1
|
Hussain Z, Zhang Y, Qiu L, Gou S, Liu K. Exploring Clec9a in dendritic cell-based tumor immunotherapy for molecular insights and therapeutic potentials. NPJ Vaccines 2025; 10:27. [PMID: 39920156 PMCID: PMC11806010 DOI: 10.1038/s41541-025-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
The pivotal role of type 1 conventional dendritic cells (cDC1s) in the field of dendritic cell (DC)-based tumor immunotherapies has been gaining increasing recognition due to their superior antigen cross-presentation abilities and essential role in modulating immune responses. This review specifically highlights the C-type lectin receptor family 9 member A (Clec9a or DNGR-1), which is exclusively expressed on cDC1s and plays a pivotal role in augmenting antigen cross-presentation and cytotoxic T lymphocyte (CTL) responses while simultaneously mitigating off-target effects. These effects include the enhancement of the cDC1s cross-presentation, reducing autoimmune responses and systemic inflammation, as well as preventing the non-specific activation of other immune cells. Consequently, these actions may contribute to reduced toxicity and enhanced treatment efficacy in immunotherapy. The exceptional ability of Clec9a to cross-present dead cell-associated antigens and enhance both humoral and CTL responses makes it an optimal receptor for DC-based strategies aimed at strengthening antitumor immunity. This review provides a comprehensive overview of the molecular characterization, expression, and signaling mechanisms of Clec9a. Furthermore, it discusses the role of Clec9a in the induction and functional activation of Clec9a+ cDC1s, with a particular focus on addressing the challenges related to off-target effects and immune tolerance in the development of tumor vaccines. Additionally, this review explores the potential of Clec9a-targeted approaches to enhance the immunogenicity of tumor vaccines and addresses the utilization of Clec9a as a delivery target for specific agonists (such as STING agonists and αGC) to enhance their therapeutic effects. This novel approach leverages Clec9a's capacity to improve the precision and efficacy of these immunomodulatory molecules in tumor treatment. In summary, this review presents compelling evidence positioning Clec9a as a promising target for DC-based tumor immunotherapy, capable of enhancing the efficacy of vaccines and immune responses while minimizing adverse effects.
Collapse
Affiliation(s)
- Zubair Hussain
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yueteng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Qiu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshan Gou
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Metabolic dysregulation & the Prevention and Treatment of Esophageal Cancer, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
- China‒US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Burn OK, Dasyam N, Hermans IF. Recruiting Natural Killer T Cells to Improve Vaccination: Lessons from Preclinical and Clinical Studies. Crit Rev Oncog 2024; 29:31-43. [PMID: 38421712 DOI: 10.1615/critrevoncog.2023049407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The capacity of type I natural killer T (NKT) cells to provide stimulatory signals to antigen-presenting cells has prompted preclinical research into the use of agonists as immune adjuvants, with much of this work focussed on stimulating T cell responses to cancer. In attempting to evaluate this approach in the clinic, our recent dendritic-cell based study failed to show an advantage to adding an agonist to the vaccine. Here we present potential limitations of the study, and suggest why other simpler strategies may be more effective. These include strategies to target antigen-presenting cells in the host, either through promoting efficient transfer from injected cell lines, facilitating uptake of antigen and agonist as injected conjugates, or encapsulating the components into injected nanovectors. While the vaccine landscape has changed with the rapid uptake of mRNA vaccines, we suggest that there is still a role for recruiting NKT cells in altering T cell differentiation programmes, notably the induction of resident memory T cells.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
3
|
Yu M, Yang W, Yue W, Chen Y. Targeted Cancer Immunotherapy: Nanoformulation Engineering and Clinical Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204335. [PMID: 36257824 PMCID: PMC9762307 DOI: 10.1002/advs.202204335] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Indexed: 05/09/2023]
Abstract
With the rapid growth of advanced nanoengineering strategies, there are great implications for therapeutic immunostimulators formulated in nanomaterials to combat cancer. It is crucial to direct immunostimulators to the right tissue and specific immune cells at the right time, thereby orchestrating the desired, potent, and durable immune response against cancer. The flexibility of nanoformulations in size, topology, softness, and multifunctionality allows precise regulation of nano-immunological activities for enhanced therapeutic effect. To grasp the modulation of immune response, research efforts are needed to understand the interactions of immune cells at lymph organs and tumor tissues, where the nanoformulations guide the immunostimulators to function on tissue specific subsets of immune cells. In this review, recent advanced nanoformulations targeting specific subset of immune cells, such as dendritic cells (DCs), T cells, monocytes, macrophages, and natural killer (NK) cells are summarized and discussed, and clinical development of nano-paradigms for targeted cancer immunotherapy is highlighted. Here the focus is on the targeting nanoformulations that can passively or actively target certain immune cells by overcoming the physiobiological barriers, instead of directly injecting into tissues. The opportunities and remaining obstacles for the clinical translation of immune cell targeting nanoformulations in cancer therapy are also discussed.
Collapse
Affiliation(s)
- Meihua Yu
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Wei Yang
- Department of UrologyXinhua HospitalSchool of MedicineShanghai Jiaotong University1665 Kongjiang RoadShanghai200092P. R. China
| | - Wenwen Yue
- Shanghai Engineering Research Center of Ultrasound Diagnosis and TreatmentDepartment of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University Cancer CenterTongji University School of MedicineShanghai200072P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
4
|
Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Monoubiquitination in Homeostasis and Cancer. Int J Mol Sci 2022; 23:ijms23115925. [PMID: 35682605 PMCID: PMC9180643 DOI: 10.3390/ijms23115925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination is a post-translational modification (PTM), through which a single ubiquitin molecule is covalently conjugated to a lysine residue of the target protein. Monoubiquitination regulates the activity, subcellular localization, protein-protein interactions, or endocytosis of the substrate. In doing so, monoubiquitination is implicated in diverse cellular processes, including gene transcription, endocytosis, signal transduction, cell death, and DNA damage repair, which in turn regulate cell-cycle progression, survival, proliferation, and stress response. In this review, we summarize the functions of monoubiquitination and discuss how this PTM modulates homeostasis and cancer.
Collapse
Affiliation(s)
- Yujie Chen
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Dandan Zhou
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yinan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Fan Yao
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China; (Y.C.); (D.Z.); (Y.Y.)
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: (F.Y.); (L.M.)
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence: (F.Y.); (L.M.)
| |
Collapse
|
5
|
Tumor mutation burden as a biomarker in resected gastric cancer via its association with immune infiltration and hypoxia. Gastric Cancer 2021; 24:823-834. [PMID: 33687617 DOI: 10.1007/s10120-021-01175-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor mutation burden (TMB) predicts immunotherapy efficacy in solid tumors. However, the biomarker role of TMB is still conflicting in resected tumors. We aimed to examine the association of TMB with prognosis and postoperative chemotherapy (CT) or radiochemotherapy (RCT) efficacy in resected gastric cancer (GC). METHODS Whole-exome sequencing (WES) was performed in 73 resected GC specimens. Validation cohorts included 352 patients from The Cancer Genome Atlas (TCGA) and 222 patients from the Asian Cancer Research Group (ACRG). Immune infiltration and hypoxia were evaluated by transcriptome data and immunohistochemistry assay. RESULTS TMB-high GC had favorable overall survival (OS) and disease-free survival (DFS), but the OS and DFS benefits with postoperative CT/RCT were more pronounced in TMB-low GC. These findings were consistent among all three cohorts and were maintained in the pooled cohort. Stratified by stages in the pooled cohort, stage III GC benefited from postoperative CT/RCT regardless of TMB level while stage Ib/II GC benefited from postoperative CT/RCT in TMB-low but not in TMB-high subgroup. TMB positively correlated with immune infiltration which was characterized by NK cell rather than CD8 + T cell enrichment. TMB-high GC was more hypoxic than TMB-low GC, and TMB-high stage Ib/II GC was the most hypoxic. CONCLUSIONS High TMB may predict favorable prognosis in resected GC but poor response to postoperative CT/RCT in stage Ib/II subgroup, which may be determined by TMB-associated immune infiltration and hypoxia, respectively.
Collapse
|
6
|
Burn OK, Pankhurst TE, Painter GF, Connor LM, Hermans IF. Harnessing NKT cells for vaccination. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab013. [PMID: 36845569 PMCID: PMC9914585 DOI: 10.1093/oxfimm/iqab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
Natural killer T (NKT) cells are innate-like T cells capable of enhancing both innate and adaptive immune responses. When NKT cells are stimulated in close temporal association with co-administered antigens, strong antigen-specific immune responses can be induced, prompting the study of NKT cell agonists as novel immune adjuvants. This activity has been attributed to the capacity of activated NKT cells to act as universal helper cells, with the ability to provide molecular signals to dendritic cells and B cells that facilitate T cell and antibody responses, respectively. These signals can override the requirement for conventional CD4+ T cell help, so that vaccines can be designed without need to consider CD4+ T cell repertoire and major histocompatibility complex Class II diversity. Animal studies have highlighted some drawbacks of the approach, namely, concerns around induction of NKT cell hyporesponsiveness, which may limit vaccine boosting, and potential for toxicity. Here we highlight studies that suggest these obstacles can be overcome by targeted delivery in vivo. We also feature new studies that suggest activating NKT cells can help encourage differentiation of T cells into tissue-resident memory cells that play an important role in prophylaxis against infection, and may be required in cancer therapy.
Collapse
Affiliation(s)
- Olivia K Burn
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand
| | - Theresa E Pankhurst
- The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Gavin F Painter
- The Ferrier Research Institute, Victoria University of Wellington, PO Box 33436, Petone 5046, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Lisa M Connor
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,The School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, PO Box 7060, Wellington 6042, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland, New Zealand,Correspondence address. Malaghan Institute of Medical Research, Wellington, New Zealand. Tel: +64 4 4996914; E-mail: (I.F.H.)
| |
Collapse
|
7
|
Loaiza Naranjo JD, Bergot AS, Buckle I, Hamilton-Williams EE. A Question of Tolerance-Antigen-Specific Immunotherapy for Type 1 Diabetes. Curr Diab Rep 2020; 20:70. [PMID: 33169191 DOI: 10.1007/s11892-020-01363-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Antigen-specific immunotherapy (ASI) is a long sought-after goal for type 1 diabetes (T1D), with the potential of greater long-term safety than non-specific immunotherapy. We review the most recent advances in identification of target islet epitopes, delivery platforms and the ongoing challenges. RECENT FINDINGS It is now recognised that human proinsulin contains a hotspot of epitopes targeted in people with T1D. Beta-cell neoantigens are also under investigation as ASI target epitopes. Consideration of the predicted HLA-specificity of the target antigen for subject selection is now being incorporated into trial design. Cell-free ASI approaches delivering antigen with or without additional immunomodulatory agents can induce antigen-specific regulatory T cell responses, including in patients and many novel nanoparticle-based platforms are under development. ASI for T1D is rapidly advancing with a number of modalities currently being trialled in patients and many more under development in preclinical models.
Collapse
Affiliation(s)
- Jeniffer D Loaiza Naranjo
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Irina Buckle
- Mater Research Institute UQ, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
8
|
Colbert JD, Cruz FM, Rock KL. Cross-presentation of exogenous antigens on MHC I molecules. Curr Opin Immunol 2020; 64:1-8. [PMID: 31927332 DOI: 10.1016/j.coi.2019.12.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022]
Abstract
In order to get recognized by CD8 T cells, most cells present peptides from endogenously expressed self or foreign proteins on MHC class I molecules. However, specialized antigen-presenting cells, such as DCs and macrophages, can present exogenous antigen on MHC-I in a process called cross-presentation. This pathway plays key roles in antimicrobial and antitumor immunity, and also immune tolerance. Recent advances have broadened our understanding of the underlying mechanisms of cross-presentation. Here, we review some of these recent advances, including the distinct pathways that result in the cross-priming of CD8 T cells and the source of the class I molecules presenting exogenous peptides.
Collapse
Affiliation(s)
- Jeff D Colbert
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, United States
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, United States.
| |
Collapse
|