1
|
Ratajczak MZ, Thetchinamoorthy K, Wierzbicka D, Konopko A, Ratajczak J, Kucia M. Extracellular microvesicles/exosomes-magic bullets in horizontal transfer between cells of mitochondria and molecules regulating mitochondria activity. Stem Cells 2025; 43:sxae086. [PMID: 39949038 PMCID: PMC11979747 DOI: 10.1093/stmcls/sxae086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/11/2024] [Indexed: 03/15/2025]
Abstract
Extracellular microvesicles (ExMVs) were one of the first communication platforms between cells that emerged early in evolution. Evidence indicates that all types of cells secrete these small circular structures surrounded by a lipid membrane that plays an important role in cellular physiology and some pathological processes. ExMVs interact with target cells and may stimulate them by ligands expressed on their surface and/or transfer to the target cells their cargo comprising various RNA species, proteins, bioactive lipids, and signaling nucleotides. These small vesicles can also hijack some organelles from the cells and, in particular, transfer mitochondria, which are currently the focus of scientific interest for their potential application in clinical settings. Different mechanisms exist for transferring mitochondria between cells, including their encapsulation in ExMVs or their uptake in a "naked" form. It has also been demonstrated that mitochondria transfer may involve direct cell-cell connections by signaling nanotubules. In addition, evidence accumulated that ExMVs could be enriched for regulatory molecules, including some miRNA species and proteins that regulate the function of mitochondria in the target cells. Recently, a new beneficial effect of mitochondrial transfer has been reported based on inducing the mitophagy process, removing damaged mitochondria in the recipient cells to improve their energetic state. Based on this novel role of ExMVs in powering the energetic state of target cells, we present a current point of view on this topic and review some selected most recent discoveries and recently published most relevant papers.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Kannathasan Thetchinamoorthy
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Diana Wierzbicka
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Adrian Konopko
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Janina Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Magdalena Kucia
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
2
|
Morales-Pacheco M, Valenzuela-Mayen M, Gonzalez-Alatriste AM, Mendoza-Almanza G, Cortés-Ramírez SA, Losada-García A, Rodríguez-Martínez G, González-Ramírez I, Maldonado-Lagunas V, Vazquez-Santillan K, González-Covarrubias V, Pérez-Plasencia C, Rodríguez-Dorantes M. The role of platelets in cancer: from their influence on tumor progression to their potential use in liquid biopsy. Biomark Res 2025; 13:27. [PMID: 39934930 DOI: 10.1186/s40364-025-00742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Platelets, anucleate blood cells essential for hemostasis, are increasingly recognized for their role in cancer, challenging the traditional notion of their sole involvement in blood coagulation. It has been demonstrated that platelets establish bidirectional communication with tumor cells, contributing to tumor progression and metastasis through diverse molecular mechanisms such as modulation of proliferation, angiogenesis, epithelial-mesenchymal transition, resistance to anoikis, immune evasion, extravasation, chemoresistance, among other processes. Reciprocally, cancer significantly alters platelets in their count and composition, including mRNA, non-coding RNA, proteins, and lipids, product of both internal synthesis and the uptake of tumor-derived molecules. This phenomenon gives rise to tumor-educated platelets (TEPs), which are emerging as promising tools for the development of liquid biopsies. In this review, we provide a detailed overview of the dynamic roles of platelets in tumor development and progression as well as their use in diagnosis and prognosis. We also provide our view on current limitations, challenges and future research areas, including the need to design more efficient strategies for their isolation and analysis, as well as the validation of their sensitivity and specificity through large-scale and rigorous clinical trials. This research will not only enable the evaluation of their clinical viability but could also open new opportunities to enhance diagnostic accuracy and develop personalized treatments in oncology.
Collapse
Affiliation(s)
- Miguel Morales-Pacheco
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | - Miguel Valenzuela-Mayen
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
| | | | - Gretel Mendoza-Almanza
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Sergio A Cortés-Ramírez
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Alberto Losada-García
- Department of Pharmacology and Toxicology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Griselda Rodríguez-Martínez
- Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica, Mexico City, 14610, Mexico
- Laboratorio de Investigación en Patógenos Respiratorios y Producción de Biológicos, Hospital Infantil de México Federico Gómez, Mexico City, 14610, Mexico
| | - Imelda González-Ramírez
- Departamento de Atención a La Salud, Universidad Autónoma Metropolitana Xochimilco, Mexico City, 14610, Mexico
| | - Vilma Maldonado-Lagunas
- Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Karla Vazquez-Santillan
- Laboratorio de Innovación en Medicina de Precisión, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Vanessa González-Covarrubias
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genómica, Secretaría de Salud, Mexico City, 14610, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, FES-Iztacala, Universidad Nacional Autónoma de México (UNAM), Iztacala, Tlalnepantla, 54090, Mexico
| | | |
Collapse
|
3
|
Tavukcuoglu Z, Butt U, de Faria AVS, Oesterreicher J, Holnthoner W, Laitinen S, Palviainen M, Siljander PRM. Platelet-derived extracellular vesicles induced through different activation pathways drive melanoma progression by functional and transcriptional changes. Cell Commun Signal 2024; 22:601. [PMID: 39695652 DOI: 10.1186/s12964-024-01973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Beyond their conventional roles in hemostasis and wound healing, platelets have been shown to facilitate hematogenous metastasis by interacting with cancer cells. Depending on the activation route, platelets also generate different platelet-derived extracellular vesicles (PEVs) that may educate cancer cells in the circulation or within the tumor microenvironment. We engaged different platelet-activating receptors, including glycoprotein VI and C-type lectin-like receptor 2, to generate a spectrum of PEV types. This allowed us to investigate the differential capacity of PEVs to alter cancer hallmark functions such as proliferation, invasion, and pro-angiogenic potential using melanoma as a model. Additionally, we analyzed changes in the cell transcriptomes and cancer EV profiles. METHODS Two human melanoma cell lines (MV3 and A2058) with differential metastatic potential were studied in the 3D spheroid cultures. Human platelets were activated with collagen related peptide (CRP), fucoidan from Fucus vesiculosus (FFV), thrombin & collagen co-stimulus and Ca2+ ionophore, and PEVs were isolated by size-exclusion chromatography followed by ultrafiltration. Spheroids or cells were treated with PEVs and used in functional assays of proliferation, invasion, and endothelial tube formation as well as for the analysis of cancer EV production and their tetraspanin profiles. Differentially expressed genes and enriched signaling pathways in the PEV-treated spheroids were analyzed at 6 h and 24 h by RNA sequencing. RESULTS Among the studied PEVs, those generated by CRP and FFV exhibited the most pronounced effects on altering cancer hallmark functions. Specifically, CRP and FFV PEVs increased proliferation in both MV3 and A2058 spheroids. Distinct tetraspanin signatures of melanoma EVs were induced by all PEV types. While the PI3K-Akt and MAPK signaling pathways were activated by both CRP and FFV PEVs, they differently upregulated the immunomodulatory TGF-β and type-I interferon signaling pathways, respectively. CONCLUSIONS Our study revealed both shared and distinct, cancer-promoting functions of PEVs, which contributed to the transcriptome and metastatic capabilities of the melanoma spheroids. Inhibiting the platelet receptors that modulate the PEVs' cancer-promoting properties may open up new strategies for identifying promising treatment targets for cancer therapy.
Collapse
Affiliation(s)
- Zeynep Tavukcuoglu
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Umar Butt
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Alessandra V Sousa de Faria
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- Faculdade Israelita de Ciências da Saúde Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Wolfgang Holnthoner
- AUVA Research Centre, Ludwig Boltzmann Institute for Traumatology, Vienna, Austria
| | - Saara Laitinen
- Finnish Red Cross Blood Service (FRCBS), Helsinki, Finland
| | - Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pia R-M Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland.
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Libring S, Berestesky ED, Reinhart-King CA. The movement of mitochondria in breast cancer: internal motility and intercellular transfer of mitochondria. Clin Exp Metastasis 2024; 41:567-587. [PMID: 38489056 PMCID: PMC11499424 DOI: 10.1007/s10585-024-10269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
As a major energy source for cells, mitochondria are involved in cell growth and proliferation, as well as migration, cell fate decisions, and many other aspects of cellular function. Once thought to be irreparably defective, mitochondrial function in cancer cells has found renewed interest, from suggested potential clinical biomarkers to mitochondria-targeting therapies. Here, we will focus on the effect of mitochondria movement on breast cancer progression. Mitochondria move both within the cell, such as to localize to areas of high energetic need, and between cells, where cells within the stroma have been shown to donate their mitochondria to breast cancer cells via multiple methods including tunneling nanotubes. The donation of mitochondria has been seen to increase the aggressiveness and chemoresistance of breast cancer cells, which has increased recent efforts to uncover the mechanisms of mitochondrial transfer. As metabolism and energetics are gaining attention as clinical targets, a better understanding of mitochondrial function and implications in cancer are required for developing effective, targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Sarah Libring
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Emily D Berestesky
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA
| | - Cynthia A Reinhart-King
- Department of Biomedical Engineering, Vanderbilt University, 440 Engineering and Science Building, 1212 25thAvenue South, Nashville, TN, 37235, USA.
| |
Collapse
|
5
|
Michailidou D, Giaglis S, Dale GL. The platelet-mitochondria nexus in autoimmune and musculoskeletal diseases. Clin Immunol 2024; 267:110350. [PMID: 39218194 DOI: 10.1016/j.clim.2024.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Platelets are crucial for thrombosis and hemostasis. Importantly, they contain mitochondria that are responsible for energy generation and therefore vital for platelet survival and activation. Activated platelets can release mitochondria that may be free or encapsulated in platelet extracellular vesicles (EVs). Extruded mitochondria are a well-known source of mitochondrial DNA, and mitochondrial antigens that can be targeted by autoantibodies forming immune complexes (IC). Interaction of IC with the platelet cell surface FcγRIIA receptor results in platelet activation and release of platelet granule components. In this review, we summarize how platelets and mitochondria may contribute to the pathogenesis of different autoimmune and musculoskeletal diseases. Targeting key drivers of mitochondrial extrusion may ultimately lead to urgently needed targeted pharmacological interventions for treating inflammation and thrombotic diathesis, and halting organ damage in some of these rheumatological conditions.
Collapse
Affiliation(s)
- Despina Michailidou
- Division of Rheumatology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Division of Rheumatology, Oklahoma City VA Health Care System, Oklahoma City, OK, USA.
| | - Stavros Giaglis
- Laboratory for Experimental Rheumatology, Department of Biomedicine, University Hospital Basel, Basel, Switzerland; Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - George L Dale
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Kast RE. IC Regimen: Delaying Resistance to Lorlatinib in ALK Driven Cancers by Adding Repurposed Itraconazole and Cilostazol. Cells 2024; 13:1175. [PMID: 39056757 PMCID: PMC11274432 DOI: 10.3390/cells13141175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Lorlatinib is a pharmaceutical ALK kinase inhibitor used to treat ALK driven non-small cell lung cancers. This paper analyses the intersection of past published data on the physiological consequences of two unrelated drugs from general medical practice-itraconazole and cilostazol-with the pathophysiology of ALK positive non-small cell lung cancer. A conclusion from that data analysis is that adding itraconazole and cilostazol may make lorlatinib more effective. Itraconazole, although marketed worldwide as a generic antifungal drug, also inhibits Hedgehog signaling, Wnt signaling, hepatic CYP3A4, and the p-gp efflux pump. Cilostazol, marketed worldwide as a generic thrombosis preventative drug, acts by inhibiting phosphodiesterase 3, and, by so doing, lowers platelets' adhesion, thereby partially depriving malignant cells of the many tumor trophic growth factors supplied by platelets. Itraconazole may enhance lorlatinib effectiveness by (i) reducing or stopping a Hedgehog-ALK amplifying feedback loop, by (ii) increasing lorlatinib's brain levels by p-gp inhibition, and by (iii) inhibiting growth drive from Wnt signaling. Cilostazol, surprisingly, carries minimal bleeding risk, lower than that of aspirin. Risk/benefit assessment of the combination of metastatic ALK positive lung cancer being a low-survival disease with the predicted safety of itraconazole-cilostazol augmentation of lorlatinib favors a trial of this drug trio in ALK positive lung cancer.
Collapse
|
7
|
Tutuianu A, Anene CA, Shelton M, Speirs V, Whitelaw DC, Thorpe J, Roberts W, Boyne JR. Platelet-derived microvesicles isolated from type-2 diabetes mellitus patients harbour an altered miRNA signature and drive MDA-MB-231 triple-negative breast cancer cell invasion. PLoS One 2024; 19:e0304870. [PMID: 38900754 PMCID: PMC11189239 DOI: 10.1371/journal.pone.0304870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
The underlying causes of breast cancer are diverse, however, there is a striking association between type 2 diabetes and poor patient outcomes. Platelet activation is a common feature of both type 2 diabetes and breast cancer and has been implicated in tumourigenesis through a multitude of pathways. Here transcriptomic analysis of type 2 diabetes patient-derived platelet microvesicles revealed an altered miRNA signature compared with normoglycaemic control patients. Interestingly, interrogation of these data identifies a shift towards an oncogenic signature in type 2 diabetes-derived platelet microvesicles, with increased levels of miRNAs implicated in breast cancer progression and poor prognosis. Functional studies demonstrate that platelet microvesicles isolated from type 2 diabetes patient blood are internalised by triple-negative breast cancer cells in vitro, and that co-incubation with type 2 diabetes patient-derived platelet microvesicles led to significantly increased expression of epithelial to mesenchymal transition markers and triple-negative breast cancer cell invasion compared with platelet microvesicles from healthy volunteers. Together, these data suggest that circulating PMVs in type 2 diabetes patients may contribute to the progression of triple-negative breast cancer.
Collapse
Affiliation(s)
- Anca Tutuianu
- School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Chinedu A. Anene
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Mikayla Shelton
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - Valerie Speirs
- Institute of Medical Science, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland
| | - Donald C. Whitelaw
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Joanne Thorpe
- Department of Diabetes and Endocrinology, Bradford Royal Infirmary, Bradford, United Kingdom
| | - Wayne Roberts
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| | - James R. Boyne
- Biomedical Science, School of Health, Leeds Beckett University, Leeds, United Kingdom
| |
Collapse
|
8
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|