1
|
Sirakanyan SN, Dilip H, Geronikaki A, Spinelli D, Kirubakaran S, Petrou A, Hakobyan EK, Kartsev VG, Paronikyan EG, Yegoryan HA, Yermalovyan LV, Hovakimyan AA. In silico Design, Synthesis and Biological Evaluation of Novel Thieno[3,2-d]pyrimidine Derivatives for Cancer Therapy - A Preliminary Study on the Inhibitory Potential towards ATR Kinase Domain and PIKK Family. Chem Biodivers 2024; 21:e202302071. [PMID: 38230843 DOI: 10.1002/cbdv.202302071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/18/2024]
Abstract
Continuing our studies in the field of new heterocyclic compounds with biological interest, herein we report the synthesis and anticancer activity of new N- and S-substituted derivatives of tetracyclic pyrido[3',2' : 4,5]thieno[3,2-d]pyrimidines. In this regard, starting from the thieno[2,3-b]pyridine-2-carboxylates, the corresponding 8(9)-aminopyrido[3',2' : 4,5]thieno[3,2-d]pyrimidin-7(8)-ones, as well as chloro derivatives were obtained. Based on the latter, amino, hydrazino and S-alkyl derivatives of pyrido[3',2' : 4,5]thieno[3,2-d]pyrimidines were synthesized subsequently. The current study focuses on identifying the potential of thieno[3,2-d]pyrimidine derivatives primarily towards ATR kinase inhibition, through computational predictions, followed by synthesis and cancer cell viability studies, along with an aim to develop the core as PIKK inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Samvel N Sirakanyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave., Azatutyan 26, Yerevan, 0014, Armenia
| | - Haritha Dilip
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India
| | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Domenico Spinelli
- Dipartimento di Chimica G. Ciamician, Alma Mater Studiorum-Università di Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Sivapriya Kirubakaran
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj Village, Gandhinagar, Gujarat, 382055, India
| | - Anthi Petrou
- School of Pharmacy, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Elmira K Hakobyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave., Azatutyan 26, Yerevan, 0014, Armenia
| | | | - Ervand G Paronikyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave., Azatutyan 26, Yerevan, 0014, Armenia
| | - Hasmik A Yegoryan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave., Azatutyan 26, Yerevan, 0014, Armenia
| | - Lilit V Yermalovyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave., Azatutyan 26, Yerevan, 0014, Armenia
| | - Anush A Hovakimyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Science of Republic of Armenia, Institute of Fine Organic Chemistry of A.L.Mnjoyan, Ave., Azatutyan 26, Yerevan, 0014, Armenia
| |
Collapse
|
2
|
Guney Eskiler G, Halis H, Hamarat KF, Derlioglu RR, Ugurlu BT, Haciefendi A. The ATR inhibition by Elimusertib enhances the radiosensitivity of MDA-MB-231 triple negative breast cancer in vitro. Int J Radiat Biol 2024; 100:715-723. [PMID: 38421209 DOI: 10.1080/09553002.2024.2316606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE DNA damage response (DDR) is the principal mechanism regulating genomic stability and cell cycle checkpoint activation by coordinating DNA repair and apoptotic pathways. Ataxia telangiectasia and Rad3-related protein (ATR) play a significant role in the DDR due to its capability to detect a wide spectrum of DNA damage. Therefore, targeting DDR, specifically ATR, is a promising therapeutic strategy in cancer treatment. Furthermore, the inhibition of ATR sensitizes cancer cells to radiotherapy (RT). Herein, we, for the first time, investigated the synergistic effects of Elimusertib (BAY-1895344) as a highly potent selective ATR inhibitor with RT combination in triple-negative breast cancer (TNBC), in vitro. METHODS MDA-MB-231 TNBC cells were firstly treated with different concentrations of Elimusertib for 24 h and then exposed to 4 and 8 Gy of X-ray irradiation. After post-irradiation for 72 h, WST-1, Annexin V, cell cycle, acridine orange/propidium iodide, mitochondria staining and western blot analysis were conducted. RESULTS Our findings showed that 4 Gy irradiation and lower doses (especially 2 and 4 nM) of Elimusertib combination exerted a considerable anticancer activity at 72 h post-irradiation through apoptotic cell death, marked nuclear and mitochondrial damages and the suppression of ATR-Chk1 based DDR mechanism. CONCLUSION ATR inhibition by Elimusertib in combination with RT may be a promising new treatment strategy in the treatment of TNBC. However, further experiments should be performed to elucidate the underlying molecular mechanisms of the therapeutic efficacy of this combination treatment and its association with DNS repair mechanisms in TNBC, in vitro and in vivo.
Collapse
Affiliation(s)
| | - Hatice Halis
- Department of Radiation Oncology, Sakarya Training and Research Hospital, Sakarya, Turkey
| | | | - Rabia Rana Derlioglu
- Department of Medical Biology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | | | - Ayten Haciefendi
- Department of Medical Biology, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
3
|
Bin H, Chen P, Wu M, Wang F, Lin G, Pan S, Liu J, Mu B, Nan J, Huang Q, Li L, Yang S. Discovery of a potent and highly selective inhibitor of ataxia telangiectasia mutated and Rad3-Related (ATR) kinase: Structural activity relationship and antitumor activity both in vitro and in vivo. Eur J Med Chem 2022; 232:114187. [DOI: 10.1016/j.ejmech.2022.114187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/26/2022]
|