1
|
Jin B, Miao Z, Pan J, Zhang Z, Yang Y, Zhou Y, Jin Y, Niu Z, Xu Q. The emerging role of glycolysis and immune evasion in ovarian cancer. Cancer Cell Int 2025; 25:78. [PMID: 40045411 PMCID: PMC11881340 DOI: 10.1186/s12935-025-03698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
Ovarian cancer (OC) is one of the three most common malignant tumors of the female reproductive system, with the highest mortality rate among gynecologic malignancies. Like other tumors, OC cells undergo metabolic reprogramming phenomenon and convert glucose metabolism into "aerobic glycolysis" and generate a high concentration of lactate, i.e., the "Warburg effect", which provides a large amount of energy and corresponding intermediary metabolites for their survival, reproduction and metastasis. Numerous studies have shown that targeted inhibition of aerobic glycolysis and lactate metabolism is a promising strategy to enhance the sensitivity of cancer cells to immunotherapy. Therefore, this review summarizes the metabolic features of glycolysis in OC cells and highlights how abnormal lactate concentration affects the differentiation, metabolism, and function of infiltrating immune cells, which contributes to immunosuppression, and how targeted inhibition of this phenomenon may be a potential strategy to enhance the therapeutic efficacy of OC.
Collapse
Affiliation(s)
- Bowen Jin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zehua Miao
- Dalian Medical University, Dalian, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Zhang
- Department of Oncology, Hangzhou Cancer Hospital, Zhejiang, Hangzhou, 310002, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yidong Zhou
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanxiang Jin
- Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Niu
- Department of Gynecology, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
| | - Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medicine, Hangzhou, 310006, China.
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Sun F, Li W, Du R, Liu M, Cheng Y, Ma J, Yan S. Impact of glycolysis enzymes and metabolites in regulating DNA damage repair in tumorigenesis and therapy. Cell Commun Signal 2025; 23:44. [PMID: 39849559 PMCID: PMC11760674 DOI: 10.1186/s12964-025-02047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Initially, it was believed that glycolysis and DNA damage repair (DDR) were two distinct biological processes that independently regulate tumor progression. The former metabolic reprogramming rapidly generates energy and generous intermediate metabolites, supporting the synthetic metabolism and proliferation of tumor cells. While the DDR plays a pivotal role in preserving genomic stability, thus resisting cellular senescence and cell death under both physiological and radio-chemotherapy conditions. Recently, an increasing number of studies have shown closely correlation between these two biological processes, and then promoting tumor progression. For instance, lactic acid, the product of glycolysis, maintains an acidic tumor microenvironment that not only fosters cell proliferation and invasion but also facilitates DDR by enhancing AKT activity. Here, we provide a comprehensive overview of the enzymes and metabolites involved in glycolysis, along with the primary methods for DDR. Meanwhile, this review explores existing knowledge of glycolysis enzymes and metabolites in regulating DDR. Moreover, considering the significant roles of glycolysis and DDR in tumor development and radio-chemotherapy resistance, the present review discusses effective direct or indirect therapeutic strategies targeted to glycolysis and DDR.
Collapse
Affiliation(s)
- Fengyao Sun
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Wen Li
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Ruihang Du
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Mingchan Liu
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yi Cheng
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Jianxing Ma
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Siyuan Yan
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
3
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
4
|
Barbieri E, Venturelli M, Mastrodomenico L, Piombino C, Ponzoni O, Zaniboni S, Barban S, Razzaboni E, Grandi G, Dominici M, Cortesi L, Toss A. Chemoprevention strategies in hereditary breast and ovarian cancer syndromes. TUMORI JOURNAL 2024:3008916241274721. [PMID: 39568367 DOI: 10.1177/03008916241274721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Hereditary breast and/or ovarian cancer syndromes are inherited disorders in which there is an increased risk of developing breast and/or ovarian cancer in the lifetime, usually at a younger age compared to the general population. Cancer prevention in these syndromes includes prophylactic surgeries, personalized surveillance programs and chemopreventive strategies. Chemoprevention exploits the use of certain drugs or other substances to help lower the risk of developing cancer. In this context, tamoxifen was the first agent considered for breast cancer prevention, followed by raloxifene and the third-generation aromatase inhibitors. On the other hand, the first and most widespread type of chemoprevention for ovarian cancer was combined hormonal contraceptive use. Although several strategies have been studied and showed promising results, only a few of these are currently applied in daily clinical practice. Side effects along with several psychological variables such as cancer perceived risk, worries and related distress, strongly influence women's decision on chemoprevention. The present review explores and summarizes the available evidence on breast and ovarian cancer chemoprevention approaches.
Collapse
Affiliation(s)
- Elena Barbieri
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Marta Venturelli
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Luciana Mastrodomenico
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Claudia Piombino
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Ornella Ponzoni
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Silvia Zaniboni
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Serena Barban
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Elisabetta Razzaboni
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giovanni Grandi
- Obstetrics and Gynecology, Obstetrics and Gynecology Unit, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Cortesi
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Angela Toss
- Department of Oncology and Hematology, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Ben Ali F, Qmichou Z, Oukabli M, Dakka N, Bakri Y, Eddouks M, Ameziane El Hassani R. Alteration of glucose metabolism and expression of glucose transporters in ovarian cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:384-399. [PMID: 38745772 PMCID: PMC11090687 DOI: 10.37349/etat.2024.00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 05/16/2024] Open
Abstract
Aerobic glycolysis also known as the Warburg effect, remains a hallmark of various cancers, including ovarian cancer. Cancer cells undergo metabolic changes to sustain their tumorigenic properties and adapt to environmental conditions, such as hypoxia and nutrient starvation. Altered metabolic pathways not only facilitate ovarian cancer cells' survival and proliferation but also endow them to metastasize, develop resistance to chemotherapy, maintain cancer stem cell phenotype, and escape anti-tumor immune responses. Glucose transporters (GLUTs), which play a pivotal role as the rate-limiting step in glycolysis, are frequently overexpressed in a variety of tumors, including ovarian cancer. Multiple oncoproteins can regulate GLUT proteins, promoting tumor proliferation, migration, and metastasis, either dependent or independent of glycolysis. This review examines the alteration of GLUT proteins, particularly GLUT1, in ovarian cancer and its impact on cancer initiation, progression, and resistance to treatment. Additionally, it highlights the role of these proteins as biomarkers for diagnosis and prognosis in ovarian cancer, and delves into novel therapeutic strategies currently under development that target GLUT isoforms.
Collapse
Affiliation(s)
- Fatima Ben Ali
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat 10001, Morocco
| | - Mohamed Oukabli
- Department of Anatomical Pathology, Military Hospital of Instruction Mohammed V (HMIMV-R), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Nadia Dakka
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Youssef Bakri
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| | - Mohammed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia BP 509, Morocco
| | - Rabii Ameziane El Hassani
- Laboratory of Biology of Human Pathologies (BioPatH), Faculty of Sciences, Mohammed V University in Rabat, Rabat 10001, Morocco
| |
Collapse
|
6
|
Li C, Liu FY, Shen Y, Tian Y, Han FJ. Research progress on the mechanism of glycolysis in ovarian cancer. Front Immunol 2023; 14:1284853. [PMID: 38090580 PMCID: PMC10715264 DOI: 10.3389/fimmu.2023.1284853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Glycolysis is the preferred energy metabolism pathway in cancer cells even when the oxygen content is sufficient. Through glycolysis, cancer cells convert glucose into pyruvic acid and then lactate to rapidly produce energy and promote cancer progression. Changes in glycolysis activity play a crucial role in the biosynthesis and energy requirements of cancer cells needed to maintain growth and metastasis. This review focuses on ovarian cancer and the significance of key rate-limiting enzymes (hexokinase, phosphofructokinase, and pyruvate kinase, related signaling pathways (PI3K-AKT, Wnt, MAPK, AMPK), transcription regulators (HIF-1a), and non-coding RNA in the glycolytic pathway. Understanding the relationship between glycolysis and these different mechanisms may provide new opportunities for the future treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chan Li
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Fang-Yuan Liu
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Ying Shen
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Yuan Tian
- Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Feng-Juan Han
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| |
Collapse
|
7
|
McGonigal S, Wu R, Grimley E, Turk EG, Zhai Y, Cho KR, Buckanovich RJ. A putative role for ALDH inhibitors and chemoprevention of BRCA-mutation-driven tumors. Gynecol Oncol 2023; 176:139-146. [PMID: 37535994 PMCID: PMC10653209 DOI: 10.1016/j.ygyno.2023.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Aldehyde dehydrogenase (ALDH) enzymatic activity is a marker of cancer-initiating cells (CIC) in many tumor types. Our group and others have found that ALDH1A family inhibitors (ALDHi) can preferentially induce death of ovarian CIC in established ovarian cancer. We sought to determine if ALDHi, by targeting CIC at the time of tumor initiation, could function as a chemopreventive for ovarian cancer. As BRCA1/2 mutation carriers represent a population who could benefit from an ovarian cancer chemopreventive, we focused on BRCA mutation-associated tumor cell lines and murine tumor models. We found that, compared to BRCA wild-type cells, BRCA mutant ovarian cancer cells are more sensitive to the ALDHi673A. Similarly, while 673A treatment of wild-type fallopian tube epithelial (FTE) cells is non-toxic, 673A induces death in FTE cells with BRCA1 knockdown. Using a murine fallopian tube organoid model of ovarian carcinogenesis, we show that 673A reduced organoid complexity and significantly reduce colony formation of BRCA-mutant cells. Organoids that persisted after 673A treatment were predominantly BRCA1wt, but NF1 mutant, suggesting a resistance mechanism. Finally, using the BPRN (Brca1, Trp53, Rb1, Nf1 inactivated) mouse model of tubo-ovarian cancer, we evaluated the impact of intermittent 673A therapy on carcinogenesis. 673A treatment resulted in a significant reduction in serous tubal intraepithelial carcinoma (STIC) lesions and carcinomas. Collectively, the findings suggest that ALDHi, such as 673A, could serve as chemopreventive agents for BRCA1/2 mutation carriers.
Collapse
Affiliation(s)
- Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rong Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ed Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ekrem G Turk
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yali Zhai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
8
|
Hoskin AJ, Holt AK, Legge DN, Collard TJ, Williams AC, Vincent EE. Aspirin and the metabolic hallmark of cancer: novel therapeutic opportunities for colorectal cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:600-615. [PMID: 37720350 PMCID: PMC10501897 DOI: 10.37349/etat.2023.00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Aspirin is a well-known nonsteroidal anti-inflammatory drug (NSAID) that has a recognized role in cancer prevention as well as evidence to support its use as an adjuvant for cancer treatment. Importantly there has been an increasing number of studies contributing to the mechanistic understanding of aspirins' anti-tumour effects and these studies continue to inform the potential clinical use of aspirin for both the prevention and treatment of cancer. This review focuses on the emerging role of aspirin as a regulator of metabolic reprogramming, an essential "hallmark of cancer" required to support the increased demand for biosynthetic intermediates needed for sustained proliferation. Cancer cells frequently undergo metabolic rewiring driven by oncogenic pathways such as hypoxia-inducible factor (HIF), wingless-related integration site (Wnt), mammalian target of rapamycin (mTOR), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB), which supports the increased proliferative rate as tumours develop and progress. Reviewed here, cellular metabolic reprogramming has been identified as a key mechanism of action of aspirin and include the regulation of key metabolic drivers, the regulation of enzymes involved in glycolysis and glutaminolysis, and altered nutrient utilisation upon aspirin exposure. Importantly, as aspirin treatment exposes metabolic vulnerabilities in tumour cells, there is an opportunity for the use of aspirin in combination with specific metabolic inhibitors in particular, glutaminase (GLS) inhibitors currently in clinical trials such as telaglenastat (CB-839) and IACS-6274 for the treatment of colorectal and potentially other cancers. The increasing evidence that aspirin impacts metabolism in cancer cells suggests that aspirin could provide a simple, relatively safe, and cost-effective way to target this important hallmark of cancer. Excitingly, this review highlights a potential new role for aspirin in improving the efficacy of a new generation of metabolic inhibitors currently undergoing clinical investigation.
Collapse
Affiliation(s)
- Ashley J. Hoskin
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Amy K. Holt
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Danny N. Legge
- Department of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, BS1 3NY Bristol, UK
| | - Tracey J. Collard
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Ann C. Williams
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Emma E. Vincent
- Department of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, BS1 3NY Bristol, UK
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, BS8 2BN Bristol, UK
| |
Collapse
|
9
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
10
|
Marcucci F, Rumio C. On the Role of Glycolysis in Early Tumorigenesis-Permissive and Executioner Effects. Cells 2023; 12:cells12081124. [PMID: 37190033 DOI: 10.3390/cells12081124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Reprogramming energy production from mitochondrial respiration to glycolysis is now considered a hallmark of cancer. When tumors grow beyond a certain size they give rise to changes in their microenvironment (e.g., hypoxia, mechanical stress) that are conducive to the upregulation of glycolysis. Over the years, however, it has become clear that glycolysis can also associate with the earliest steps of tumorigenesis. Thus, many of the oncoproteins most commonly involved in tumor initiation and progression upregulate glycolysis. Moreover, in recent years, considerable evidence has been reported suggesting that upregulated glycolysis itself, through its enzymes and/or metabolites, may play a causative role in tumorigenesis, either by acting itself as an oncogenic stimulus or by facilitating the appearance of oncogenic mutations. In fact, several changes induced by upregulated glycolysis have been shown to be involved in tumor initiation and early tumorigenesis: glycolysis-induced chromatin remodeling, inhibition of premature senescence and induction of proliferation, effects on DNA repair, O-linked N-acetylglucosamine modification of target proteins, antiapoptotic effects, induction of epithelial-mesenchymal transition or autophagy, and induction of angiogenesis. In this article we summarize the evidence that upregulated glycolysis is involved in tumor initiation and, in the following, we propose a mechanistic model aimed at explaining how upregulated glycolysis may play such a role.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
11
|
Ren G, Ma Y, Wang X, Zheng Z, Li G. Aspirin blocks AMPK/SIRT3-mediated glycolysis to inhibit NSCLC cell proliferation. Eur J Pharmacol 2022; 932:175208. [PMID: 35981603 DOI: 10.1016/j.ejphar.2022.175208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) has the highest incidence and mortality in the world. Aspirin has been reported to promote apoptosis, inhibit proliferation, stemness, angiogenesis, cancer-associated inflammation and migration in NSCLC. But the effect of aspirin on aerobic glycolysis in NSCLC is less reported. In the present study, we investigated whether aspirin blocked aerobic glycolysis of NSCLC cells to inhibit proliferation. Our results showed that aspirin inhibited viability, PCNA expression, ability of colony formation, dimished extracellular acidification rate (ECAR), oxygen consumption rate (OCR) and production of pyruvic acid and lactic acid, accompanied with reduced mitochondrial membrane potential (MMP), PGC-1α expression and ROS production, indicating mitochondrial dysfunction in NSCLC cells. AMPK and mitochondrial-localized deacetylase sirtuin 3 (SIRT3) were identified as the relevant molecular targets in glycolysis, but mechanism and relationship between AMPK and SIRT3 for aspirin induced glycolysis inhibition remain unknown in cancer cells. The investigation of underlying mechanism indicated that aspirin activated AMPK pathway to inhibit aerobic glycolysis and proliferation by upregulating SIRT3 after application of compound C (CC), an inhibitor of AMPK activity or SIRT3 siRNA. Upon activation of SIRT3, aspirin promoted the release of hexokinase-II (HK-II) from mitochondrial outer membrane to cytosol by deacetylating cyclophilin D (CypD). Consistently, aspirin significantly inhibited the growth of NSCLC xenografts and exhibited antitumor activity probably through AMPK/SIRT3/HK-II pathway in vivo. Collectively, AMPK/SIRT3/HK-II pathway plays a critical role in anticancer effects of aspirin, and our findings might serve as potential target for clinical practice and chemoprevention of aspirin in NSCLC.
Collapse
Affiliation(s)
- Guanghui Ren
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yan Ma
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Xingjie Wang
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhaodi Zheng
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant, School of Life Sciences, Shandong Normal University, Jinan, China.
| |
Collapse
|
12
|
Silva SB, Wanderley CWS, Colli LM. Immune Checkpoint Inhibitors in Tumors Harboring Homologous Recombination Deficiency: Challenges in Attaining Efficacy. Front Immunol 2022; 13:826577. [PMID: 35211121 PMCID: PMC8860897 DOI: 10.3389/fimmu.2022.826577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer cells harbor genomic instability due to accumulated DNA damage, one of the cancer hallmarks. At least five major DNA Damage Repair (DDR) pathways are recognized to repair DNA damages during different stages of the cell cycle, comprehending base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination (HR), and non-homologous end joining (NHEJ). The unprecedented benefits achieved with immunological checkpoint inhibitors (ICIs) in tumors with mismatch repair deficiency (dMMR) have prompted efforts to extend this efficacy to tumors with HR deficiency (HRD), which are greatly sensitive to chemotherapy or PARP inhibitors, and also considered highly immunogenic. However, an in-depth understanding of HRD's molecular underpinnings has pointed to essential singularities that might impact ICIs sensitivity. Here we address the main molecular aspects of HRD that underlie a differential profile of efficacy and resistance to the treatment with ICIs compared to other DDR deficiencies.
Collapse
Affiliation(s)
- Saulo Brito Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Wagner S. Wanderley
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Leandro Machado Colli
- Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
13
|
Marimuthu S, Rauth S, Ganguly K, Zhang C, Lakshmanan I, Batra SK, Ponnusamy MP. Mucins reprogram stemness, metabolism and promote chemoresistance during cancer progression. Cancer Metastasis Rev 2021; 40:575-588. [PMID: 33813658 PMCID: PMC9635594 DOI: 10.1007/s10555-021-09959-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin's function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin's role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.
Collapse
Affiliation(s)
- Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Chunmeng Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Imayavaramban Lakshmanan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
14
|
Penkert J, Märtens A, Seifert M, Auber B, Derlin K, Hille-Betz U, Hörmann P, Klopp N, Prokein J, Schlicker L, Wacker F, Wallaschek H, Schlegelberger B, Hiller K, Ripperger T, Illig T. Plasma Metabolome Signature Indicative of BRCA1 Germline Status Independent of Cancer Incidence. Front Oncol 2021; 11:627217. [PMID: 33898308 PMCID: PMC8058469 DOI: 10.3389/fonc.2021.627217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 12/03/2022] Open
Abstract
Individuals carrying a pathogenic germline variant in the breast cancer predisposition gene BRCA1 (gBRCA1+) are prone to developing breast cancer. Apart from its well-known role in DNA repair, BRCA1 has been shown to powerfully impact cellular metabolism. While, in general, metabolic reprogramming was named a hallmark of cancer, disrupted metabolism has also been suggested to drive cancer cell evolution and malignant transformation by critically altering microenvironmental tissue integrity. Systemic metabolic effects induced by germline variants in cancer predisposition genes have been demonstrated before. Whether or not systemic metabolic alterations exist in gBRCA1+ individuals independent of cancer incidence has not been investigated yet. We therefore profiled the plasma metabolome of 72 gBRCA1+ women and 72 age-matched female controls, none of whom (carriers and non-carriers) had a prior cancer diagnosis and all of whom were cancer-free during the follow-up period. We detected one single metabolite, pyruvate, and two metabolite ratios involving pyruvate, lactate, and a metabolite of yet unknown structure, significantly altered between the two cohorts. A machine learning signature of metabolite ratios was able to correctly distinguish between gBRCA1+ and controls in ~82%. The results of this study point to innate systemic metabolic differences in gBRCA1+ women independent of cancer incidence and raise the question as to whether or not constitutional alterations in energy metabolism may be involved in the etiology of BRCA1-associated breast cancer.
Collapse
Affiliation(s)
- Judith Penkert
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Bernd Auber
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Ursula Hille-Betz
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Philipp Hörmann
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Norman Klopp
- Hannover Unified Biobank (HUB), Hannover, Germany
| | - Jana Prokein
- Center for Information Management, Hannover Medical School, Hannover, Germany
| | - Lisa Schlicker
- Division of Tumour Metabolism and Microenvironment, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Hannah Wallaschek
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Center of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank (HUB), Hannover, Germany
| |
Collapse
|
15
|
Hamamoto R, Suvarna K, Yamada M, Kobayashi K, Shinkai N, Miyake M, Takahashi M, Jinnai S, Shimoyama R, Sakai A, Takasawa K, Bolatkan A, Shozu K, Dozen A, Machino H, Takahashi S, Asada K, Komatsu M, Sese J, Kaneko S. Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine. Cancers (Basel) 2020; 12:3532. [PMID: 33256107 PMCID: PMC7760590 DOI: 10.3390/cancers12123532] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, advances in artificial intelligence (AI) technology have led to the rapid clinical implementation of devices with AI technology in the medical field. More than 60 AI-equipped medical devices have already been approved by the Food and Drug Administration (FDA) in the United States, and the active introduction of AI technology is considered to be an inevitable trend in the future of medicine. In the field of oncology, clinical applications of medical devices using AI technology are already underway, mainly in radiology, and AI technology is expected to be positioned as an important core technology. In particular, "precision medicine," a medical treatment that selects the most appropriate treatment for each patient based on a vast amount of medical data such as genome information, has become a worldwide trend; AI technology is expected to be utilized in the process of extracting truly useful information from a large amount of medical data and applying it to diagnosis and treatment. In this review, we would like to introduce the history of AI technology and the current state of medical AI, especially in the oncology field, as well as discuss the possibilities and challenges of AI technology in the medical field.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kruthi Suvarna
- Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India;
| | - Masayoshi Yamada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of Endoscopy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku Tokyo 104-0045, Japan
| | - Kazuma Kobayashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Norio Shinkai
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mototaka Miyake
- Department of Diagnostic Radiology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Masamichi Takahashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Shunichi Jinnai
- Department of Dermatologic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan;
| | - Ryo Shimoyama
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Akira Sakai
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ken Takasawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Amina Bolatkan
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Kanto Shozu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Ai Dozen
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
| | - Hidenori Machino
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Satoshi Takahashi
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Jun Sese
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Humanome Lab, 2-4-10 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (M.Y.); (K.K.); (N.S.); (M.T.); (R.S.); (A.S.); (K.T.); (A.B.); (K.S.); (A.D.); (H.M.); (S.T.); (K.A.); (M.K.); (J.S.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
16
|
Nameki R, Chang H, Reddy J, Corona RI, Lawrenson K. Transcription factors in epithelial ovarian cancer: histotype-specific drivers and novel therapeutic targets. Pharmacol Ther 2020; 220:107722. [PMID: 33137377 DOI: 10.1016/j.pharmthera.2020.107722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are major contributors to cancer risk and somatic development. In preclinical and clinical studies, direct or indirect inhibition of TF-mediated oncogenic gene expression profiles have proven to be effective in many tumor types, highlighting this group of proteins as valuable therapeutic targets. In spite of this, our understanding of TFs in epithelial ovarian cancer (EOC) is relatively limited. EOC is a heterogeneous disease composed of five major histologic subtypes; high-grade serous, low-grade serous, endometrioid, clear cell and mucinous. Each histology is associated with unique clinical etiologies, sensitivity to therapies, and molecular signatures - including diverse transcriptional regulatory programs. While some TFs are shared across EOC subtypes, a set of TFs are expressed in a histotype-specific manner and likely explain part of the histologic diversity of EOC subtypes. Targeting TFs present with unique opportunities for development of novel precision medicine strategies for ovarian cancer. This article reviews the critical TFs in EOC subtypes and highlights the potential of exploiting TFs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
18
|
PFKP is transcriptionally repressed by BRCA1/ZBRK1 and predicts prognosis in breast cancer. PLoS One 2020; 15:e0233750. [PMID: 32470015 PMCID: PMC7259711 DOI: 10.1371/journal.pone.0233750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives The present study aims to elucidate the underlying mechanism how PFKP is regulated by BRCA1 and the clinical significance of PFKP in breast cancer. Methods MEF-BRCA1△/△ and the wild type counterpart MEF-BRCA1+/+ cell lines were used to test the sensitivity of glucose depletion in culture medium. Glucose Assay Kit was used to quantify glucose levels in cultural supernatant and cell lysate. Real time PCR was used to measure the mRNA expression levels of genes. Western blot was used to detect protein levels. Chromatin immunoprecipitation was used to verify the bindings between transcription factors and DNA elements. Luciferase reporter assay was performed to determine the transcriptional activity. Histochemistry assay was performed on tissue microarray. Results We found that MEF-BRCA1△/△ cells consumed more glucose and were more vulnerable to glucose-deprived culture medium. The mRNA profiles and qPCR assay of MEF-BRCA1△/△ and MEF-BRCA1+/+ cells revealed that PFKP, the rate-limiting enzyme of glycolysis, was significantly upregulated in MEF-BRCA1△/△ cells. Consistently, the repressive effects of BRCA1 on PFKP were confirmed by overexpression or knockdown of BRCA1. Moreover, we also demonstrated that PFKP was suppressed by ZBRK1 as well, which was the co-repression partner of BRCA1. Mechanistically, we figured out that BRCA1 formed a transcriptional repression complex with ZBRK1 on the promoter of PFKP and consequently restrained its expression. Importantly, the expression levels of PFKP were demonstrated to associate with poor survival of patients with breast cancer. Conclusion Our study provided a new insight into the dysregulation of glycolysis in breast cancer, which might be partially due to the deficiency of BRCA1/ZBRK1 axis and subsequently reversed the transcriptional repressive effect on PFKP. We also found that PFKP overexpressed in a subset of breast cancer patients and could serve as a prognostic factor, which represented a potential target for BC therapy.
Collapse
|
19
|
Fu X, Tang N, Xie WQ, Mao L, Qiu YD. MUC1 promotes glycolysis through inhibiting BRCA1 expression in pancreatic cancer. Chin J Nat Med 2020; 18:178-185. [PMID: 32245587 DOI: 10.1016/s1875-5364(20)30019-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Enhanced glucose metabolism is one of the hallmarks of pancreatic cancer. MUC1, a transmembrane protein, is a global regulator of glucose metabolism and essential for progression of pancreatic cancer. To clarify the role of MUC1 in glucose metabolism, we knocked out MUC1 in Capan-1 and CFPAC-1 cells. MUC1 knockout (KO) cells uptook less glucose and secreted less lactate with a much lower proliferating rate. The mRNA level of key enzymes in glycolysis also decreased significantly in MUC1 KO cells. We also observed increased expression of breast cancer type 1 susceptibility protein (BRCA1) in MUC1 KO cells. Since BRCA1 has a strong inhibitory effect on glycolysis, we want to know whether the decreased glucose metabolism in MUC1 KO cells is due to increased BRCA1 expression. We treated wild type (WT) and MUC1 KO cells with BRCA1 inhibitor. BRCA1 inhibition significantly enhanced glucose uptake and lactate secretion in both WT and MUC1 KO cells. Expression of key enzymes in glycolysis also elevated after BRCA1 inhibition. Elevated glucose metabolism is known to facilitate cancer cells to gain chemoresistance. We treated MUC1 KO cells with gemcitabine and FOLFIRINOX in vitro and in vivo. The results showed that MUC1 KO sensitized pancreatic cancer cells to chemotherapy both in vitro and in vivo. In conclusion, we demonstrated that MUC1 promotes glycolysis through inhibiting BRCA1 expression. MUC1 may be a therapeutic target in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xiao Fu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Neng Tang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Wei-Qi Xie
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Liang Mao
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Yu-Dong Qiu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China.
| |
Collapse
|
20
|
Wang JJ, Siu MK, Jiang YX, Leung TH, Chan DW, Cheng RR, Cheung AN, Ngan HY, Chan KK. Aberrant upregulation of PDK1 in ovarian cancer cells impairs CD8 + T cell function and survival through elevation of PD-L1. Oncoimmunology 2019; 8:e1659092. [PMID: 31646108 DOI: 10.1080/2162402x.2019.1659092] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 07/27/2019] [Accepted: 08/18/2019] [Indexed: 12/31/2022] Open
Abstract
Blockade of the programmed cell death 1(PD-1)/PD-1 ligand-1(PD-L1) pathway has been exploited therapeutically in many cancer types. Upregulation of PD-L1 in tumor cells contributes to malignancy through suppression of the T cell-mediated antitumor response. Pyruvate dehydrogenase kinase 1 (PDK1), a glycolytic gate-keeping enzyme, is also known to promote tumor development. Here, we have uncovered a mechanism of regulation of PD-L1 by PDK1 through activation of c-Jun-NH2-kinase (JNK)-c-Jun in ovarian cancer cells. Elevated PDK1 expression was correlated with that of PD-L1 in the TCGA ovarian cancer dataset and ovarian cancer tissue array. Overexpression of PDK1 in ovarian cancer cells impaired CD8+ T cell function by suppressing IFN-γ secretion through the PD-1/PD-L1 pathway. Conversely, knockdown of PDK1 in ovarian cancer cells relieved suppression of CD8+ T cell function. CD8+ T cell apoptosis induced by binding of PD-1 with PD-L1 was increased after co-culture with ovarian cancer cells overexpressing PDK1, while depletion of PDK1 exerted the opposite effect. In vivo experiments revealed synergistic improved overall survival and enhanced inhibition of tumor growth upon co-treatment with dichloroacetate (DCA), a PDK inhibitor, and PD-L1 antibody, accompanied by increased IFN-γ secretion by monocytes infiltrating tumor islets. Moreover, PDK1 expression and CD8+ T cell infiltration were inversely correlated in the ovarian cancer tissue array. Our collective findings provide a novel explanation of how PDK1 contributes to upregulation of PD-L1 in ovarian cancer and highlight its potential as a target therapeutic molecule that cooperates with the immune checkpoint blockade.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Michelle K Siu
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Yu-Xin Jiang
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Thomas H Leung
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - David W Chan
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Ran-Ran Cheng
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Annie N Cheung
- Department of Pathology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Hextan Y Ngan
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Karen K Chan
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, Special Administrative Region of China
| |
Collapse
|
21
|
Wang T, McCullough LE, White AJ, Bradshaw PT, Xu X, Cho YH, Terry MB, Teitelbaum SL, Neugut AI, Santella RM, Chen J, Gammon MD. Prediagnosis aspirin use, DNA methylation, and mortality after breast cancer: A population-based study. Cancer 2019; 125:3836-3844. [PMID: 31402456 DOI: 10.1002/cncr.32364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The authors hypothesized that epigenetic changes may help to clarify the underlying biologic mechanism linking aspirin use to breast cancer prognosis. To the authors' knowledge, this is the first epidemiologic study to examine whether global methylation and/or tumor promoter methylation of breast cancer-related genes interact with aspirin use to impact mortality after breast cancer. METHODS Prediagnosis aspirin use was assessed through in-person interviews within a population-based cohort of 1508 women diagnosed with a first primary breast cancer in 1996 and 1997. Global methylation in peripheral blood was assessed by long interspersed elements-1 (LINE-1) and the luminometric methylation assay. Promoter methylation of 13 breast cancer-related genes was measured in tumor by methylation-specific polymerase chain reaction and the MethyLight assay. Vital status was determined by the National Death Index through December 31, 2014 (N = 202/476 breast cancer-specific/all-cause deaths identified among 1266 women with any methylation assessment and complete aspirin data). Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% CIs, and the likelihood ratio test was used to evaluate multiplicative interactions. RESULTS All-cause mortality was elevated among aspirin users who had methylated promotor of BRCA1 (HR, 1.67; 95% CI, 1.26-2.22), but not among those with unmethylated promoter of BRCA1 (HR, 0.99; 95% CI, 0.67-1.45; P for interaction ≤.05). Decreased breast cancer-specific mortality was observed among aspirin users who had unmethylated promotor of BRCA1 and PR and global hypermethylation of LINE-1 (HR, 0.60, 0.78, and 0.63, respectively; P for interaction ≤.05), although the 95% CIs included the null. CONCLUSIONS The current study suggests that the LINE-1 global methylation and promoter methylation of BRCA1 and PR in tumor may interact with aspirin use to influence mortality after breast cancer.
Collapse
Affiliation(s)
- Tengteng Wang
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Patrick T Bradshaw
- Division of Epidemiology, University of California, Berkeley, California
| | - Xinran Xu
- Department of Biometrics, Roche Product Development in Asia-Pacific, Shanghai, China
| | - Yoon Hee Cho
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Mary Beth Terry
- Department of Epidemiology, Columbia University, New York, New York
| | - Susan L Teitelbaum
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alfred I Neugut
- Department of Epidemiology, Columbia University, New York, New York.,Department of Medicine, Columbia University, New York, New York
| | | | - Jia Chen
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Kathawala RJ, Kudelka A, Rigas B. The Chemoprevention of Ovarian Cancer: the Need and the Options. CURRENT PHARMACOLOGY REPORTS 2018; 4:250-260. [PMID: 30363743 PMCID: PMC6182352 DOI: 10.1007/s40495-018-0133-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Ovarian cancer (OvCa) is the most lethal of all gynecological cancers, with a 5-year survival around 46%, mainly due to limitations in early diagnosis and treatment. Consequently, the chemoprevention of OvCa emerges as an important option to control this dismal disease. Here, we discuss the role of risk assessment in the design of chemoprevention strategies for OvCa, describe candidate agents, and assess future directions in this field. RECENT FINDINGS OvCa chemoprevention represents an opportunity for all women, especially those at high risk such as carriers of BRCA1 or BRCA2 mutations. The use of oral contraceptives confers substantial protection against OvCa including women at high risk, which increases with longer use. Despite strong evidence for their efficacy, safety concerns and the magnitude of the requisite interventional clinical trials seem to have precluded definitive studies of oral contraceptives for this application. Several other classes of drugs, including non-steroidal anti-inflammatory drugs, retinoids, angiopreventive agents, poly(ADP-ribose) polymerase inhibitors, and tyrosine kinase inhibitors have shown promise for OvCa chemoprevention. SUMMARY Currently, no agent is proven by interventional trials to possess chemopreventive properties against OvCa. The key opportunities in the chemoprevention of OvCa include the development of surrogate biomarkers for OvCa, the molecular definition of OvCa risk that will help select those who may benefit the most from chemoprevention, the identification of additional agents likely driven by understanding the molecular pathogenesis of OvCa, and the development of dedicated resources and support mechanisms for OvCa. Overall, there is significant optimism for the future of OvCa chemoprevention.
Collapse
Affiliation(s)
| | - Andrzej Kudelka
- Department of Medicine, Stony Brook University, Stony Brook, NY USA
| | - Basil Rigas
- Department of Medicine, Stony Brook University, Stony Brook, NY USA
| |
Collapse
|
23
|
Lu W, Wang L, Chen L, Hui S, Rabinowitz JD. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors. Antioxid Redox Signal 2018; 28:167-179. [PMID: 28497978 PMCID: PMC5737638 DOI: 10.1089/ars.2017.7014] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS Accurate analysis of dinucleotide redox cofactors nicotinamide adenine dinucleotide phosphate reduced (NADPH), nicotinamide adenine dinucleotide phosphate (NADP+), nicotinamide adenine dinucleotide reduced (NADH), and nicotinamide adenine dinucleotide (NAD+) from biological samples is important to understanding cellular redox homeostasis. In this study, we aimed to develop a simple protocol for quenching metabolism and extracting NADPH that avoids interconversion among the reduced forms and the oxidized forms. RESULTS We compared seven different solvents for quenching and extraction of cultured mammalian cells and mouse tissues: a cold aqueous buffer commonly used in enzyme assays with and without detergent, hot aqueous buffer, and cold organic mixtures (80% methanol, buffered 75% acetonitrile, and acidic 40:40:20 acetonitrile:methanol:water with either 0.02 M or 0.1 M formic acid). Extracts were analyzed by liquid chromatography-mass spectrometry (LC-MS). To monitor the metabolite interconversion, cells were grown in 13C6-glucose medium, and unlabeled standards were spiked into the extraction solvents. Interconversion between the oxidized and reduced forms was substantial except for the enzyme assay buffer with detergent, 80% methanol and 40:40:20 acetonitrile:methanol:water, with the 0.1 M formic acid mix giving the least interconversion and best recoveries. Absolute NAD+, NADH, NADP+, and NADPH concentrations in cells and mouse tissues were measured with this approach. INNOVATION We found that the interconversion between the reduced and oxidized forms during extraction is a major barrier to accurately measuring NADPH/NADP+ and NADH/NAD+ ratios. Such interconversion can be monitored by isotope labeling cells and spiking NAD(P)(H) standards. CONCLUSION Extraction with 40:40:20 acetonitrile:methanol:water with 0.1 M formic acid decreases interconversion and, therefore, is suitable for measurement of redox cofactor ratios using LC-MS. This solvent is also useful for general metabolomics. Samples should be neutralized immediately after extraction to avoid acid-catalyzed degradation. When LC-MS is not available and enzyme assays are accordingly used, inclusion of detergent in the aqueous extraction buffer reduces interconversion. Antioxid. Redox Signal. 28, 167-179.
Collapse
Affiliation(s)
- Wenyun Lu
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University , Princeton, New Jersey
| | - Lin Wang
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University , Princeton, New Jersey
| | - Li Chen
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University , Princeton, New Jersey
| | - Sheng Hui
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University , Princeton, New Jersey
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University , Princeton, New Jersey
| |
Collapse
|
24
|
Zhang J, Ming C, Zhang W, Okechukwu PN, Morak-Młodawska B, Pluta K, Jeleń M, Akim AM, Ang KP, Ooi KK. 10 H-3,6-Diazaphenothiazine induces G 2/M phase cell cycle arrest and caspase-dependent apoptosis and inhibits cell invasion of A2780 ovarian carcinoma cells through the regulation of NF-κB and (BIRC6-XIAP) complexes. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3045-3063. [PMID: 29123378 PMCID: PMC5661483 DOI: 10.2147/dddt.s144415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The asymptomatic properties and high treatment resistance of ovarian cancer result in poor treatment outcomes and high mortality rates. Although the fundamental chemotherapy provides promising anticancer activities, it is associated with severe side effects. The derivative of phenothiazine, namely, 10H-3,6-diazaphenothiazine (PTZ), was synthesized and reported with ideal anticancer effects in a previous paper. In this study, detailed anticancer properties of PTZ was examined on A2780 ovarian cancer cells by investigating the cytotoxicity profiles, mechanism of apoptosis, and cell invasion. Research outcomes revealed PTZ-induced dose-dependent inhibition on A2780 cancer cells (IC50 =0.62 µM), with significant less cytotoxicity toward HEK293 normal kidney cells and H9C2 normal heart cells. Generation of reactive oxygen species (ROS) and polarization of mitochondrial membrane potential (ΔΨm) suggests PTZ-induced cell death through oxidative damage. The RT2 Profiler PCR Array on apoptosis pathway demonstrated PTZ-induced apoptosis via intrinsic (mitochondria-dependent) and extrinsic (cell death receptor-dependent) pathway. Inhibition of NF-κB and subsequent inhibition of (BIRC6-XIAP) complex activities reduced the invasion rate of A2780 cancer cells penetrating through the Matrigel™ Invasion Chamber. Lastly, the cell cycle analysis hypothesizes that the compound is cytostatic and significantly arrests cell proliferation at G2/M phase. Hence, the exploration of the underlying anticancer mechanism of PTZ suggested its usage as promising chemotherapeutic agent.
Collapse
Affiliation(s)
- Jianxin Zhang
- Department of Gynecology and Obstetrics, Capital Medical University Affiliated Beijing Chaoyang Hospital, Beijing
| | - Chen Ming
- Department of Gynecologic Oncology, Taizhou People's Hospital, Jiangsu, People's Republic of China
| | | | | | - Beata Morak-Młodawska
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Krystian Pluta
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Małgorzata Jeleń
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine, The Medical University of Silesia, Sosnowiec, Poland
| | - Abdah Md Akim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
| | | | - Kah Kooi Ooi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang.,Research Centre for Crystaline Materials, School of Science and Technology, Sunway University, Petaling Jaya, Malaysia
| |
Collapse
|