1
|
Mosialou I, Ali AM, Labella R, Bisikirska B, Cuesta-Dominguez A, Vgenopoulou P, Reyes I, Rao SM, Wang A, Luo N, Galan-Diez M, Zhao J, Chernak BJ, Bewersdorf JP, Fukasawa K, Su J, Higa J, Adams RA, Corper AL, Pampou S, Woods CM, Fan X, Shah RP, Feldstein J, Liu N, Liang C, Heiblig M, Kornblau S, Garcia-Manero G, Berman E, Jurcic JG, Rabadan R, Raza A, Kousteni S. A niche driven mechanism determines response and a mutation-independent therapeutic approach for myeloid malignancies. Cancer Cell 2025:S1535-6108(25)00108-4. [PMID: 40154481 DOI: 10.1016/j.ccell.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/14/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Myeloid cancers such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) remain resistant to standard of care (SOC) and targeted therapies. In this study, we demonstrate that responsiveness to therapy is associated with activation of β-catenin-JAG1 in osteoblastic cells of patients treated with all-trans-retinoic acid (ATRA). ATRA suppresses β-catenin activity in patients and leukemic mice. Consequently, it inhibits the growth and survival of MDS/AML cells from patients with active β-catenin-JAG1 signaling and promotes their differentiation. This occurs independently of cytogenetics and mutational profile. ATRA also improves disease outcome in mice with no evidence of relapse and a superior safety profile to SOC. A human anti-JAG1 antibody improves efficacy in leukemic mice and patient-derived MDS/AML cells. β-catenin activation provides an explanation for the differential response to ATRA and a mechanistic biomarker for ATRA repurposing in myeloid malignancies, potentially evading relapse and extending across a broad range of cancers.
Collapse
Affiliation(s)
- Ioanna Mosialou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA; Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA.
| | - Abdullah M Ali
- Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY 10032, USA; Myelodysplastic Syndromes Center, Columbia University, New York, NY 10032, USA
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Brygida Bisikirska
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Alvaro Cuesta-Dominguez
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Paraskevi Vgenopoulou
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Ismarc Reyes
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Sanjana M Rao
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Anqi Wang
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Na Luo
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Marta Galan-Diez
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Junfei Zhao
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Brian J Chernak
- Department of Med Hematology & Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Kazuya Fukasawa
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Jiayu Su
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | - Sergey Pampou
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | - Roshan P Shah
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Julie Feldstein
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Na Liu
- Department of Hematology, Institute of Hematology, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Cui Liang
- Department of Hematology, Institute of Hematology, First Affiliated Hospital, Naval Medical University, Shanghai 200433, China
| | - Maël Heiblig
- Department of Hematology Centre Hospitalier Lyon Sud, 69495 Lyon, France
| | - Steven Kornblau
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ellin Berman
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph G Jurcic
- Department of Med Hematology & Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Raul Rabadan
- Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA; Program for Mathematical Genomics, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Azra Raza
- Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY 10032, USA; Myelodysplastic Syndromes Center, Columbia University, New York, NY 10032, USA; Department of Med Hematology & Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA; Edward P. Evans for Myelodysplastic Syndromes at Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY 10032, USA; Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
2
|
Garg B, Khan S, Courelli AS, Panneerpandian P, Sheik Pran Babu D, Mose ES, Gulay KCM, Sharma S, Sood D, Wenzel AT, Martsinkovskiy A, Rajbhandari N, Patel J, Jaquish D, Esparza E, Jaque K, Aggarwal N, Lambies G, D’Ippolito A, Austgen K, Johnston B, Orlando DA, Jang GH, Gallinger S, Goodfellow E, Brodt P, Commisso C, Tamayo P, Mesirov JP, Tiriac H, Lowy AM. MICAL2 Promotes Pancreatic Cancer Growth and Metastasis. Cancer Res 2025; 85:1049-1063. [PMID: 39745352 PMCID: PMC11907191 DOI: 10.1158/0008-5472.can-24-0744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/11/2024] [Accepted: 12/18/2024] [Indexed: 02/23/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers; thus, identifying more effective therapies is a major unmet need. In this study, we characterized the super-enhancer (SE) landscape of human PDAC to identify drivers of the disease that might be targetable. This analysis revealed MICAL2 as an SE-associated gene in human PDAC, which encodes the flavin monooxygenase enzyme that induces actin depolymerization and indirectly promotes serum response factor transcription by modulating the availability of serum response factor coactivators such as myocardin-related transcription factors (MRTF-A and MRTF-B). MICAL2 was overexpressed in PDAC, and high-MICAL2 expression correlated with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and epithelial-mesenchymal transition signaling pathways, contributing to tumor growth and metastasis. In loss- and gain-of-function experiments in human and mouse PDAC cells, MICAL2 promoted both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 also inhibited macropinocytosis. MICAL2, MRTF-A, and MRTF-B influenced PDAC cell proliferation and migration and promoted cell-cycle progression in vitro. Importantly, MICAL2 supported in vivo tumor growth and metastasis. Interestingly, MRTF-B, but not MRTF-A, phenocopied MICAL2-driven phenotypes in vivo. This study highlights the multiple ways in which MICAL2 affects PDAC biology and provides a foundation for future investigations into the potential of targeting MICAL2 for therapeutic intervention. Significance: Characterization of the epigenomic landscape of pancreatic cancer to identify early drivers of tumorigenesis uncovered MICAL2 as a super-enhancer-associated gene critical for tumor progression that represents a potential pharmacologic target.
Collapse
Affiliation(s)
- Bharti Garg
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Sohini Khan
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Asimina S. Courelli
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Ponmathi Panneerpandian
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Deepa Sheik Pran Babu
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Evangeline S. Mose
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Kevin Christian Montecillo Gulay
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Shweta Sharma
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Divya Sood
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Alexander T. Wenzel
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Alexei Martsinkovskiy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Nirakar Rajbhandari
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jay Patel
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Dawn Jaquish
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Edgar Esparza
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Katelin Jaque
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Neetu Aggarwal
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | | | | | | | | | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Elliot Goodfellow
- Department of Surgery, McGill University, Montreal, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Pnina Brodt
- Department of Surgery, McGill University, Montreal, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Oncology, McGill University, Montreal, Canada
- Department of Medicine, McGill University, Montreal, Canada
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Pablo Tamayo
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Jill P. Mesirov
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Hervé Tiriac
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Andrew M. Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
Yang J, Zhou F, Luo X, Fang Y, Wang X, Liu X, Xiao R, Jiang D, Tang Y, Yang G, You L, Zhao Y. Enhancer reprogramming: critical roles in cancer and promising therapeutic strategies. Cell Death Discov 2025; 11:84. [PMID: 40032852 DOI: 10.1038/s41420-025-02366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 01/24/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Transcriptional dysregulation is a hallmark of cancer initiation and progression, driven by genetic and epigenetic alterations. Enhancer reprogramming has emerged as a pivotal driver of carcinogenesis, with cancer cells often relying on aberrant transcriptional programs. The advent of high-throughput sequencing technologies has provided critical insights into enhancer reprogramming events and their role in malignancy. While targeting enhancers presents a promising therapeutic strategy, significant challenges remain. These include the off-target effects of enhancer-targeting technologies, the complexity and redundancy of enhancer networks, and the dynamic nature of enhancer reprogramming, which may contribute to therapeutic resistance. This review comprehensively encapsulates the structural attributes of enhancers, delineates the mechanisms underlying their dysregulation in malignant transformation, and evaluates the therapeutic opportunities and limitations associated with targeting enhancers in cancer.
Collapse
Affiliation(s)
- Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, PR China.
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, PR China.
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, PR China.
| |
Collapse
|
4
|
Hochman MJ, Muniz JP, Papadantonakis N. Precision Medicine in Myeloid Neoplasia: Challenges and Opportunities. J Pers Med 2025; 15:49. [PMID: 39997326 PMCID: PMC11856194 DOI: 10.3390/jpm15020049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
High-risk myeloid neoplasms encompass a group of hematologic malignancies known to cause significant cytopenias, which are accompanied by the risk of end-organ damage. They tend to have an aggressive clinical course and limit life expectancy in the absence of effective treatments. The adoption of precision medicine approaches has been limited by substantive diversity in somatic mutations, limited fraction of patients with targetable genetic lesions, and the prolonged turnaround times of pertinent genetic tests. Efforts to incorporate targeted agents into first-line treatment, rapidly determine pre-treatment molecular or cytogenetic aberrations, and evaluate functional vulnerabilities ex vivo hold promise for advancing the use of precision medicine in these malignancies. Given the relative accessibility of malignant cells from blood and bone marrow, precision medicine strategies hold great potential to shape future standard-of-care approaches to patients with high-risk myeloid malignancies. This review aims to summarize the development of the targeted therapies currently available to treat these blood cancers, most notably acute myeloid leukemia, and also evaluate future opportunities and challenges related to the integration of personalized approaches.
Collapse
Affiliation(s)
- Michael J. Hochman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Joshua P. Muniz
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Aflac Cancer & Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
| | - Nikolaos Papadantonakis
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Hochman MJ, DeZern AE. SOHO State of the Art Updates and Next Questions: An Update on Higher Risk Myelodysplastic Syndromes. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:573-582. [PMID: 38594129 DOI: 10.1016/j.clml.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
Higher-risk myelodysplastic syndromes (HR-MDS) are clonal myeloid neoplasms that cause life-limiting complications from severe cytopenias and leukemic transformation. Efforts to better classify, prognosticate, and assess therapeutic responses in HR-MDS have resulted in publication of new clinical tools in the last several years. Given limited current treatment options and suboptimal outcomes, HR-MDS stands to benefit from the study of investigational agents.Higher-risk myelodysplastic syndromes (HR-MDS) are a heterogenous group of clonal myeloid-lineage malignancies often characterized by high-risk genetic lesions, increased blood transfusion needs, constitutional symptoms, elevated risk of progression to acute myeloid leukemia (AML), and therapeutic need for allogeneic bone marrow transplantation. Use of blast percentage and other morphologic features to define myelodysplastic neoplasm subtypes is rapidly shifting to incorporate genetics, resulting in a subset of former HR-MDS patients now being considered as AML in presence of leukemia-defining genetic alterations. A proliferation of prognostic tools has further focused use of genetic features to drive decision making in clinical management. Recently, criteria to assess response of HR-MDS to therapy were revised to incorporate more clinically meaningful endpoints and better match AML response criteria. Basic science investigations have resulted in improved understanding of the relationship between MDS genetic lesions, bone marrow stromal changes, germline predispositions, and disease phenotype. However, therapeutic advances have been more limited. There has been import of the IDH1 inhibitor ivosidenib, initially approved for AML; the Bcl-2 inhibitor venetoclax and liposomal daunorubicin/cytarabine (CPX-351) are under active investigation as well. Unfortunately, effective treatment of TP53-mutated disease remains elusive, though preliminary evidence suggests improved outcomes with oral decitabine/cedazuridine over parenteral hypomethylating agent monotherapy. Investigational agents with novel mechanisms of action may help expand the repertoire of treatment options for HR-MDS and trials continue to offer a hopeful therapeutic avenue for suitable patients.
Collapse
Affiliation(s)
- Michael J Hochman
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | - Amy E DeZern
- Division of Hematological Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
6
|
Garg B, Khan S, Babu DS, Mose E, Gulay K, Sharma S, Sood D, Wenzel AT, Martsinkovskiy A, Patel J, Jaquish D, Lambies G, D'Ippolito A, Austgen K, Johnston B, Orlando D, Jang GH, Gallinger S, Goodfellow E, Brodt P, Commisso C, Tamayo P, Mesirov JP, Tiriac H, Lowy AM. MICAL2 Is a Super Enhancer Associated Gene that Promotes Pancreatic Cancer Growth and Metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600548. [PMID: 38979336 PMCID: PMC11230455 DOI: 10.1101/2024.06.26.600548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers and thus identifying more effective therapies is a major unmet need. In this study we characterized the super enhancer (SE) landscape of human PDAC to identify novel, potentially targetable, drivers of the disease. Our analysis revealed that MICAL2 is a super enhancer-associated gene in human PDAC. MICAL2 is a flavin monooxygenase that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin related transcription factors (MRTF-A and MRTF-B). We found that MICAL2 is overexpressed in PDAC and correlates with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, we observed that MICAL2 promotes both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 expression also inhibited macropinocytosis. Through in vitro phenotypic analyses, we show that MICAL2, MRTF-A and MRTF-B influence PDAC cell proliferation, migration and promote cell cycle progression. Importantly, we demonstrate that MICAL2 is essential for in vivo tumor growth and metastasis. Interestingly, we find that MRTF-B, but not MRTF-A, phenocopies MICAL2-driven phenotypes in vivo . This study highlights the multiple ways in which MICAL2 impacts PDAC biology and suggests that its inhibition may impede PDAC progression. Our results provide a foundation for future investigations into the role of MICAL2 in PDAC and its potential as a target for therapeutic intervention.
Collapse
|
7
|
Köhnke T, Nuno KA, Alder CC, Gars EJ, Phan P, Fan AC, Majeti R. Human ASXL1-Mutant Hematopoiesis Is Driven by a Truncated Protein Associated with Aberrant Deubiquitination of H2AK119. Blood Cancer Discov 2024; 5:202-223. [PMID: 38359087 PMCID: PMC11061584 DOI: 10.1158/2643-3230.bcd-23-0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in additional sex combs like 1 (ASXL1) confer poor prognosis both in myeloid malignancies and in premalignant clonal hematopoiesis (CH). However, the mechanisms by which these mutations contribute to disease initiation remain unresolved, and mutation-specific targeting has remained elusive. To address this, we developed a human disease model that recapitulates the disease trajectory from ASXL1-mutant CH to lethal myeloid malignancy. We demonstrate that mutations in ASXL1 lead to the expression of a functional, truncated protein and determine that truncated ASXL1 leads to global redistribution of the repressive chromatin mark H2AK119Ub, increased transposase-accessible chromatin, and activation of both myeloid and stem cell gene-expression programs. Finally, we demonstrate that H2AK119Ub levels are tied to truncated ASXL1 expression levels and leverage this observation to demonstrate that inhibition of the PRC1 complex might be an ASXL1-mutant-specific therapeutic vulnerability in both premalignant CH and myeloid malignancy. SIGNIFICANCE Mutant ASXL1 is a common driver of CH and myeloid malignancy. Using primary human HSPCs, we determine that truncated ASXL1 leads to redistribution of H2AK119Ub and may affect therapeutic vulnerability to PRC1 inhibition.
Collapse
Affiliation(s)
- Thomas Köhnke
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Kevin A. Nuno
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | | | - Eric J. Gars
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Paul Phan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Amy C. Fan
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California
- Stanford School of Medicine, Stanford, California
| |
Collapse
|
8
|
Nuno K, Azizi A, Koehnke T, Lareau C, Ediriwickrema A, Corces MR, Satpathy AT, Majeti R. Convergent epigenetic evolution drives relapse in acute myeloid leukemia. eLife 2024; 13:e93019. [PMID: 38647535 PMCID: PMC11034943 DOI: 10.7554/elife.93019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.
Collapse
Affiliation(s)
- Kevin Nuno
- Cancer Biology Graduate Program, Stanford University School of MedicineStanfordUnited States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
| | - Armon Azizi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
- University of California Irvine School of MedicineIrvineUnited States
| | - Thomas Koehnke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
| | - Caleb Lareau
- Department of Pathology, Stanford UniversityStanfordUnited States
- Program in Immunology, Stanford UniversityStanfordUnited States
| | - Asiri Ediriwickrema
- Cancer Biology Graduate Program, Stanford University School of MedicineStanfordUnited States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
| | - M Ryan Corces
- Cancer Biology Graduate Program, Stanford University School of MedicineStanfordUnited States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
- Gladstone Institute of Neurological DiseaseSan FranciscoUnited States
- Gladstone Institute of Data Science and BiotechnologySan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Ansuman T Satpathy
- Department of Pathology, Stanford UniversityStanfordUnited States
- Program in Immunology, Stanford UniversityStanfordUnited States
- Parker Institute for Cancer Immunotherapy, Stanford UniversityStanfordUnited States
- Gladstone-UCSF Institute of Genomic ImmunologySan FranciscoUnited States
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of MedicineStanfordUnited States
- Cancer Institute, Stanford University School of MedicineStanfordUnited States
- Department of Medicine, Division of Hematology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
9
|
Bercier P, de Thé H. History of Developing Acute Promyelocytic Leukemia Treatment and Role of Promyelocytic Leukemia Bodies. Cancers (Basel) 2024; 16:1351. [PMID: 38611029 PMCID: PMC11011038 DOI: 10.3390/cancers16071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The story of acute promyelocytic leukemia (APL) discovery, physiopathology, and treatment is a unique journey, transforming the most aggressive form of leukemia to the most curable. It followed an empirical route fueled by clinical breakthroughs driving major advances in biochemistry and cell biology, including the discovery of PML nuclear bodies (PML NBs) and their central role in APL physiopathology. Beyond APL, PML NBs have emerged as key players in a wide variety of biological functions, including tumor-suppression and SUMO-initiated protein degradation, underscoring their broad importance. The APL story is an example of how clinical observations led to the incremental development of the first targeted leukemia therapy. The understanding of APL pathogenesis and the basis for cure now opens new insights in the treatment of other diseases, especially other acute myeloid leukemias.
Collapse
Affiliation(s)
- Pierre Bercier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, 75231 Paris, France;
- GenCellDis, Inserm U944, CNRS UMR7212, Université Paris Cité, 75010 Paris, France
- Hematology Laboratory, Hôpital St Louis, AP/HP, 75010 Paris, France
| |
Collapse
|
10
|
Fleischmann M, Bechwar J, Voigtländer D, Fischer M, Schnetzke U, Hochhaus A, Scholl S. Synergistic Effects of the RAR alpha Agonist Tamibarotene and the Menin Inhibitor Revumenib in Acute Myeloid Leukemia Cells with KMT2A Rearrangement or NPM1 Mutation. Cancers (Basel) 2024; 16:1311. [PMID: 38610989 PMCID: PMC11011083 DOI: 10.3390/cancers16071311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Inhibition of menin in acute myeloid leukemia (AML) harboring histone-lysine-N-methyltransferase 2A rearrangement (KMT2Ar) or the mutated Nucleophosmin gene (NPM1c) is considered a novel and effective treatment approach in these patients. However, rapid acquisition of resistance mutations can impair treatment success. In patients with elevated retinoic acid receptor alpha (RARA) expression levels, promising effects are demonstrated by the next-generation RARalpha agonist tamibarotene, which restores differentiation or induces apoptosis. In this study, the combination of revumenib and tamibarotene was investigated in various KMT2Ar or NPM1c AML cell lines and patient-derived blasts, focusing on the potential synergistic induction of differentiation or apoptosis. Both effects were analyzed by flow cytometry and validated by Western blot analysis. Synergy calculations were performed using viability assays. Regulation of the relevant key mediators for the MLL complex were quantified by RT-qPCR. In MV4:11 cells characterized by the highest relative mRNA levels of RARA, highly synergistic induction of apoptosis is demonstrated upon combination treatment. Induction of apoptosis by combined treatment of MV4:11 cells is accompanied by pronounced induction of the pro-apoptotic protein BAX and a synergistic reduction in CDK6 mRNA levels. In MOLM13 and OCI-AML3 cells, an increase in differentiation markers like PU.1 or a decreased ratio of phosphorylated to total CEBPA is demonstrated. In parts, corresponding effects were observed in patient-derived AML cells carrying either KMT2Ar or NPM1c. The impact of revumenib on KMT2Ar or NPM1c AML cells was significantly enhanced when combined with tamibarotene, demonstrating synergistic differentiation or apoptosis initiation. These findings propose promising strategies for relapsed/refractory AML patients with defined molecular characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sebastian Scholl
- Abteilung Hämatologie und Internistische Onkologie, Klinik für Innere Medizin II, Universitätsklinikum Jena, Comprehensive Cancer Central Germany—Campus Jena, 07743 Jena, Germany; (M.F.); (J.B.); (D.V.); (M.F.); (U.S.); (A.H.)
| |
Collapse
|
11
|
Stein EM, de Botton S, Cluzeau T, Pigneux A, Liesveld JL, Cook RJ, Rousselot P, Rizzieri DA, Braun T, Roboz GJ, Lebon D, Heiblig M, Baker K, Volkert A, Paul S, Rajagopal N, Roth DA, Kelly M, Peterlin P. Use of tamibarotene, a potent and selective RARα agonist, in combination with azacitidine in patients with relapsed and refractory AML with RARA gene overexpression. Leuk Lymphoma 2023; 64:1992-2001. [PMID: 37571998 DOI: 10.1080/10428194.2023.2243356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Tamibarotene-based therapy is a novel targeted approach for the treatment of relapsed/refractory (R/R) acute myeloid leukemia (AML) with retinoic acid receptor alpha (RARA) gene overexpression. Approximately, 50% of higher-risk myelodysplastic syndrome (MDS) patients and approximately 30% of AML patients are positive for RARA overexpression using a blood-based biomarker test that measures RARA expression in peripheral blasts. A phase 2 study investigating the activity of tamibarotene in patients with RARA overexpression was conducted in patients with AML and MDS (NCT02807558). In 28 patients with R/R AML and RARA overexpression treated with tamibarotene in combination with azacitidine, the median overall survival was 5.9 months. In 21 response-evaluable patients, the complete remission/complete remission with incomplete hematologic recovery (CR/CRi) rate was 19%, and median time to initial CR/CRi was 1.2 months. The favorable safety profile and preliminary clinical activity support the development of combination therapies with tamibarotene in myeloid malignancies with RARA overexpression.
Collapse
Affiliation(s)
- Eytan M Stein
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Thomas Cluzeau
- Côte d'Azur University, CHU de Nice Hôpital, Nice, France
| | - Arnaud Pigneux
- Hematology Clinic, Bordeaux University Hospital, Bordeaux University, Bordeaux, France
| | | | - Rachel J Cook
- Division of Hematology/Medical Oncology, Oregon Health and Science University, Portland, OR
| | - Philippe Rousselot
- Centre Hospitalier de Versailles, Université Paris-Saclay, Versailles, France
| | | | - Thorsten Braun
- Centre Hospitalier Universitiaire Hôpital Avicenne, Bobigny, France
| | - Gail J Roboz
- Weill Cornell Medicine and the New York Presbyterian Hospital, New York, NY, USA
| | | | - Mael Heiblig
- Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | | | | | - Sofia Paul
- Syros Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
12
|
Nuno KA, Azizi A, Köhnke T, Lareau CA, Ediwirickrema A, Ryan Corces M, Satpathy AT, Majeti R. Convergent Epigenetic Evolution Drives Relapse in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561642. [PMID: 37873452 PMCID: PMC10592718 DOI: 10.1101/2023.10.10.561642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.
Collapse
Affiliation(s)
- Kevin A Nuno
- Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed to this work equally
| | - Armon Azizi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- University of California Irvine School of Medicine, Irvine, California
- These authors contributed to this work equally
| | - Thomas Köhnke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Asiri Ediwirickrema
- Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
- Gladstone Institute of Neurological Disease, San Francisco, California
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California
- Department of Neurology, University of California San Francisco, San Francisco, California
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Patel SA. Precision and strategic targeting of novel mutation-specific vulnerabilities in acute myeloid leukemia: the semi-centennial of 7 + 3. Leuk Lymphoma 2023; 64:1503-1513. [PMID: 37328939 PMCID: PMC10913147 DOI: 10.1080/10428194.2023.2224473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
The year 2023 marks the semi-centennial of the introduction of classic '7 + 3' chemotherapy for acute myeloid leukemia (AML) in 1973. It also marks the decennial of the first comprehensive sequencing efforts from The Cancer Genome Atlas (TCGA), which revealed that dozens of unique genes are recurrently mutated in AML genomes. Although more than 30 distinct genes have been implicated in AML pathogenesis, the current therapeutic armamentarium that is commercially available only targets FLT3 and IDH1/2 mutations, with olutasidenib as the most recent addition. This focused review spotlights management approaches that exploit the exquisite molecular dependencies of specific subsets of AML, with an emphasis on emerging therapies in the pipeline, including agents targeting TP53-mutant cells. We summarize precision and strategic targeting of AML based on leveraging functional dependencies and explore how mechanisms involving critical gene products can inform rational therapeutic design in 2024.
Collapse
Affiliation(s)
- Shyam A Patel
- Department of Medicine, Division of Hematology/Oncology, UMass Memorial Medical Center, Center for Clinical & Translational Science, UMass Chan Medical School, Worcester, MA, USA
| |
Collapse
|
14
|
Camera F, Romero-Camarero I, Revell BH, Amaral FM, Sinclair OJ, Simeoni F, Wiseman DH, Stojic L, Somervaille TC. Differentiation block in acute myeloid leukemia regulated by intronic sequences of FTO. iScience 2023; 26:107319. [PMID: 37539037 PMCID: PMC10393733 DOI: 10.1016/j.isci.2023.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Iroquois transcription factor gene IRX3 is highly expressed in 20-30% of acute myeloid leukemia (AML) and contributes to the pathognomonic differentiation block. Intron 8 FTO sequences ∼220kB downstream of IRX3 exhibit histone acetylation, DNA methylation, and contacts with the IRX3 promoter, which correlate with IRX3 expression. Deletion of these intronic elements confirms a role in positively regulating IRX3. RNAseq revealed long non-coding (lnc) transcripts arising from this locus. FTO-lncAML knockdown (KD) induced differentiation of AML cells, loss of clonogenic activity, and reduced FTO intron 8:IRX3 promoter contacts. While both FTO-lncAML KD and IRX3 KD induced differentiation, FTO-lncAML but not IRX3 KD led to HOXA downregulation suggesting transcript activity in trans. FTO-lncAMLhigh AML samples expressed higher levels of HOXA and lower levels of differentiation genes. Thus, a regulatory module in FTO intron 8 consisting of clustered enhancer elements and a long non-coding RNA is active in human AML, impeding myeloid differentiation.
Collapse
Affiliation(s)
- Francesco Camera
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Bradley H. Revell
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Fabio M.R. Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Oliver J. Sinclair
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Daniel H. Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, M20 4GJ Manchester, UK
| | - Lovorka Stojic
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Tim C.P. Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| |
Collapse
|
15
|
Nagai Y, Ambinder AJ. The Promise of Retinoids in the Treatment of Cancer: Neither Burnt Out Nor Fading Away. Cancers (Basel) 2023; 15:3535. [PMID: 37509198 PMCID: PMC10377082 DOI: 10.3390/cancers15143535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Since the introduction of all-trans retinoic acid (ATRA), acute promyelocytic leukemia (APL) has become a highly curable malignancy, especially in combination with arsenic trioxide (ATO). ATRA's success has deepened our understanding of the role of the RARα pathway in normal hematopoiesis and leukemogenesis, and it has influenced a generation of cancer drug development. Retinoids have also demonstrated some efficacy in a handful of other disease entities, including as a maintenance therapy for neuroblastoma and in the treatment of cutaneous T-cell lymphomas; nevertheless, the promise of retinoids as a differentiating therapy in acute myeloid leukemia (AML) more broadly, and as a cancer preventative, have largely gone unfulfilled. Recent research into the mechanisms of ATRA resistance and the biomarkers of RARα pathway dysregulation in AML have reinvigorated efforts to successfully deploy retinoid therapy in a broader subset of myeloid malignancies. Recent studies have demonstrated that the bone marrow environment is highly protected from exogenous ATRA via local homeostasis controlled by stromal cells expressing CYP26, a key enzyme responsible for ATRA inactivation. Synthetic CYP26-resistant retinoids such as tamibarotene bypass this stromal protection and have shown superior anti-leukemic effects. Furthermore, recent super-enhancer (SE) analysis has identified a novel AML subgroup characterized by high expression of RARα through strong SE levels in the gene locus and increased sensitivity to tamibarotene. Combined with a hypomethylating agent, synthetic retinoids have shown synergistic anti-leukemic effects in non-APL AML preclinical models and are now being studied in phase II and III clinical trials.
Collapse
Affiliation(s)
- Yuya Nagai
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe 650-0047, Hyogo, Japan
| | - Alexander J Ambinder
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
16
|
Zhou RW, Parsons RE. Etiology of super-enhancer reprogramming and activation in cancer. Epigenetics Chromatin 2023; 16:29. [PMID: 37415185 DOI: 10.1186/s13072-023-00502-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Super-enhancers are large, densely concentrated swaths of enhancers that regulate genes critical for cell identity. Tumorigenesis is accompanied by changes in the super-enhancer landscape. These aberrant super-enhancers commonly form to activate proto-oncogenes, or other genes upon which cancer cells depend, that initiate tumorigenesis, promote tumor proliferation, and increase the fitness of cancer cells to survive in the tumor microenvironment. These include well-recognized master regulators of proliferation in the setting of cancer, such as the transcription factor MYC which is under the control of numerous super-enhancers gained in cancer compared to normal tissues. This Review will cover the expanding cell-intrinsic and cell-extrinsic etiology of these super-enhancer changes in cancer, including somatic mutations, copy number variation, fusion events, extrachromosomal DNA, and 3D chromatin architecture, as well as those activated by inflammation, extra-cellular signaling, and the tumor microenvironment.
Collapse
Affiliation(s)
- Royce W Zhou
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Molecular Medicine Program, University of California San Francisco Internal Medicine Residency, San Francisco, CA, USA
| | - Ramon E Parsons
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Pan F, Iwasaki M, Wu W, Jiang Y, Yang X, Zhu L, Zhao Z, Cleary ML. Enhancer remodeling drives MLL oncogene-dependent transcriptional dysregulation in leukemia stem cells. Blood Adv 2023; 7:2504-2519. [PMID: 36705973 PMCID: PMC10248086 DOI: 10.1182/bloodadvances.2022008787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/12/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Acute myeloid leukemia (AML) with mixed-lineage leukemia (MLL) gene rearrangement (MLLr) comprises a cellular hierarchy in which a subpopulation of cells serves as functional leukemia stem cells (LSCs). They are maintained by a unique gene expression program and chromatin states, which are thought to reflect the actions of enhancers. Here, we delineate the active enhancer landscape and observe pervasive enhancer malfunction in LSCs. Reconstruction of regulatory networks revealed a master set of hematopoietic transcription factors. We show that EP300 is an essential transcriptional coregulator for maintaining LSC oncogenic potential because it controls essential gene expression through modulation of H3K27 acetylation and assessments of transcription factor dependencies. Moreover, the EP300 inhibitor A-485 affects LSC growth by targeting enhancer activity via histone acetyltransferase domain inhibition. Together, these data implicate a perturbed MLLr-specific enhancer accessibility landscape, suggesting the possibility for disruption of the LSC enhancer regulatory axis as a promising therapeutic strategy in AML.
Collapse
Affiliation(s)
- Feng Pan
- Department of Pathology, Stanford University, Stanford, CA
| | - Masayuki Iwasaki
- Department of Pathology, Stanford University, Stanford, CA
- Department of Advanced Health Science, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo, Japan
| | - Wenqi Wu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Yanan Jiang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Xin Yang
- Department of Pathology, Stanford University, Stanford, CA
| | - Li Zhu
- Department of Pathology, Stanford University, Stanford, CA
| | - Zhigang Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | | |
Collapse
|
18
|
Turkalj S, Radtke FA, Vyas P. An Overview of Targeted Therapies in Acute Myeloid Leukemia. Hemasphere 2023; 7:e914. [PMID: 37304938 PMCID: PMC10256410 DOI: 10.1097/hs9.0000000000000914] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/13/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most aggressive adult leukemia, characterized by clonal differentiation arrest of progenitor or precursor hematopoietic cells. Intense preclinical and clinical research has led to regulatory approval of several targeted therapeutics, administered either as single agents or as combination therapies. However, the majority of patients still face a poor prognosis and disease relapse frequently occurs due to selection of therapy-resistant clones. Hence, more effective novel therapies, most likely as innovative, rational combination therapies, are urgently needed. Chromosomal aberrations, gene mutations, and epigenetic alterations drive AML pathogenesis but concurrently provide vulnerabilities to specifically target leukemic cells. Other molecules, either aberrantly active and/or overexpressed in leukemic stem cells, may also be leveraged for therapeutic benefit. This concise review of targeted therapies for AML treatment, which are either approved or are being actively investigated in clinical trials or recent preclinical studies, provides a flavor of the direction of travel, but also highlights the current challenges in AML treatment.
Collapse
Affiliation(s)
- Sven Turkalj
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Felix A. Radtke
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paresh Vyas
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, United Kingdom
- Oxford Centre for Hematology, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Hematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
19
|
Mill CP, Fiskus W, Das K, Davis JA, Birdwell CE, Kadia TM, DiNardo CD, Daver N, Takahashi K, Sasaki K, McGeehan GM, Ruan X, Su X, Loghavi S, Kantarjian H, Bhalla KN. Causal linkage of presence of mutant NPM1 to efficacy of novel therapeutic agents against AML cells with mutant NPM1. Leukemia 2023; 37:1336-1348. [PMID: 36977823 PMCID: PMC10244173 DOI: 10.1038/s41375-023-01882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
In AML with NPM1 mutation causing cytoplasmic dislocation of NPM1, treatments with Menin inhibitor (MI) and standard AML chemotherapy yield complete remissions. However, the causal and mechanistic linkage of mtNPM1 to the efficacy of these agents has not been definitively established. Utilizing CRISPR-Cas9 editing to knockout (KO) or knock-in a copy of mtNPM1 in AML cells, present studies demonstrate that KO of mtNPM1 from AML cells abrogates sensitivity to MI, selinexor (exportin-1 inhibitor), and cytarabine. Conversely, the knock-in of a copy of mtNPM1 markedly sensitized AML cells to treatment with MI or cytarabine. Following AML therapy, most elderly patients with AML with mtNPM1 and co-mutations in FLT3 suffer AML relapse with poor outcomes, creating a need for novel effective therapies. Utilizing the RNA-Seq signature of CRISPR-edited AML cells with mtNPM1 KO, we interrogated the LINCS1000-CMap data set and found several pan-HDAC inhibitors and a WEE1 tyrosine kinase inhibitor among the top expression mimickers (EMs). Additionally, treatment with adavosertib (WEE1 inhibitor) or panobinostat (pan-HDAC inhibitor) exhibited synergistic in vitro lethal activity with MI against AML cells with mtNPM1. Treatment with adavosertib or panobinostat also reduced AML burden and improved survival in AML xenograft models sensitive or resistant to MI.
Collapse
Affiliation(s)
- Christopher P Mill
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Warren Fiskus
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kaberi Das
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - John A Davis
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Tapan M Kadia
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Courtney D DiNardo
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Naval Daver
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Koichi Takahashi
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Koji Sasaki
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Xinjia Ruan
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoping Su
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanam Loghavi
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hagop Kantarjian
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kapil N Bhalla
- The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
de Botton S, Cluzeau T, Vigil C, Cook RJ, Rousselot P, Rizzieri DA, Liesveld JL, Fenaux P, Braun T, Banos A, Jurcic JG, Sekeres MA, Savona MR, Roboz GJ, Bixby D, Madigan K, Volkert A, Stephens K, Kang-Fortner Q, Baker K, Paul S, McKeown M, Carulli J, Eaton M, Hodgson G, Fiore C, Kelly MJ, Roth DA, Stein EM. Targeting RARA overexpression with tamibarotene, a potent and selective RARα agonist, is a novel approach in AML. Blood Adv 2023; 7:1858-1870. [PMID: 36477975 PMCID: PMC10165187 DOI: 10.1182/bloodadvances.2022008806] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
A superenhancer at the retinoic acid receptor alpha (RARA) gene is associated with RARA mRNA overexpression in ∼30% of non-acute promyelocytic leukemia acute myeloid leukemia (AML) and in ∼50% of myelodysplastic syndromes (MDS). RARA overexpression is an actionable target for treatment with tamibarotene, an oral potent and selective RARα agonist. Sensitivity to the RARα agonist tamibarotene was demonstrated in RARA-high but not RARA-low preclinical AML models. The combination of oral tamibarotene plus azacitidine was evaluated in a phase 2 clinical study in 51 newly diagnosed unfit patients with AML identified as RARA-positive (n = 22) or RARA-negative (n = 29) for RARA mRNA overexpression in peripheral blasts using a blood-based biomarker test. In 18 response-evaluable RARA-positive patients, complete remission (CR)/CR with incomplete hematologic recovery rate was 61%, CR rate was 50%, and time to initial composite CR was rapid at 1.2 months. Transfusion independence was attained by 72% of RARA-positive patients. In contrast, 28 response-evaluable RARA-negative patients had response rates that were consistent with azacitidine monotherapy. Tamibarotene in combination with azacitidine was well tolerated. The majority of nonhematologic adverse events were low grade and hematologic adverse events were comparable to single-agent azacitidine, demonstrating that there was no additional myelosuppression when tamibarotene was combined with azacitidine. These results support further evaluation of tamibarotene-based treatment strategies in patients with AML or MDS with RARA overexpression to provide a targeted approach with the goal of improving patient outcomes. This trial was registered at www.clinicaltrials.gov as #NCT02807558.
Collapse
Affiliation(s)
| | - Thomas Cluzeau
- Côte d’Azur Université, Centre Hospitalier Universitaire de Nice Hôpital, Nice, France
| | - Carlos Vigil
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rachel J. Cook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
| | - Philippe Rousselot
- Hôpital André Mignot, Centre Hospitalier de Versailles, Le Chesnay, France
| | | | | | | | - Thorsten Braun
- Centre Hospitalier Universitaire Hôpital Avicenne, Bobigny, France
| | - Anne Banos
- Centre Hospitalier de la Côte Basque, Bayonne, France
| | | | | | - Michael R. Savona
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN
| | | | - Dale Bixby
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | | | | | | | | | | | - Sofia Paul
- Syros Pharmaceuticals, Inc, Cambridge, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pophali P, Desai SR, Shastri A. Therapeutic Targets in Myelodysplastic Neoplasms: Beyond Hypomethylating Agents. Curr Hematol Malig Rep 2023; 18:56-67. [PMID: 37052811 DOI: 10.1007/s11899-023-00693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW To discuss novel targeted therapies under investigation for treatment of myelodysplastic neoplasms (MDS). RECENT FINDINGS Over the last few years, results of phase 3 trials assessing novel therapies for high-risk MDS have been largely disappointing. Pevonedistat (NEDD-8 inhibitor) and APR-246 (TP53 reactivator) both did not meet trial endpoints. However, early phase trials of BCL-2, TIM3, and CD47 inhibitors have shown exciting data and are currently under phase 3 investigation. Moreover, combination of hypomethylating agents (HMA) with novel therapies targeting the mutational (IDH, FLT3, spliceosome complex) or immune (PD-1/PDL-1, TIM-3, IRAK-4) pathways are being investigated in early phase clinical trials and have shown adequate safety and promising efficacy. Myelodysplastic neoplasms (MDS) are a group of hematopoietic neoplasms defined by cytopenias and morphological dysplasia. They are characterized by clonal proliferation of aberrant hematopoietic stem cells caused by recurrent genetic abnormalities. This leads to ineffective erythropoiesis, peripheral blood cytopenias, abnormal cell maturation, and a high risk of transformation into acute myeloid leukemia (AML). Allogeneic hematopoietic stem cell transplantation is the only curative therapy; however, it is not a suitable option for majority patients due to their age, comorbidities, and the high rate of treatment-related complications. HMAs remain the only FDA-approved treatment option for high-risk MDS. Due to intolerance, primary, and secondary resistance to HMA, there is a large unmet need to develop new safe and effective therapies for patients with MDS. In this review, we focus on the current management strategies and novel therapies in development for treatment of high-risk MDS.
Collapse
Affiliation(s)
- Prateek Pophali
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sudhamsh Reddy Desai
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Shastri
- Department of Oncology, Department of Developmental & Molecular Biology, Montefiore Medical Center & Albert Einstein College of Medicine, Chanin 302A, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
22
|
Ciotti G, Marconi G, Sperotto A, Giannini MB, Gottardi M, Martinelli G. Biological therapy in elderly patients with acute myeloid leukemia. Expert Opin Biol Ther 2023; 23:175-194. [PMID: 36715330 DOI: 10.1080/14712598.2023.2174015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The introduction of target molecules and immunological therapies is changing the treatment landscape of acute myeloid leukemia (AML). AREAS COVERED We recapitulate the biological therapies that can be employed in the treatment of elderly patients with AML. Alongside small molecules inhibitors that target specific gene mutations, antibodies, tumor microenvironment modulators, and cellular therapies are being developed for the cure of the disease. Here, we report the biological activities, the efficacy and toxicities of humanized antibodies and antibody-drug conjugates that targets surface antigens as CD33 (gemtuzumab ozogamicine) or CD123 (pivekimab sunirine). We further explore mechanisms and effectiveness of medications that modify the microenvironment, such as glasdegib, or that harness the immune system against leukemia, such as CD47 antibody magrolimab, PD1/PDL1 inhibitors pembrolizumab and nivolumab, TIM3 inhibitor sabatolimab, T-cell and NK-cell engagers. Cellular therapies are considered, even if a large trial is still pending for the feasibility of the approach. In this scenario, a brief overview of the mechanism of action of target agents is provided, particularly with respect to their biological mechanisms. EXPERT OPINION Overall, this therapeutic armamentarium will constitute the basis for multimodal and personalized combinations that, in the idea of precision medicine, will enormously benefit elderly AML patients.
Collapse
Affiliation(s)
- Giulia Ciotti
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giovanni Marconi
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandra Sperotto
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Maria B Giannini
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
23
|
Wang L, Zhang Q, Ye L, Ye X, Yang W, Zhang H, Zhou X, Ren Y, Ma L, Zhang X, Mei C, Xu G, Li K, Luo Y, Jiang L, Lin P, Zhu S, Lang W, Wang Y, Shen C, Han Y, Liu X, Yang H, Lu C, Sun J, Jin J, Tong H. All-trans retinoic acid enhances the cytotoxic effect of decitabine on myelodysplastic syndromes and acute myeloid leukaemia by activating the RARα-Nrf2 complex. Br J Cancer 2023; 128:691-701. [PMID: 36482192 PMCID: PMC9938271 DOI: 10.1038/s41416-022-02074-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Decitabine (DAC) is used as the first-line therapy in patients with higher-risk myelodysplastic syndromes (HR-MDS) and elderly acute myeloid leukaemia (AML) patients unsuitable for intensive chemotherapy. However, the clinical outcomes of patients treated with DAC as a monotherapy are far from satisfactory. Adding all-trans retinoic acid (ATRA) to DAC reportedly benefitted MDS and elderly AML patients. However, the underlying mechanisms remain unclear and need further explorations from laboratory experiments. METHODS We used MDS and AML cell lines and primary cells to evaluate the combined effects of DAC and ATRA as well as the underlying mechanisms. We used the MOLM-13-luciferase murine xenograft model to verify the enhanced cytotoxic effect of the drug combination. RESULTS The combination treatment reduced the viability of MDS/AML cells in vitro, delayed leukaemia progress, and extended survival in murine xenograft models compared to non- and mono-drug treated models. DAC application as a single agent induced Nrf2 activation and downstream antioxidative response, and restrained reactive oxygen species (ROS) generation, thus leading to DAC resistance. The addition of ATRA blocked Nrf2 activation by activating the RARα-Nrf2 complex, leading to ROS accumulation and ROS-dependent cytotoxicity. CONCLUSIONS These results demonstrate that combining DAC and ATRA has potential for the clinical treatment of HR-MDS/AML and merits further exploration.
Collapse
Affiliation(s)
- Lu Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Qi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Li Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Xingnong Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Wenli Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Hua Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Xinping Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Yanling Ren
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Liya Ma
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Chen Mei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Gaixiang Xu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Kongfei Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Yingwan Luo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Lingxu Jiang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Peipei Lin
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Department of Radiotherapy, Taizhou Central Hospital (Taizhou University Hospital), 318000, Taizhou, Zhejiang, China
| | - Shuanghong Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Wei Lang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Yuxia Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Chuying Shen
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Yueyuan Han
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Xiaozhen Liu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Haiyang Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Chenxi Lu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China.
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, 310003, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Ho SWT, Sheng T, Xing M, Ooi WF, Xu C, Sundar R, Huang KK, Li Z, Kumar V, Ramnarayanan K, Zhu F, Srivastava S, Isa ZFBA, Anene-Nzelu CG, Razavi-Mohseni M, Shigaki D, Ma H, Tan ALK, Ong X, Lee MH, Tay ST, Guo YA, Huang W, Li S, Beer MA, Foo RSY, Teh M, Skanderup AJ, Teh BT, Tan P. Regulatory enhancer profiling of mesenchymal-type gastric cancer reveals subtype-specific epigenomic landscapes and targetable vulnerabilities. Gut 2023; 72:226-241. [PMID: 35817555 DOI: 10.1136/gutjnl-2021-326483] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/03/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gastric cancer (GC) comprises multiple molecular subtypes. Recent studies have highlighted mesenchymal-subtype GC (Mes-GC) as a clinically aggressive subtype with few treatment options. Combining multiple studies, we derived and applied a consensus Mes-GC classifier to define the Mes-GC enhancer landscape revealing disease vulnerabilities. DESIGN Transcriptomic profiles of ~1000 primary GCs and cell lines were analysed to derive a consensus Mes-GC classifier. Clinical and genomic associations were performed across >1200 patients with GC. Genome-wide epigenomic profiles (H3K27ac, H3K4me1 and assay for transposase-accessible chromatin with sequencing (ATAC-seq)) of 49 primary GCs and GC cell lines were generated to identify Mes-GC-specific enhancer landscapes. Upstream regulators and downstream targets of Mes-GC enhancers were interrogated using chromatin immunoprecipitation followed by sequencing (ChIP-seq), RNA sequencing, CRISPR/Cas9 editing, functional assays and pharmacological inhibition. RESULTS We identified and validated a 993-gene cancer-cell intrinsic Mes-GC classifier applicable to retrospective cohorts or prospective single samples. Multicohort analysis of Mes-GCs confirmed associations with poor patient survival, therapy resistance and few targetable genomic alterations. Analysis of enhancer profiles revealed a distinctive Mes-GC epigenomic landscape, with TEAD1 as a master regulator of Mes-GC enhancers and Mes-GCs exhibiting preferential sensitivity to TEAD1 pharmacological inhibition. Analysis of Mes-GC super-enhancers also highlighted NUAK1 kinase as a downstream target, with synergistic effects observed between NUAK1 inhibition and cisplatin treatment. CONCLUSION Our results establish a consensus Mes-GC classifier applicable to multiple transcriptomic scenarios. Mes-GCs exhibit a distinct epigenomic landscape, and TEAD1 inhibition and combinatorial NUAK1 inhibition/cisplatin may represent potential targetable options.
Collapse
Affiliation(s)
- Shamaine Wei Ting Ho
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Taotao Sheng
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore
| | - Manjie Xing
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Wen Fong Ooi
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Chang Xu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Raghav Sundar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,The N.1 Institute for Health, National University of Singapore, Singapore.,Singapore Gastric Cancer Consortium, Singapore
| | - Kie Kyon Huang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Vikrant Kumar
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | | | - Feng Zhu
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Supriya Srivastava
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Chukwuemeka George Anene-Nzelu
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.,Montreal Heart Institute, Quebec, Quebec, Canada.,Department of Medicine, University of Montreal, Quebec, Quebec, Canada
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Haoran Ma
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Angie Lay Keng Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Xuewen Ong
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Ming Hui Lee
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Su Ting Tay
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
| | - Yu Amanda Guo
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Weitai Huang
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Shang Li
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roger Sik Yin Foo
- Cardiovascular Research Institute, National University Health System, Singapore.,Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Ming Teh
- Department of Pathology, National University of Singapore, Singapore
| | - Anders Jacobsen Skanderup
- Computational and Systems Biology, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore .,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore.,Singapore Gastric Cancer Consortium, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore
| |
Collapse
|
25
|
Yang X, Zheng W, Li M, Zhang S. Somatic Super-Enhancer Epigenetic Signature for Overall Survival Prediction in Patients with Breast Invasive Carcinoma. Bioinform Biol Insights 2023; 17:11779322231162767. [PMID: 37020500 PMCID: PMC10068971 DOI: 10.1177/11779322231162767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/18/2023] [Indexed: 04/03/2023] Open
Abstract
To analyze genome-wide super-enhancers (SEs) methylation signature of breast invasive carcinoma (BRCA) and its clinical value. Differential methylation sites (DMS) between BRCA and adjacent tissues from The Cancer Genome Atlas (TCGA) database were identified by using ChAMP package in R software. Super-enhancers were identified sing ROSE software. Overlap analysis was used to assess the potential DMS in SEs region. Feature selection was performed by Cox regression and least absolute shrinkage and selection operator (LASSO) algorithm based on TCGA training cohort. Prognosis model validation was performed in TCGA training cohort, TCGA validation cohort, and gene expression omnibus (GEO) test cohort. The gene ontology and KEGG analysis revealed that SEs target genes were significantly enriched in cell-migration-associated processes and pathways. A total of 83 654 DMS were identified between BRCA and adjacent tissues. Around 2397 DMS in SEs region were identified by overlap study and used to feature selection. By using Cox regression and LASSO algorithm, 42 features were selected to develop a clinical prediction model (CPM). Both training (TCGA) and validation cohorts (TCGA and GEO) show that the CPM has ideal discrimination and calibration. The CPM based on DMS at SE regions has ideal discrimination and calibration, which combined with tumor node metastasis (TNM) stage could improve prognostication, and thus contribute to individualized medicine.
Collapse
Affiliation(s)
- Xu Yang
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Wenzhong Zheng
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Mengqiang Li
- Department of Urology, Fujian Medical
University Union Hospital, Fuzhou, P.R. China
| | - Shiqiang Zhang
- Department of Urology, Kidney and
Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen,
P.R. China
- Shiqiang Zhang, Department of Urology,
Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen
University, No.628, Zhenyuan Rd, Guangming (New) Dist., Shenzhen 518107, P.R.
China.
| |
Collapse
|
26
|
Garcia-Manero G. Current status of phase 3 clinical trials in high-risk myelodysplastic syndromes: pitfalls and recommendations. Lancet Haematol 2023; 10:e71-e78. [PMID: 36215988 DOI: 10.1016/s2352-3026(22)00265-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022]
Abstract
Single-agent hypomethylating agents remain the cornerstone of treatment for patients with high-risk myelodysplastic syndromes. Although these agents have clinical activity and can improve the overall survival of these patients, their impact on the natural history of myelodysplastic syndromes is only partial. Therefore, we need either newer agents or combinations that could have a greater impact on the survival of our patients. Over the past decade there has been an increased effort in drug development for myelodysplastic syndromes. Hypomethylating agent combinations that have been explored over the past decade include agents that block mutant TP53, NEDD inhibitors, BCL-2 inhibitors, and antibodies such as sabatolimab or magrolimab. Despite initial encouraging results, two registration trials from 2021 and 2022 have not been successful in improving outcomes when compared with single-agent hypomethylating agents. Here, I summarise the current status of ongoing phase 3 trials for patients with untreated high-risk myelodysplastic syndromes and provide some suggestions for future designs.
Collapse
Affiliation(s)
- Guillermo Garcia-Manero
- Section of Myelodysplastic Syndromes, Department of Leukemia, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
| |
Collapse
|
27
|
Lambert AW, Fiore C, Chutake Y, Verhaar ER, Strasser PC, Chen MW, Farouq D, Das S, Li X, Eaton EN, Zhang Y, Liu Donaher J, Engstrom I, Reinhardt F, Yuan B, Gupta S, Wollison B, Eaton M, Bierie B, Carulli J, Olson ER, Guenther MG, Weinberg RA. ΔNp63/p73 drive metastatic colonization by controlling a regenerative epithelial stem cell program in quasi-mesenchymal cancer stem cells. Dev Cell 2022; 57:2714-2730.e8. [PMID: 36538894 PMCID: PMC10002472 DOI: 10.1016/j.devcel.2022.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/03/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Cancer stem cells (CSCs) may serve as the cellular seeds of tumor recurrence and metastasis, and they can be generated via epithelial-mesenchymal transitions (EMTs). Isolating pure populations of CSCs is difficult because EMT programs generate multiple alternative cell states, and phenotypic plasticity permits frequent interconversions between these states. Here, we used cell-surface expression of integrin β4 (ITGB4) to isolate highly enriched populations of human breast CSCs, and we identified the gene regulatory network operating in ITGB4+ CSCs. Specifically, we identified ΔNp63 and p73, the latter of which transactivates ΔNp63, as centrally important transcriptional regulators of quasi-mesenchymal CSCs that reside in an intermediate EMT state. We found that the transcriptional program controlled by ΔNp63 in CSCs is largely distinct from the one that it orchestrates in normal basal mammary stem cells and, instead, it more closely resembles a regenerative epithelial stem cell response to wounding. Moreover, quasi-mesenchymal CSCs repurpose this program to drive metastatic colonization via autocrine EGFR signaling.
Collapse
Affiliation(s)
- Arthur W Lambert
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Elisha R Verhaar
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | - Sunny Das
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Xin Li
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Elinor Ng Eaton
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Yun Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Joana Liu Donaher
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ian Engstrom
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Bingbing Yuan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Sumeet Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | - Brian Bierie
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | - Robert A Weinberg
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; MIT Ludwig Center for Molecular Oncology, Cambridge, MA 02139, USA.
| |
Collapse
|
28
|
Wu T, Huang H, Wang X. Dissecting super-enhancer heterogeneity: time to re-examine cancer subtypes? Trends Genet 2022; 38:1199-1203. [PMID: 35803787 DOI: 10.1016/j.tig.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 01/24/2023]
Abstract
The heterogeneity of transcriptional regulations by super-enhancers (SEs) is poorly understood in human cancers. Herein, we summarize a bioinformatics workflow for genome-wide SE profiling and identification of subtype-specific SEs and regulatory networks. Dissecting SE heterogeneity provides new insights into cancer biology and alternative therapeutic strategies for cancer precision medicine.
Collapse
Affiliation(s)
- Tan Wu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China; Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Hao Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
29
|
Cao Z, Shu Y, Wang J, Wang C, Feng T, Yang L, Shao J, Zou L. Super enhancers: Pathogenic roles and potential therapeutic targets for acute myeloid leukemia (AML). Genes Dis 2022; 9:1466-1477. [PMID: 36157504 PMCID: PMC9485276 DOI: 10.1016/j.gendis.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignant hematological tumor with disordered oncogenes/tumor suppressor genes and limited treatments. The potent anti-cancer effects of bromodomain and extra-terminal domain (BET) inhibitors, targeting the key component of super enhancers, in early clinical trials on AML patients, implies the critical role of super enhancers in AML. Here, we review the concept and characteristic of super enhancer, and then summarize the current researches about super enhancers in AML pathogenesis, diagnosis and classification, followed by illustrate the potential super enhancer-related targets and drugs, and propose the future directions of super enhancers in AML. This information provides integrated insight into the roles of super enhancers in this disease.
Collapse
Affiliation(s)
- Ziyang Cao
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Yi Shu
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Jinxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Chunxia Wang
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
| | - Tienan Feng
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Jingbo Shao
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
| | - Lin Zou
- Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, PR China
- Institute of Pediatric Infection, Immunity, Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, PR China
- Center for Clinical Molecular Laboratory Medicine of Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| |
Collapse
|
30
|
Xu J, Song F, Lyu H, Kobayashi M, Zhang B, Zhao Z, Hou Y, Wang X, Luan Y, Jia B, Stasiak L, Wong JHY, Wang Q, Jin Q, Jin Q, Fu Y, Yang H, Hardison RC, Dovat S, Platanias LC, Diao Y, Yang Y, Yamada T, Viny AD, Levine RL, Claxton D, Broach JR, Zheng H, Yue F. Subtype-specific 3D genome alteration in acute myeloid leukaemia. Nature 2022; 611:387-398. [PMID: 36289338 PMCID: PMC10060167 DOI: 10.1038/s41586-022-05365-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Abstract
Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Fan Song
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Bioinformatics and Genomics Graduate Program, Huck Institutes of Life Sciences, Penn State University, State College, PA, USA
| | - Huijue Lyu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mikoto Kobayashi
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Baozhen Zhang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Etiology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ziyu Zhao
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaotao Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bei Jia
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, Penn State University, Hershey, PA, USA
| | - Lena Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Josiah Hiu-Yuen Wong
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yihao Fu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hongbo Yang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Huck Institutes of Life Sciences, Penn State University, State College, PA, USA
| | - Sinisa Dovat
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, Penn State University, Hershey, PA, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yue Yang
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tomoko Yamada
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Aaron D Viny
- Division of Hematology/Oncology and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, USA
| | - Ross L Levine
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Claxton
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, Penn State University, Hershey, PA, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Penn State University, Hershey, PA, USA
| | - Hong Zheng
- Department of Medicine, Division of Hematology and Oncology, Penn State Cancer Institute, Penn State University, Hershey, PA, USA.
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
31
|
Song H, Liu Y, Tan Y, Zhang Y, Jin W, Chen L, Wu S, Yan J, Li J, Chen Z, Chen S, Wang K. Recurrent noncoding somatic and germline WT1 variants converge to disrupt MYB binding in acute promyelocytic leukemia. Blood 2022; 140:1132-1144. [PMID: 35653587 PMCID: PMC9461475 DOI: 10.1182/blood.2021014945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alternations can occur at noncoding regions, but how they contribute to cancer pathogenesis is poorly understood. Here, we established a mutational landscape of cis-regulatory regions (CREs) in acute promyelocytic leukemia (APL) based on whole-genome sequencing analysis of paired tumor and germline samples from 24 patients and epigenetic profiling of 16 patients. Mutations occurring in CREs occur preferentially in active enhancers bound by the complex of master transcription factors in APL. Among significantly enriched mutated CREs, we found a recurrently mutated region located within the third intron of WT1, an essential regulator of normal and malignant hematopoiesis. Focusing on noncoding mutations within this WT1 intron, an analysis on 169 APL patients revealed that somatic mutations were clustered into a focal hotspot region, including one site identified as a germline polymorphism contributing to APL risk. Significantly decreased WT1 expression was observed in APL patients bearing somatic and/or germline noncoding WT1 variants. Furthermore, biallelic WT1 inactivation was recurrently found in APL patients with noncoding WT1 variants, which resulted in the complete loss of WT1. The high incidence of biallelic inactivation suggested the tumor suppressor activity of WT1 in APL. Mechanistically, noncoding WT1 variants disrupted MYB binding on chromatin and suppressed the enhancer activity and WT1 expression through destroying the chromatin looping formation. Our study highlights the important role of noncoding variants in the leukemogenesis of APL.
Collapse
Affiliation(s)
- Huan Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Yan
- Department of Hematology, the Second Hospital of Dalian Medical University, Dalian, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and
| |
Collapse
|
32
|
Eagle K, Harada T, Kalfon J, Perez MW, Heshmati Y, Ewers J, Koren JV, Dempster JM, Kugener G, Paralkar VR, Lin CY, Dharia NV, Stegmaier K, Orkin SH, Pimkin M. Transcriptional Plasticity Drives Leukemia Immune Escape. Blood Cancer Discov 2022; 3:394-409. [PMID: 35709529 PMCID: PMC9897290 DOI: 10.1158/2643-3230.bcd-21-0207] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Relapse of acute myeloid leukemia (AML) after allogeneic bone marrow transplantation has been linked to immune evasion due to reduced expression of major histocompatibility complex class II (MHCII) genes through unknown mechanisms. In this work, we developed CORENODE, a computational algorithm for genome-wide transcription network decomposition that identified a transcription factor (TF) tetrad consisting of IRF8, MYB, MEF2C, and MEIS1, regulating MHCII expression in AML cells. We show that reduced MHCII expression at relapse is transcriptionally driven by combinatorial changes in the expression of these TFs, where MYB and IRF8 play major opposing roles, acting independently of the IFNγ/CIITA pathway. Beyond the MHCII genes, MYB and IRF8 antagonistically regulate a broad genetic program responsible for cytokine signaling and T-cell stimulation that displays reduced expression at relapse. A small number of cells with altered TF abundance and silenced MHCII expression are present at the time of initial leukemia diagnosis, likely contributing to eventual relapse. SIGNIFICANCE Our findings point to an adaptive transcriptional mechanism of AML evolution after allogeneic transplantation whereby combinatorial fluctuations of TF expression under immune pressure result in the selection of cells with a silenced T-cell stimulation program. This article is highlighted in the In This Issue feature, p. 369.
Collapse
Affiliation(s)
- Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Ken Eagle Consulting, Houston, Texas
| | - Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jérémie Kalfon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Monika W. Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yaser Heshmati
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jazmin Ewers
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jošt Vrabič Koren
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | | | - Vikram R. Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles Y. Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Neekesh V. Dharia
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Stuart H. Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Howard Hughes Medical Institute, Boston, Massachusetts
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
33
|
Meier R, Greve G, Zimmer D, Bresser H, Berberich B, Langova R, Stomper J, Rubarth A, Feuerbach L, Lipka DB, Hey J, Grüning B, Brors B, Duyster J, Plass C, Becker H, Lübbert M. The antileukemic activity of decitabine upon PML/RARA-negative AML blasts is supported by all-trans retinoic acid: in vitro and in vivo evidence for cooperation. Blood Cancer J 2022; 12:122. [PMID: 35995769 PMCID: PMC9395383 DOI: 10.1038/s41408-022-00715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
The prognosis of AML patients with adverse genetics, such as a complex, monosomal karyotype and TP53 lesions, is still dismal even with standard chemotherapy. DNA-hypomethylating agent monotherapy induces an encouraging response rate in these patients. When combined with decitabine (DAC), all-trans retinoic acid (ATRA) resulted in an improved response rate and longer overall survival in a randomized phase II trial (DECIDER; NCT00867672). The molecular mechanisms governing this in vivo synergism are unclear. We now demonstrate cooperative antileukemic effects of DAC and ATRA on AML cell lines U937 and MOLM-13. By RNA-sequencing, derepression of >1200 commonly regulated transcripts following the dual treatment was observed. Overall chromatin accessibility (interrogated by ATAC-seq) and, in particular, at motifs of retinoic acid response elements were affected by both single-agent DAC and ATRA, and enhanced by the dual treatment. Cooperativity regarding transcriptional induction and chromatin remodeling was demonstrated by interrogating the HIC1, CYP26A1, GBP4, and LYZ genes, in vivo gene derepression by expression studies on peripheral blood blasts from AML patients receiving DAC + ATRA. The two drugs also cooperated in derepression of transposable elements, more effectively in U937 (mutated TP53) than MOLM-13 (intact TP53), resulting in a “viral mimicry” response. In conclusion, we demonstrate that in vitro and in vivo, the antileukemic and gene-derepressive epigenetic activity of DAC is enhanced by ATRA.
Collapse
Affiliation(s)
- Ruth Meier
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gabriele Greve
- Institute of Genetic Epidemiology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Zimmer
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Helena Bresser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Berberich
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralitsa Langova
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, University of Heidelberg, Heidelberg, Germany
| | - Julia Stomper
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anne Rubarth
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lars Feuerbach
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel B Lipka
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Björn Grüning
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Justus Duyster
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiko Becker
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Freiburg, Freiburg, Germany.
| |
Collapse
|
34
|
Yang Y, Qian F, Li X, Li Y, Zhou L, Wang Q, Zhou X, Zhang J, Song C, Yu Z, Cui T, Feng C, Zhu J, Shang D, Liu J, Sun M, Zhang Y, Tang H, Li C. GREAP: a comprehensive enrichment analysis software for human genomic regions. Brief Bioinform 2022; 23:6663640. [PMID: 35959979 DOI: 10.1093/bib/bbac329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements with abundant epigenetics markers, which promotes the rapid accumulation of functional genomic region data. The comprehensively understanding and research of human functional genomic regions is still a relatively urgent work at present. However, the existing analysis tools lack extensive annotation and enrichment analytical abilities for these regions. Here, we designed a novel software, Genomic Region sets Enrichment Analysis Platform (GREAP), which provides comprehensive region annotation and enrichment analysis capabilities. Currently, GREAP supports 85 370 genomic region reference sets, which cover 634 681 107 regions across 11 different data types, including super enhancers, transcription factors, accessible chromatins, etc. GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis. In summary, GREAP is a powerful platform that provides many types of genomic region sets for users and supports genomic region annotations and enrichment analyses. In addition, we developed a customizable genome browser containing >400 000 000 customizable tracks for visualization. The platform is freely available at http://www.liclab.net/Greap/view/index.
Collapse
Affiliation(s)
- Yongsan Yang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China.,West China Biomedical Big Data Center, West China Hospital, Sichuan University, China
| | - Fengcui Qian
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Computer, University of South China, Hengyang, Hunan, 421001, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuecang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Yanyu Li
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Liwei Zhou
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Qiuyu Wang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Computer, University of South China, Hengyang, Hunan, 421001, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinyuan Zhou
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Chao Song
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Computer, University of South China, Hengyang, Hunan, 421001, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhengmin Yu
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Cui
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Desi Shang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Computer, University of South China, Hengyang, Hunan, 421001, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiaqi Liu
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Computer, University of South China, Hengyang, Hunan, 421001, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Mengfei Sun
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Yuexin Zhang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China
| | - Huifang Tang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Chunquan Li
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163319, China.,School of Computer, University of South China, Hengyang, Hunan, 421001, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.,Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan, 421001, China.,The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
35
|
Ellegast JM, Alexe G, Hamze A, Lin S, Uckelmann HJ, Rauch PJ, Pimkin M, Ross LS, Dharia NV, Robichaud AL, Conway AS, Khalid D, Perry JA, Wunderlich M, Benajiba L, Pikman Y, Nabet B, Gray NS, Orkin SH, Stegmaier K. Unleashing Cell-Intrinsic Inflammation as a Strategy to Kill AML Blasts. Cancer Discov 2022; 12:1760-1781. [PMID: 35405016 PMCID: PMC9308469 DOI: 10.1158/2159-8290.cd-21-0956] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
Leukemic blasts are immune cells gone awry. We hypothesized that dysregulation of inflammatory pathways contributes to the maintenance of their leukemic state and can be exploited as cell-intrinsic, self-directed immunotherapy. To this end, we applied genome-wide screens to discover genetic vulnerabilities in acute myeloid leukemia (AML) cells implicated in inflammatory pathways. We identified the immune modulator IRF2BP2 as a selective AML dependency. We validated AML cell dependency on IRF2BP2 with genetic and protein degradation approaches in vitro and genetically in vivo. Chromatin and global gene-expression studies demonstrated that IRF2BP2 represses IL1β/TNFα signaling via NFκB, and IRF2BP2 perturbation results in an acute inflammatory state leading to AML cell death. These findings elucidate a hitherto unexplored AML dependency, reveal cell-intrinsic inflammatory signaling as a mechanism priming leukemic blasts for regulated cell death, and establish IRF2BP2-mediated transcriptional repression as a mechanism for blast survival. SIGNIFICANCE This study exploits inflammatory programs inherent to AML blasts to identify genetic vulnerabilities in this disease. In doing so, we determined that AML cells are dependent on the transcriptional repressive activity of IRF2BP2 for their survival, revealing cell-intrinsic inflammation as a mechanism priming leukemic blasts for regulated cell death. See related commentary by Puissant and Medyouf, p. 1617. This article is highlighted in the In This Issue feature, p. 1599.
Collapse
Affiliation(s)
- Jana M Ellegast
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Amanda Hamze
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Shan Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hannah J Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Philipp J Rauch
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maxim Pimkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda S Ross
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Neekesh V Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda L Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lina Benajiba
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,Université de Paris, INSERM U944 and CNRS 7212, Institut de Recherche Saint Louis, Hôpital Saint Louis, APHP, Paris, France
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford Medicine, Stanford University, Stanford, CA, USA
| | - Stuart H Orkin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Corresponding author: Dr. Kimberly Stegmaier (), Dana-Farber Cancer Institute, 360 Longwood Avenue, Boston MA, 02215. Phone: 617-632-4438
| |
Collapse
|
36
|
Super-Enhancers, Phase-Separated Condensates, and 3D Genome Organization in Cancer. Cancers (Basel) 2022; 14:cancers14122866. [PMID: 35740532 PMCID: PMC9221043 DOI: 10.3390/cancers14122866] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
3D chromatin organization plays an important role in transcription regulation and gene expression. The 3D genome is highly maintained by several architectural proteins, such as CTCF, Yin Yang 1, and cohesin complex. This structural organization brings regulatory DNA elements in close proximity to their target promoters. In this review, we discuss the 3D chromatin organization of super-enhancers and their relationship to phase-separated condensates. Super-enhancers are large clusters of DNA elements. They can physically contact with their target promoters by chromatin looping during transcription. Multiple transcription factors can bind to enhancer and promoter sequences and recruit a complex array of transcriptional co-activators and RNA polymerase II to effect transcriptional activation. Phase-separated condensates of transcription factors and transcriptional co-activators have been implicated in assembling the transcription machinery at particular enhancers. Cancer cells can hijack super-enhancers to drive oncogenic transcription to promote cell survival and proliferation. These dysregulated transcriptional programs can cause cancer cells to become highly dependent on transcriptional regulators, such as Mediator and BRD4. Moreover, the expression of oncogenes that are driven by super-enhancers is sensitive to transcriptional perturbation and often occurs in phase-separated condensates, supporting therapeutic rationales of targeting SE components, 3D genome organization, or dysregulated condensates in cancer.
Collapse
|
37
|
Germline mutations in mitochondrial complex I reveal genetic and targetable vulnerability in IDH1-mutant acute myeloid leukaemia. Nat Commun 2022; 13:2614. [PMID: 35551192 PMCID: PMC9098909 DOI: 10.1038/s41467-022-30223-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
The interaction of germline variation and somatic cancer driver mutations is under-investigated. Here we describe the genomic mitochondrial landscape in adult acute myeloid leukaemia (AML) and show that rare variants affecting the nuclear- and mitochondrially-encoded complex I genes show near-mutual exclusivity with somatic driver mutations affecting isocitrate dehydrogenase 1 (IDH1), but not IDH2 suggesting a unique epistatic relationship. Whereas AML cells with rare complex I variants or mutations in IDH1 or IDH2 all display attenuated mitochondrial respiration, heightened sensitivity to complex I inhibitors including the clinical-grade inhibitor, IACS-010759, is observed only for IDH1-mutant AML. Furthermore, IDH1 mutant blasts that are resistant to the IDH1-mutant inhibitor, ivosidenib, retain sensitivity to complex I inhibition. We propose that the IDH1 mutation limits the flexibility for citrate utilization in the presence of impaired complex I activity to a degree that is not apparent in IDH2 mutant cells, exposing a mutation-specific metabolic vulnerability. This reduced metabolic plasticity explains the epistatic relationship between the germline complex I variants and oncogenic IDH1 mutation underscoring the utility of genomic data in revealing metabolic vulnerabilities with implications for therapy. Mitochondrial metabolism has been associated with tumourigenesis in acute myeloid leukaemia (AML) and currently considered as a potential therapeutic target. Here, the authors show, in patients with AML, that germline mutations in mitochondrial complex I are mutually exclusive with somatic mutations in the metabolic enzyme IDH1, and find IDH1 mutant cells have increased sensitivity to complex I inhibitors.
Collapse
|
38
|
Gupta M, Will B. SEPHguarding acute myeloid leukemia. Cell Stem Cell 2022; 29:350-352. [PMID: 35245465 DOI: 10.1016/j.stem.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adaptive aberrant gene regulation is a hallmark of malignant growth and therapy resistance in acute myeloid leukemia (AML). In this issue of Cell Stem Cell, Eagle et al. identified oncogenic enhancer-driven overexpression of selenophosphate synthetase 2 (SEPHS2) as an opportunity for targeted mitigation of malignant cell growth in AML.
Collapse
Affiliation(s)
- Malini Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, NY, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, NY, USA; Montefiore-Einstein Cancer Center, Albert Einstein College of Medicine / Montefiore Medical Center, NY, USA.
| |
Collapse
|
39
|
An oncogenic enhancer encodes selective selenium dependency in AML. Cell Stem Cell 2022; 29:386-399.e7. [PMID: 35108519 PMCID: PMC8903199 DOI: 10.1016/j.stem.2022.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/29/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
Deregulation of transcription is a hallmark of acute myeloid leukemia (AML) that drives oncogenic expression programs and presents opportunities for therapeutic targeting. By integrating comprehensive pan-cancer enhancer landscapes with genetic dependency mapping, we find that AML-enriched enhancers encode for more selective tumor dependencies. We hypothesized that this approach could identify actionable dependencies downstream of oncogenic driver events and discovered a MYB-regulated AML-enriched enhancer regulating SEPHS2, a key component of the selenoprotein production pathway. Using a combination of patient samples and mouse models, we show that this enhancer upregulates SEPHS2, promoting selenoprotein production and antioxidant function required for AML survival. SEPHS2 and other selenoprotein pathway genes are required for AML growth in vitro. SEPHS2 knockout and selenium dietary restriction significantly delay leukemogenesis in vivo with little effect on normal hematopoiesis. These data validate the utility of enhancer mapping in target identification and suggest that selenoprotein production is an actionable target in AML.
Collapse
|
40
|
Harada T, Heshmati Y, Kalfon J, Perez MW, Xavier Ferrucio J, Ewers J, Hubbell Engler B, Kossenkov A, Ellegast JM, Yi JS, Bowker A, Zhu Q, Eagle K, Liu T, Kai Y, Dempster JM, Kugener G, Wickramasinghe J, Herbert ZT, Li CH, Vrabič Koren J, Weinstock DM, Paralkar VR, Nabet B, Lin CY, Dharia NV, Stegmaier K, Orkin SH, Pimkin M. A distinct core regulatory module enforces oncogene expression in KMT2A-rearranged leukemia. Genes Dev 2022; 36:368-389. [PMID: 35301220 PMCID: PMC8973843 DOI: 10.1101/gad.349284.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022]
Abstract
In this study, Harada et al. identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. This study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes. Acute myeloid leukemia with KMT2A (MLL) rearrangements is characterized by specific patterns of gene expression and enhancer architecture, implying unique core transcriptional regulatory circuitry. Here, we identified the transcription factors MEF2D and IRF8 as selective transcriptional dependencies of KMT2A-rearranged AML, where MEF2D displays partially redundant functions with its paralog, MEF2C. Rapid transcription factor degradation followed by measurements of genome-wide transcription rates and superresolution microscopy revealed that MEF2D and IRF8 form a distinct core regulatory module with a narrow direct transcriptional program that includes activation of the key oncogenes MYC, HOXA9, and BCL2. Our study illustrates a mechanism of context-specific transcriptional addiction whereby a specific AML subclass depends on a highly specialized core regulatory module to directly enforce expression of common leukemia oncogenes.
Collapse
Affiliation(s)
- Taku Harada
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yaser Heshmati
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jérémie Kalfon
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Monika W Perez
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Juliana Xavier Ferrucio
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jazmin Ewers
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Benjamin Hubbell Engler
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | - Jana M Ellegast
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Joanna S Yi
- Baylor College of Medicine, Houston, Texas 77030, USA
| | - Allyson Bowker
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Qian Zhu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Kenneth Eagle
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Ken Eagle Consulting, Houston, Texas 77494, USA
| | - Tianxin Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Yan Kai
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Joshua M Dempster
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Guillaume Kugener
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | | | - Zachary T Herbert
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Charles H Li
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | - David M Weinstock
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Vikram R Paralkar
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Behnam Nabet
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Charles Y Lin
- Baylor College of Medicine, Houston, Texas 77030, USA
| | - Neekesh V Dharia
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kimberly Stegmaier
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Howard Hughes Medical Institute, Boston, Massachusetts 02215, USA
| | - Maxim Pimkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
41
|
Benbarche S, Lopez CK, Salataj E, Aid Z, Thirant C, Laiguillon MC, Lecourt S, Belloucif Y, Vaganay C, Antonini M, Hu J, da Silva Babinet A, Ndiaye-Lobry D, Pardieu B, Petit A, Puissant A, Chaumeil J, Mercher T, Lobry C. Screening of ETO2-GLIS2-induced Super Enhancers identifies targetable cooperative dependencies in acute megakaryoblastic leukemia. SCIENCE ADVANCES 2022; 8:eabg9455. [PMID: 35138899 PMCID: PMC8827662 DOI: 10.1126/sciadv.abg9455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Super Enhancers (SEs) are clusters of regulatory elements associated with cell identity and disease. However, whether these elements are induced by oncogenes and can regulate gene modules cooperating for cancer cell transformation or maintenance remains elusive. To address this question, we conducted a genome-wide CRISPRi-based screening of SEs in ETO2-GLIS2+ acute megakaryoblastic leukemia. This approach revealed SEs essential for leukemic cell growth and survival that are induced by ETO2-GLIS2 expression. In particular, we identified a de novo SE specific of this leukemia subtype and regulating expression of tyrosine kinase-associated receptors KIT and PDGFRA. Combined expression of these two receptors was required for leukemic cell growth, and CRISPRi-mediated inhibition of this SE or treatment with tyrosine kinase inhibitors impaired progression of leukemia in vivo in patient-derived xenografts experiments. Our results show that fusion oncogenes, such as ETO2-GLIS2, can induce activation of SEs regulating essential gene modules synergizing for leukemia progression.
Collapse
Affiliation(s)
- Salima Benbarche
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Cécile K. Lopez
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | - Eralda Salataj
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
| | - Zakia Aid
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
| | | | - Séverine Lecourt
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Yannis Belloucif
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Camille Vaganay
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Marion Antonini
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
| | - Jiang Hu
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | | | | | - Bryann Pardieu
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Arnaud Petit
- Hôpital Trousseau, Sorbonne Université, Assistance Publique - Hôpitaux de Paris CONECT-AML, Paris F-75012, France
| | - Alexandre Puissant
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
| | - Julie Chaumeil
- Université de Paris, Institut Cochin, INSERM, CNRS, Paris F-75014, France
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Paris F-75013, France
- Corresponding author. (C.L.); (T.M.)
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Center and Université Paris Saclay, Villejuif F-94800, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, Paris F-75010, France
- Corresponding author. (C.L.); (T.M.)
| |
Collapse
|
42
|
Super enhancers as master gene regulators in the pathogenesis of hematologic malignancies. Biochim Biophys Acta Rev Cancer 2022; 1877:188697. [PMID: 35150791 DOI: 10.1016/j.bbcan.2022.188697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Transcriptional deregulation of multiple oncogenes, tumor suppressors and survival pathways is a cancer cell hallmark. Super enhancers (SE) are long stretches of active enhancers in close linear proximity that ensure extraordinarily high expression levels of key genes associated with cell lineage, function and survival. SE landscape is intrinsically prone to changes and reorganization during the course of normal cell differentiation. This functional plasticity is typically utilized by cancer cells, which remodel their SE landscapes to ensure oncogenic transcriptional reprogramming. Multiple recent studies highlighted structural genetic mechanisms in non-coding regions that create new SE or hijack already existing ones. In addition, alterations in abundance/activity of certain SE-associated proteins or certain viral infections can elicit new super enhancers and trigger SE-driven transcriptional changes. For these reasons, SE profiling emerged as a powerful tool for discovering the core transcriptional regulatory circuits in tumor cells. This, in turn, provides new insights into cancer cell biology, and identifies main nodes of key cellular pathways to be potentially targeted. Since SEs are susceptible to inhibition, their disruption results in exponentially amassing 'butterfly' effect on gene expression and cell function. Moreover, many of SE elements are druggable, opening new therapeutic opportunities. Indeed, SE targeting drugs have been studied preclinically in various hematologic malignancies with promising effects. Herein, we review the unique features of SEs, present different cis- and trans-acting mechanisms through which hematologic tumor cells acquire SEs, and finally, discuss the potential of SE targeting in the therapy of hematologic malignancies.
Collapse
|
43
|
Benard BA, Leak LB, Azizi A, Thomas D, Gentles AJ, Majeti R. Clonal architecture predicts clinical outcomes and drug sensitivity in acute myeloid leukemia. Nat Commun 2021; 12:7244. [PMID: 34903734 PMCID: PMC8669028 DOI: 10.1038/s41467-021-27472-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
The impact of clonal heterogeneity on disease behavior or drug response in acute myeloid leukemia remains poorly understood. Using a cohort of 2,829 patients, we identify features of clonality associated with clinical features and drug sensitivities. High variant allele frequency for 7 mutations (including NRAS and TET2) associate with dismal prognosis; elevated GATA2 variant allele frequency correlates with better outcomes. Clinical features such as white blood cell count and blast percentage correlate with the subclonal abundance of mutations such as TP53 and IDH1. Furthermore, patients with cohesin mutations occurring before NPM1, or transcription factor mutations occurring before splicing factor mutations, show shorter survival. Surprisingly, a branched pattern of clonal evolution is associated with superior clinical outcomes. Finally, several mutations (including NRAS and IDH1) predict drug sensitivity based on their subclonal abundance. Together, these results demonstrate the importance of assessing clonal heterogeneity with implications for prognosis and actionable biomarkers for therapy.
Collapse
Affiliation(s)
- Brooks A Benard
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Logan B Leak
- Cancer Biology Program, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Armon Azizi
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
| | - Daniel Thomas
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrew J Gentles
- Department of Medicine (Biomedical Informatics/Quantitative Sciences unit), Stanford University, Stanford, CA, USA
| | - Ravindra Majeti
- Department of Medicine, Division of Hematology, Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
44
|
Differentiation therapy for myeloid malignancies: beyond cytotoxicity. Blood Cancer J 2021; 11:193. [PMID: 34864823 PMCID: PMC8643352 DOI: 10.1038/s41408-021-00584-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Blocked cellular differentiation is a central pathologic feature of the myeloid malignancies, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Treatment regimens promoting differentiation have resulted in incredible cure rates in certain AML subtypes, such as acute promyelocytic leukemia. Over the past several years, we have seen many new therapies for MDS/AML enter clinical practice, including epigenetic therapies (e.g., 5-azacitidine), isocitrate dehydrogenase (IDH) inhibitors, fms-like kinase 3 (FLT3) inhibitors, and lenalidomide for deletion 5q (del5q) MDS. Despite not being developed with the intent of manipulating differentiation, induction of differentiation is a major mechanism by which several of these novel agents function. In this review, we examine the new therapeutic landscape for these diseases, focusing on the role of hematopoietic differentiation and the impact of inflammation and aging. We review how current therapies in MDS/AML promote differentiation as a part of their therapeutic effect, and the cellular mechanisms by which this occurs. We then outline potential novel avenues to achieve differentiation in the myeloid malignancies for therapeutic purposes. This emerging body of knowledge about the importance of relieving differentiation blockade with anti-neoplastic therapies is important to understand how current novel agents function and may open avenues to developing new treatments that explicitly target cellular differentiation. Moving beyond cytotoxic agents has the potential to open new and unexpected avenues in the treatment of myeloid malignancies, hopefully providing more efficacy with reduced toxicity.
Collapse
|
45
|
Porcù E, Benetton M, Bisio V, Da Ros A, Tregnago C, Borella G, Zanon C, Bordi M, Germano G, Manni S, Campello S, Rao DS, Locatelli F, Pigazzi M. The long non-coding RNA CDK6-AS1 overexpression impacts on acute myeloid leukemia differentiation and mitochondrial dynamics. iScience 2021; 24:103350. [PMID: 34816103 PMCID: PMC8591413 DOI: 10.1016/j.isci.2021.103350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Patients with acute myeloid leukemia (AML) carrying high-risk genetic lesions or high residual disease levels after therapy are particularly exposed to the risk of relapse. Here, we identified the long non-coding RNA CDK6-AS1 able to cluster an AML subgroup with peculiar gene signatures linked to hematopoietic cell differentiation and mitochondrial dynamics. CDK6-AS1 silencing triggered hematopoietic commitment in healthy CD34+ cells, whereas in AML cells the pathological undifferentiated state was rescued. This latter phenomenon derived from RUNX1 transcriptional control, responsible for the stemness of hematopoietic precursors and for the block of differentiation in AML. By CDK6-AS1 silencing in vitro, AML mitochondrial mass decreased with augmented pharmacological sensitivity to mitochondria-targeting drugs. In vivo, the combination of tigecycline and cytarabine reduced leukemia progression in the AML-PDX model with high CDK6-AS1 levels, supporting the concept of a mitochondrial vulnerability. Together, these findings uncover CDK6-AS1 as crucial in myeloid differentiation and mitochondrial mass regulation. CDK6-AS1 acts in concert with CDK6 High CDK6-AS1 levels trigger RUNX1 early differentiation arrest in myeloid cells CDK6-AS1 controls mitochondrial mass of AML blasts CDK6-AS1 levels impact on mitochondrial-targeted agents sensitivity
Collapse
Affiliation(s)
- Elena Porcù
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Maddalena Benetton
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Valeria Bisio
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Ambra Da Ros
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Claudia Tregnago
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Giulia Borella
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy
| | - Carlo Zanon
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, 35127 Padova, Italy
| | - Matteo Bordi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy.,Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00143 Rome, Italy
| | - Giuseppe Germano
- Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, 35127 Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, and Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Silvia Campello
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Sapienza University of Rome, 00165 Roma, Italy
| | - Martina Pigazzi
- Pediatric Hematology, Oncology and Hematopoietic Cell&Gene Therapy Division of Women's and Children's Health Department, University-Hospital of Padova, Via N. Giustiniani, 3, 35128 Padova, Italy.,Pediatric Onco-Hematology, Stem Cell Transplant and Gene Therapy Laboratory, Istituto di Ricerca Pediatrica - Città della Speranza, 35127 Padova, Italy
| |
Collapse
|
46
|
Ngo S, Oxley EP, Ghisi M, Garwood MM, McKenzie MD, Mitchell HL, Kanellakis P, Susanto O, Hickey MJ, Perkins AC, Kile BT, Dickins RA. Acute myeloid leukemia maturation lineage influences residual disease and relapse following differentiation therapy. Nat Commun 2021; 12:6546. [PMID: 34764270 PMCID: PMC8586014 DOI: 10.1038/s41467-021-26849-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy of immature progenitor cells. AML differentiation therapies trigger leukemia maturation and can induce remission, but relapse is prevalent and its cellular origin is unclear. Here we describe high resolution analysis of differentiation therapy response and relapse in a mouse AML model. Triggering leukemia differentiation in this model invariably produces two phenotypically distinct mature myeloid lineages in vivo. Leukemia-derived neutrophils dominate the initial wave of leukemia differentiation but clear rapidly and do not contribute to residual disease. In contrast, a therapy-induced population of mature AML-derived eosinophil-like cells persists during remission, often in extramedullary organs. Using genetic approaches we show that restricting therapy-induced leukemia maturation to the short-lived neutrophil lineage markedly reduces relapse rates and can yield cure. These results indicate that relapse can originate from therapy-resistant mature AML cells, and suggest differentiation therapy combined with targeted eradication of mature leukemia-derived lineages may improve disease outcome.
Collapse
Affiliation(s)
- Steven Ngo
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Ethan P. Oxley
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Margherita Ghisi
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Maximilian M. Garwood
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Mark D. McKenzie
- grid.1042.7Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052 Australia
| | - Helen L. Mitchell
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Peter Kanellakis
- grid.1051.50000 0000 9760 5620Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Olivia Susanto
- grid.416060.50000 0004 0390 1496Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168 Australia
| | - Michael J. Hickey
- grid.416060.50000 0004 0390 1496Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC 3168 Australia
| | - Andrew C. Perkins
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| | - Benjamin T. Kile
- grid.1002.30000 0004 1936 7857Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800 Australia
| | - Ross A. Dickins
- grid.1002.30000 0004 1936 7857Australian Centre for Blood Diseases, Monash University, 99 Commercial Rd, Melbourne, VIC 3004 Australia
| |
Collapse
|
47
|
Wu F, Xu L, Tu Y, Cheung OK, Szeto LL, Mok MT, Yang W, Kang W, Cao Q, Lai PB, Chan SL, Tan P, Sung JJ, Yip KY, Cheng AS, To KF. Sirtuin 7 super-enhancer drives epigenomic reprogramming in hepatocarcinogenesis. Cancer Lett 2021; 525:115-130. [PMID: 34736960 DOI: 10.1016/j.canlet.2021.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a major cancer burden worldwide with increasing incidence in many developed countries. Super-enhancers (SEs) drive gene expressions required for cell type-specificity and tumor cell identity. However, their roles in HCC remain unclear because of data scarcity from primary tumors. Herein, chromatin profiling of non-alcoholic fatty liver disease (NAFLD)-associated HCCs and matched liver tissues uncovered an average of ∼500 somatically-acquired SEs per patient. The identified SE-target genes were functionally enriched for aberrant metabolism and cancer phenotypes, especially chromatin regulators including deacetylases and Polycomb repressive complexes. Notably, all examined tumors exhibited SE activation of Sirtuin 7 (SIRT7), genome-wide promoter H3K18 deacetylation and concurrent H3K27me3, as well as tumor-suppressor gene silencing. Depletion of SIRT7 SE in hepatoma cells induced global H3K18 acetylation and reactivated key metabolic and immune regulators, leading to marked suppression of tumorigenicity in vitro and in vivo. In concordance, SIRT7 physically interacted with the methyltransferase EZH2, and they were co-expressed in primary HCCs. In summary, our integrative analysis establishes a compendium of SEs in NAFLD-associated HCCs and uncovers SIRT7-driven chromatin regulatory network as potential druggable vulnerability of this increasingly prevalent cancer.
Collapse
Affiliation(s)
- Feng Wu
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Liangliang Xu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yalin Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Otto Kw Cheung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lemuel Lm Szeto
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Myth Ts Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weiqin Yang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qin Cao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Paul Bs Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Stephen L Chan
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Joseph Jy Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Alfred Sl Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Ka F To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
48
|
Thoms JAI, Truong P, Subramanian S, Knezevic K, Harvey G, Huang Y, Seneviratne JA, Carter DR, Joshi S, Skhinas J, Chacon D, Shah A, de Jong I, Beck D, Göttgens B, Larsson J, Wong JWH, Zanini F, Pimanda JE. Disruption of a GATA2-TAL1-ERG regulatory circuit promotes erythroid transition in healthy and leukemic stem cells. Blood 2021; 138:1441-1455. [PMID: 34075404 DOI: 10.1182/blood.2020009707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/03/2021] [Indexed: 10/21/2022] Open
Abstract
Changes in gene regulation and expression govern orderly transitions from hematopoietic stem cells to terminally differentiated blood cell types. These transitions are disrupted during leukemic transformation, but knowledge of the gene regulatory changes underpinning this process is elusive. We hypothesized that identifying core gene regulatory networks in healthy hematopoietic and leukemic cells could provide insights into network alterations that perturb cell state transitions. A heptad of transcription factors (LYL1, TAL1, LMO2, FLI1, ERG, GATA2, and RUNX1) bind key hematopoietic genes in human CD34+ hematopoietic stem and progenitor cells (HSPCs) and have prognostic significance in acute myeloid leukemia (AML). These factors also form a densely interconnected circuit by binding combinatorially at their own, and each other's, regulatory elements. However, their mutual regulation during normal hematopoiesis and in AML cells, and how perturbation of their expression levels influences cell fate decisions remains unclear. In this study, we integrated bulk and single-cell data and found that the fully connected heptad circuit identified in healthy HSPCs persists, with only minor alterations in AML, and that chromatin accessibility at key heptad regulatory elements was predictive of cell identity in both healthy progenitors and leukemic cells. The heptad factors GATA2, TAL1, and ERG formed an integrated subcircuit that regulates stem cell-to-erythroid transition in both healthy and leukemic cells. Components of this triad could be manipulated to facilitate erythroid transition providing a proof of concept that such regulatory circuits can be harnessed to promote specific cell-type transitions and overcome dysregulated hematopoiesis.
Collapse
Affiliation(s)
| | - Peter Truong
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Kathy Knezevic
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Gregory Harvey
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Yizhou Huang
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Janith A Seneviratne
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Daniel R Carter
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Swapna Joshi
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Joanna Skhinas
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Diego Chacon
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Anushi Shah
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
| | - Ineke de Jong
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Dominik Beck
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
| | - Berthold Göttgens
- Wellcome and Medical Research Council (MRC) Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Jonas Larsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jason W H Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Fabio Zanini
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia; and
| | - John E Pimanda
- School of Medical Sciences
- Adult Cancer Program, and
- Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, Australia
- Department of Haematology, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
49
|
Hattori N, Asada K, Miyajima N, Mori A, Nakanishi Y, Kimura K, Wakabayashi M, Takeshima H, Nitani C, Hara J, Ushijima T. Combination of a synthetic retinoid and a DNA demethylating agent induced differentiation of neuroblastoma through retinoic acid signal reprogramming. Br J Cancer 2021; 125:1647-1656. [PMID: 34635821 DOI: 10.1038/s41416-021-01571-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The CpG island methylator phenotype of neuroblastoma (NBL) is strongly associated with poor prognosis and can be targeted by 5-aza-2'-deoxycytidine (5-aza-dC). Differentiation therapy is a standard maintenance therapy for high-risk NBLs. However, the in vivo effect of tamibarotene, a synthetic retinoic acid, and the efficacy of its combination with 5-aza-dC have not been studied. Here, we conducted a preclinical study to assess the in vivo tamibarotene effect and the combination. METHODS Treatment effects were analysed by in vitro cell growth and differentiation state and by in vivo xenograft suppression. Demethylated genes were analysed by DNA methylation microarrays and geneset enrichment. RESULTS Tamibarotene monotherapy induced neural extension and upregulation of differentiation markers of NBL cells in vitro, and tumour regression without severe side effects in vivo. 5-Aza-dC monotherapy suppressed tumour growth both in vitro and in vivo, and induced demethylation of genes related to nervous system development and function. Pre-treatment with 5-aza-dC in vitro enhanced upregulation of differentiation markers and genes involved in retinoic acid signaling. Pre-treatment with 5-aza-dC in vivo significantly suppressed tumour growth and reduced the variation in tumour sizes. CONCLUSIONS Epigenetic drug-based differentiation therapy using 5-aza-dC and TBT is a promising strategy for refractory NBLs.
Collapse
Affiliation(s)
- Naoko Hattori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| | - Kiyoshi Asada
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nozomu Miyajima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Mori
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoko Nakanishi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kana Kimura
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mika Wakabayashi
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hideyuki Takeshima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Chika Nitani
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Junichi Hara
- Department of Pediatric Hematology and Oncology, Osaka City General Hospital, Osaka, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
50
|
Maurya SS. Role of Enhancers in Development and Diseases. EPIGENOMES 2021; 5:epigenomes5040021. [PMID: 34968246 PMCID: PMC8715447 DOI: 10.3390/epigenomes5040021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022] Open
Abstract
Enhancers are cis-regulatory elements containing short DNA sequences that serve as binding sites for pioneer/regulatory transcription factors, thus orchestrating the regulation of genes critical for lineage determination. The activity of enhancer elements is believed to be determined by transcription factor binding, thus determining the cell state identity during development. Precise spatio-temporal control of the transcriptome during lineage specification requires the coordinated binding of lineage-specific transcription factors to enhancers. Thus, enhancers are the primary determinants of cell identity. Numerous studies have explored the role and mechanism of enhancers during development and disease, and various basic questions related to the functions and mechanisms of enhancers have not yet been fully answered. In this review, we discuss the recently published literature regarding the roles of enhancers, which are critical for various biological processes governing development. Furthermore, we also highlight that altered enhancer landscapes provide an essential context to understand the etiologies and mechanisms behind numerous complex human diseases, providing new avenues for effective enhancer-based therapeutic interventions.
Collapse
Affiliation(s)
- Shailendra S Maurya
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Department of Developmental Biology, School of Medicine, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|