospect of future advancements in technologies in helping to unveil the features of DTPs and propose novel therapeutic strategies that could lead to their eradication.
Collapse
Affiliation(s)
- Mariangela Russo
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| | - Mengnuo Chen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elisa Mariella
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Haoning Peng
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Sumaiyah K Rehman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Alberto Sogari
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy
| | - Tzen S Toh
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Matthew Hangauer
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
| | | | - Jean-Christophe Marine
- Department of Oncology, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, VIB, Leuven, Belgium
| | - Catherine A O'Brien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yaara Oren
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Elizabeth Patton
- MRC Human Genetics Unit, and CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Caroline Robert
- Oncology Department, Dermatology Unit, Villejuif, France
- Oncology Department and INSERM U981, Villejuif, France
- Paris Saclay University, Villejuif, France
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Shensi Shen
- Institute of Thoracic Oncology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Alberto Bardelli
- Department of Oncology, Molecular Biotechnology Center, University of Torino, Torino, Italy.
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
2
|
Darawshi O, Yassin O, Shmuel M, Wek RC, Mahdizadeh SJ, Eriksson LA, Hatzoglou M, Tirosh B. Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. J Biol Chem 2024; 300:107575. [PMID: 39013537 PMCID: PMC11362803 DOI: 10.1016/j.jbc.2024.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Adaptation to the shortage in free amino acids (AA) is mediated by 2 pathways, the integrated stress response (ISR) and the mechanistic target of rapamycin (mTOR). In response to reduced levels, primarily of leucine or arginine, mTOR in its complex 1 configuration (mTORC1) is suppressed leading to a decrease in translation initiation and elongation. The eIF2α kinase general control nonderepressible 2 (GCN2) is activated by uncharged tRNAs, leading to induction of the ISR in response to a broader range of AA shortage. ISR confers a reduced translation initiation, while promoting the selective synthesis of stress proteins, such as ATF4. To efficiently adapt to AA starvation, the 2 pathways are cross-regulated at multiple levels. Here we identified a new mechanism of ISR/mTORC1 crosstalk that optimizes survival under AA starvation, when mTORC1 is forced to remain active. mTORC1 activation during acute AA shortage, augmented ATF4 expression in a GCN2-dependent manner. Under these conditions, enhanced GCN2 activity was not dependent on tRNA sensing, inferring a different activation mechanism. We identified a labile physical interaction between GCN2 and mTOR that results in a phosphorylation of GCN2 on serine 230 by mTOR, which promotes GCN2 activity. When examined under prolonged AA starvation, GCN2 phosphorylation by mTOR promoted survival. Our data unveils an adaptive mechanism to AA starvation, when mTORC1 evades inhibition.
Collapse
Affiliation(s)
- Odai Darawshi
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olaya Yassin
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Shmuel
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - S Jalil Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
3
|
Bezawork-Geleta A, Moujalled D, De Souza DP, Narayana VK, Dimou J, Luwor R, Watt MJ. Metabolic Plasticity of Glioblastoma Cells in Response to DHODH Inhibitor BAY2402234 Treatment. Metabolites 2024; 14:413. [PMID: 39195509 DOI: 10.3390/metabo14080413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Glioblastoma (IDH-wildtype) represents a formidable challenge in oncology, lacking effective chemotherapeutic or biological interventions. The metabolic reprogramming of cancer cells is a hallmark of tumor progression and drug resistance, yet the role of metabolic reprogramming in glioblastoma during drug treatment remains poorly understood. The dihydroorotate dehydrogenase (DHODH) inhibitor BAY2402234 is a blood-brain barrier penetrant drug showing efficiency in in vivo models of many brain cancers. In this study, we investigated the effect of BAY2402234 in regulating the metabolic phenotype of EGFRWT and EGFRvIII patient-derived glioblastoma cell lines. Our findings reveal the selective cytotoxicity of BAY2402234 toward EGFRWT glioblastoma subtypes with minimal effect on EGFRvIII patient cells. At sublethal doses, BAY2402234 induces triglyceride synthesis at the expense of membrane lipid synthesis and fatty acid oxidation in EGFRWT glioblastoma cells, while these effects are not observed in EGFRvIII glioblastoma cells. Furthermore, BAY2402234 reduced the abundance of signaling lipid species in EGFRWT glioblastoma. This study elucidates genetic mutation-specific metabolic plasticity and efficacy in glioblastoma cells in response to drug treatment, offering insights into therapeutic avenues for precision medicine approaches.
Collapse
Affiliation(s)
- Ayenachew Bezawork-Geleta
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Diane Moujalled
- Blood Cells & Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - James Dimou
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Rodney Luwor
- Department of Surgery, The University of Melbourne, Parkville, VIC 3010, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia
- Federation University, Ballarat, VIC 3350, Australia
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| | - Matthew J Watt
- Department of Anatomy and Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
4
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
5
|
Mayer MP, Blair L, Blatch GL, Borges TJ, Chadli A, Chiosis G, de Thonel A, Dinkova-Kostova A, Ecroyd H, Edkins AL, Eguchi T, Fleshner M, Foley KP, Fragkostefanakis S, Gestwicki J, Goloubinoff P, Heritz JA, Heske CM, Hibshman JD, Joutsen J, Li W, Lynes M, Mendillo ML, Mivechi N, Mokoena F, Okusha Y, Prahlad V, Repasky E, Sannino S, Scalia F, Shalgi R, Sistonen L, Sontag E, van Oosten-Hawle P, Vihervaara A, Wickramaratne A, Wang SXY, Zininga T. Stress biology: Complexity and multifariousness in health and disease. Cell Stress Chaperones 2024; 29:143-157. [PMID: 38311120 PMCID: PMC10939078 DOI: 10.1016/j.cstres.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Abstract
Preserving and regulating cellular homeostasis in the light of changing environmental conditions or developmental processes is of pivotal importance for single cellular and multicellular organisms alike. To counteract an imbalance in cellular homeostasis transcriptional programs evolved, called the heat shock response, unfolded protein response, and integrated stress response, that act cell-autonomously in most cells but in multicellular organisms are subjected to cell-nonautonomous regulation. These transcriptional programs downregulate the expression of most genes but increase the expression of heat shock genes, including genes encoding molecular chaperones and proteases, proteins involved in the repair of stress-induced damage to macromolecules and cellular structures. Sixty-one years after the discovery of the heat shock response by Ferruccio Ritossa, many aspects of stress biology are still enigmatic. Recent progress in the understanding of stress responses and molecular chaperones was reported at the 12th International Symposium on Heat Shock Proteins in Biology, Medicine and the Environment in the Old Town Alexandria, VA, USA from 28th to 31st of October 2023.
Collapse
Affiliation(s)
- Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | - Laura Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Gregory L Blatch
- Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| | - Thiago J Borges
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Ahmed Chadli
- Georgia Cancer Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Gabriela Chiosis
- Department of Medicine, Division of Solid Tumors, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aurélie de Thonel
- CNRS, UMR 7216, 75250 Paris Cedex 13, Paris, France; Univeristy of Paris Diderot, Sorbonne Paris Cité, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Albena Dinkova-Kostova
- Division of Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, UK
| | - Heath Ecroyd
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Adrienne L Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Monika Fleshner
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | - Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University Frankfurt am Main, Frankfurt am Main 60438, Germany
| | - Jason Gestwicki
- Institute for Neurodegenerative Diseases, University of California, San Francisco, CA 94158, USA
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jennifer A Heritz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Christine M Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, Los Angeles, CA 90033, USA
| | - Michael Lynes
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nahid Mivechi
- Molecular Chaperone Biology, Medical College of Georgia, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Fortunate Mokoena
- Department of Biochemistry, North-West University, Mmabatho 2735, South Africa
| | - Yuka Okusha
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Elizabeth Repasky
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emily Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | | | - Anniina Vihervaara
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Anushka Wickramaratne
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shawn Xiang Yang Wang
- Developmental Therapeutics Program, VCU Comprehensive Massey Cancer Center, VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| |
Collapse
|
6
|
Dong Y, Wei J, Yang F, Qu Y, Huang J, Shi D. Nutrient-Based Approaches for Melanoma: Prevention and Therapeutic Insights. Nutrients 2023; 15:4483. [PMID: 37892558 PMCID: PMC10609833 DOI: 10.3390/nu15204483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Melanoma, a prevalent and lethal form of skin cancer, remains a formidable challenge in terms of prevention and treatment. While significant progress has been made in understanding its pathogenesis and treatment, the quest for effective prevention strategies and therapeutic approaches remains ongoing. Considering the increased advancements in understanding the dynamic interplay between nutrients and melanoma, we aim to offer a refreshed perspective on nutrient-based approaches for melanoma prevention and adjunctive therapy. In contrast to other studies, we have innovatively provided a detailed exposition of the nutrients' influences on melanoma prognosis and treatment. This review firstly examines various nutrients, including antioxidants (namely vitamins A, D, C, and E; selenium; and caffeine), polyunsaturated fatty acids, and flavonoids, for their effects and underlying mechanisms in reducing melanoma risk. Among these nutrients, caffeine shows the most promising potential, as it is supported by multiple cohort studies for its protective effect against melanoma. In contrast, there is a certain degree of inconsistency in the research of other nutrients, possibly due to inherent differences between animal studies and epidemiological research, as well as variations in the definition of nutrient intake. To comprehensively investigate the impact of nutrients on melanoma progression and therapeutic approaches, the following sections will explore how nutrients influence immune responses and other physiological processes. While there is robust support from cell and animal studies regarding the immunomodulatory attributes of vitamins D and zinc, the anti-angiogenic potential of polyphenols, and the cell growth-inhibitory effects of flavonoids, the limited availability of human-based research substantially constrains their practical relevance in clinical contexts. As for utilizing nutrients in adjuvant melanoma treatments, multiple approaches have garnered clinical research support, including the utilization of vitamin D to decrease the postoperative recurrence rates among melanoma patients and the adoption of a high-fiber diet to enhance the effectiveness of immunotherapy. In general, the effects of most nutrients on reducing the risk of melanoma are not entirely clear. However, several nutrients, including vitamin D and dietary fiber, have demonstrated their potential to improve the melanoma prognosis and enhance the treatment outcomes, making them particularly deserving of clinical attention. A personalized and interdisciplinary approach, involving dermatologists, oncologists, nutritionists, and researchers, holds the promise of optimizing melanoma treatment strategies.
Collapse
Affiliation(s)
- Yucheng Dong
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Jiaxin Wei
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Fan Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Yang Qu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Jiuzuo Huang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| | - Di Shi
- Department of Emergency Department, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China;
| |
Collapse
|