1
|
Hydroxyurea and Caffeine Impact pRb-like Protein-Dependent Chromatin Architecture Profiles in Interphase Cells of Vicia faba. Int J Mol Sci 2021; 22:ijms22094572. [PMID: 33925461 PMCID: PMC8123844 DOI: 10.3390/ijms22094572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 01/04/2023] Open
Abstract
The survival of cells depends on their ability to replicate correctly genetic material. Cells exposed to replication stress can experience a number of problems that may lead to deregulated proliferation, the development of cancer, and/or programmed cell death. In this article, we have induced prolonged replication arrest via hydroxyurea (HU) treatment and also premature chromosome condensation (PCC) by co-treatment with HU and caffeine (CF) in the root meristem cells of Vicia faba. We have analyzed the changes in the activities of retinoblastoma-like protein (RbS807/811ph). Results obtained from the immunocytochemical detection of RbS807/811ph allowed us to distinguish five unique activity profiles of pRb. We have also performed detailed 3D modeling using Blender 2.9.1., based on the original data and some final conclusions. 3D models helped us to visualize better the events occurring within the nuclei and acted as a high-resolution aid for presenting the results. We have found that, despite the decrease in pRb activity, its activity profiles were mostly intact and clearly recognizable, with some local alterations that may correspond to the increased demand in transcriptional activity. Our findings suggest that Vicia faba’s ability to withstand harsh environments may come from its well-developed and highly effective response to replication stress.
Collapse
|
2
|
Liu F, Cai Y, Rong X, Chen J, Zheng D, Chen L, Zhang J, Luo R, Zhao P, Ruan J. MiR-661 promotes tumor invasion and metastasis by directly inhibiting RB1 in non small cell lung cancer. Mol Cancer 2017; 16:122. [PMID: 28716024 PMCID: PMC5514511 DOI: 10.1186/s12943-017-0698-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/11/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Aberrant microRNA expression has been implicated in metastasis of cancers. MiR-661 accelerates proliferation and invasion of breast cancer and ovarian cancer, while impedes that of glioma. Its role in non small cell lung cancer (NSCLC) and underlying mechanism are worthy elucidation. METHODS Expression of miR-661 was measured with real-time PCR in both NSCLC tissues and cell lines. The effects of miR-661 on migration, invasion and metastasis capacity of NSCLC were evaluated using wound healing, transwell assay and animal models. Dual reporter luciferase assay and complementary experiments were performed to validate RB1 as a direct target of miR-661 for participation in the progression of NSCLC. RESULTS MiR-661 was upregulated in NSCLC tissues as compared to paired adjacent tissues and associated with shorter overall survival. Furthermore, miR-661 promoted proliferation, migration and metastasis of NSCLC. Then, we identified RB1 as a direct target of miR-661 through which miR-661 affected EMT process and metastasis of NSCLC. RB1 interacted with E2F1 and both could mediate EMT process in NSCLC. CONCLUSION MiR-661 promotes metastasis of NSCLC through RB/E2F1 signaling and EMT events, thus may serves as a negative prognostic factor and possible target for treatment of NSCLC patient.
Collapse
Affiliation(s)
- Feiye Liu
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Yanjun Cai
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, 510010 China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Jinzhang Chen
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Dayong Zheng
- Department of Oncology, Nanfang Hospital, Southern medical University, Guangdong, 510515 China
| | - Lu Chen
- Center for Geriatrics, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, 510010 China
| | - Junyi Zhang
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Rongcheng Luo
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310003 China
| | - Jian Ruan
- Cancer Center, Traditional Chinese Medicine-Integrated Hospital, Southern medical University, Guangdong, 510315 China
| |
Collapse
|
3
|
Horvath BM, Kourova H, Nagy S, Nemeth E, Magyar Z, Papdi C, Ahmad Z, Sanchez-Perez GF, Perilli S, Blilou I, Pettkó-Szandtner A, Darula Z, Meszaros T, Binarova P, Bogre L, Scheres B. Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control. EMBO J 2017; 36:1261-1278. [PMID: 28320736 PMCID: PMC5412863 DOI: 10.15252/embj.201694561] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX-labelled DNA damage foci in an ATM- and ATR-dependent manner. These γH2AX-labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co-localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta Genetic interaction between the RBR-silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity.
Collapse
Affiliation(s)
- Beatrix M Horvath
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
- Department of Molecular Genetics, Utrecht University, Utrecht, The Netherlands
| | - Hana Kourova
- Institute of Microbiology CAS, v.v.i., Laboratory of Cell Reproduction, Prague 4, Czech Republic
| | - Szilvia Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Edit Nemeth
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
| | - Zoltan Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Csaba Papdi
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
| | - Zaki Ahmad
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
| | - Gabino F Sanchez-Perez
- Department of Plant Sciences, Wageningen University Research Centre, Wageningen, The Netherlands
| | - Serena Perilli
- Department of Plant Sciences, Wageningen University Research Centre, Wageningen, The Netherlands
| | - Ikram Blilou
- Department of Plant Sciences, Wageningen University Research Centre, Wageningen, The Netherlands
| | | | - Zsuzsanna Darula
- Laboratory of Proteomic Research, Biological Research Centre, Szeged, Hungary
| | - Tamas Meszaros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- Technical Analytical Research Group of HAS, Budapest, Hungary
| | - Pavla Binarova
- Institute of Microbiology CAS, v.v.i., Laboratory of Cell Reproduction, Prague 4, Czech Republic
| | - Laszlo Bogre
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
| | - Ben Scheres
- Department of Molecular Genetics, Utrecht University, Utrecht, The Netherlands
- Department of Plant Sciences, Wageningen University Research Centre, Wageningen, The Netherlands
| |
Collapse
|
4
|
Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53:972-90. [PMID: 25183546 DOI: 10.1002/gcc.22214] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 08/15/2014] [Indexed: 01/14/2023] Open
Abstract
Cytogenetic alterations underlie the development of head and neck squamous cell carcinoma (HNSCC), whether tobacco and alcohol use, betel nut chewing, snuff or human papillomavirus (HPV) causes the disease. Many of the molecular genetic aberrations in HNSCC result from these cytogenetic alterations. This review presents a brief introduction to the epidemiology of HNSCC, and discusses the role of HPV in the disease, cytogenetic alterations and their frequencies in HNSCC, their molecular genetic and The Cancer Genome Atlas (TCGA) correlates, prognostic implications, and possible therapeutic considerations. The most frequent cytogenetic alterations in HNSCC are gains of 5p14-15, 8q11-12, and 20q12-13, gains or amplifications of 3q26, 7p11, 8q24, and 11q13, and losses of 3p, 4q35, 5q12, 8p23, 9p21-24, 11q14-23, 13q12-14, 18q23, and 21q22. To understand their effects on tumor cell biology and response to therapy, the cytogenetic findings in HNSCC are increasingly being examined in the context of the biochemical pathways they disrupt. The goal is to minimize morbidity and mortality from HNSCC using cytogenetic abnormalities to identify valuable diagnostic biomarkers for HNSCC, prognostic biomarkers of tumor behavior, recurrence risk, and outcome, and predictive biomarkers of therapeutic response to identify the most efficacious treatment for each individual patient's tumor, all based on a detailed understanding of the next generation biology of HNSCC.
Collapse
Affiliation(s)
- Susanne M Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA; Departments of Otolaryngology and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; University of Pittsburgh Cancer Institute, Pittsburgh, PA
| |
Collapse
|