1
|
Li F, Chen Y, Zhuang H, Pei R, Lu Y, Chen D, Li S, Ye P, Lian J, Lu Y. A combination of Dihydroartemisinin and Venetoclax enhances antitumor effect in AML via C-MYC/BCL-XL/MCL-1 triple targeting. Discov Oncol 2025; 16:496. [PMID: 40202582 PMCID: PMC11982003 DOI: 10.1007/s12672-025-02242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is associated with high rates of resistance to standard therapies, necessitating the exploration of novel treatment strategies. Venetoclax (VEN) has shown efficacy in AML, yet drug resistance remains a significant challenge. This study aims to explore the synergistic effects of combining dihydroartemisinin (DHA) with VEN to improve therapeutic outcomes in AML. METHODS AML cell lines and primary cells from AML patients were treated with various concentrations of DHA, VEN and their combined regimen. The cytotoxic effects were evaluated using MTS assays, flow cytometry for apoptosis analysis, and cell cycle assessments. Protein levels of caspase-3, PARP, MCL-1, BCL-XL and C-MYC were analyzed to elucidate the underlying mechanisms of the observed synergy. RESULTS The combination of VEN and DHA demonstrated a significant synergistic cytotoxic effect on AML cells, characterized by reduced cell proliferation, induced apoptosis, and cell cycle arrest in the G0/G1 phase. Mechanistically, the synergy was associated with increased levels of cleaved caspase-3 and PARP, along with the downregulation of anti-apoptotic proteins MCL-1 and BCL-XL. Additionally, the combined treatment led to a significant decrease in C-MYC expression. This synergistic effect was consistently observed across all primary AML patient samples analyzed. CONCLUSION The findings suggest that the combination of VEN and DHA exerts synergistic anti-leukemic effects by targeting BCL-XL, MCL-1 and C-MYC, offering a promising therapeutic strategy for AML.
Collapse
Affiliation(s)
- Fenglin Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Yao Chen
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Shaoxing Central Hospital, Shaoxing, China
| | - Haihui Zhuang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Yuyu Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Dong Chen
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Shuangyue Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Peipei Ye
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Jiaying Lian
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China
- Institute of Hematology, Ningbo University, Ningbo, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Baizhang Road 251#, Ningbo, China.
- Institute of Hematology, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Kläsener K, Herrmann N, Håversen L, Sundell T, Sundqvist M, Lundqvist C, Manna PT, Jonsson CA, Visentini M, Ljung Sass D, McGrath S, Grimstad K, Aranburu A, Mellgren K, Fogelstrand L, Forsman H, Ekwall O, Borén J, Gjertsson I, Reth M, Mårtensson I, Camponeschi A. Targeting CD38 with monoclonal antibodies disrupts key survival pathways in paediatric Burkitt's lymphoma malignant B cells. Clin Transl Immunology 2024; 13:e70011. [PMID: 39364393 PMCID: PMC11447455 DOI: 10.1002/cti2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Objectives Paediatric Burkitt's lymphoma (pBL) is the most common childhood non-Hodgkin B-cell lymphoma. Despite the encouraging survival rates for most children, treating cases with relapse/resistance to current therapies remains challenging. CD38 is a transmembrane protein highly expressed in pBL. This study investigates the effectiveness of CD38-targeting monoclonal antibodies (mAbs), daratumumab and isatuximab, in impairing crucial cellular processes and survival pathways in pBL malignant cells. Methods In silico analyses of patient samples, combined with in vitro experiments using the Ramos cell line, were conducted to assess the impact of daratumumab and isatuximab on cellular proliferation, apoptosis and the phosphoinositide 3-kinase (PI3K) pathway. Results Isatuximab was found to be more effective than daratumumab in disrupting B-cell receptor signalling, reducing cellular proliferation and inducing apoptosis. Additionally, isatuximab caused a significant impairment of the PI3K pathway and induced metabolic reprogramming in pBL cells. The study also revealed a correlation between CD38 and MYC expression levels in pBL patient samples, suggesting CD38 involvement in key oncogenic processes. Conclusion The study emphasises the therapeutic potential of CD38-targeting mAbs, particularly isatuximab, in pBL.
Collapse
Affiliation(s)
- Kathrin Kläsener
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Nadja Herrmann
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Timothy Sundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Paul T Manna
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Charlotte A Jonsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcella Visentini
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Diana Ljung Sass
- Department of Pediatric Hematology and Oncology, The Queen Silvia's Hospital for Children and AdolescentsUniversity of GothenburgGothenburgSweden
| | - Sarah McGrath
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Kristoffer Grimstad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- School of BioscienceUniversity of SkövdeSkövdeSweden
| | - Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Karin Mellgren
- Department of Pediatric Hematology and Oncology, The Queen Silvia's Hospital for Children and AdolescentsUniversity of GothenburgGothenburgSweden
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Rheumatology, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Michael Reth
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center FreiburgFreiburgGermany
- Signaling Research Centers BIOSS and CIBSSUniversity of FreiburgFreiburgGermany
| | - Inga‐Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Immunology and Transfusion Medicine, Region Västra GötalandSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
3
|
Mulè P, Fernandez-Perez D, Amato S, Manganaro D, Oldani P, Brandini S, Diaferia G, Cuomo A, Recordati C, Soriani C, Dondi A, Zanotti M, Rustichelli S, Bisso A, Pece S, Rodighiero S, Natoli G, Amati B, Ferrari KJ, Chiacchiera F, Pasini D. WNT Oncogenic Transcription Requires MYC Suppression of Lysosomal Activity and EPCAM Stabilization in Gastric Tumors. Gastroenterology 2024; 167:903-918. [PMID: 38971196 DOI: 10.1053/j.gastro.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND & AIMS WNT signaling is central to spatial tissue arrangement and regulating stem cell activity, and it represents the hallmark of gastrointestinal cancers. Although its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. METHODS We have developed mouse models to control the specific expression of an oncogenic form of β-catenin (CTNNB1) in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multiomics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. RESULTS We report that constitutive β-catenin stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumor formation. Although physiologically low MYC levels in gastric glands limit β-catenin transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting β-catenin enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting β-catenin chromatin accumulation and activation of WNT oncogenic transcription. CONCLUSION Our results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.
Collapse
Affiliation(s)
- Patrizia Mulè
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Daniel Fernandez-Perez
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Simona Amato
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Daria Manganaro
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Paola Oldani
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Stefania Brandini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Giuseppe Diaferia
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Alessandro Cuomo
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | | | - Chiara Soriani
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Ambra Dondi
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Marika Zanotti
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Samantha Rustichelli
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Andrea Bisso
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Salvatore Pece
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Simona Rodighiero
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Gioacchino Natoli
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Bruno Amati
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Karin Johanna Ferrari
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy
| | - Fulvio Chiacchiera
- University of Trento, Department of Cellular, Computational and Integrative Biology, Trento, Italy
| | - Diego Pasini
- European Institute of Oncology (IEO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Oncology, Milan, Italy; University of Milan, Department of Health Sciences, Milan, Italy.
| |
Collapse
|
4
|
Vincelette ND, Yu X, Kuykendall AT, Moon J, Su S, Cheng CH, Sammut R, Razabdouski TN, Nguyen HV, Eksioglu EA, Chan O, Al Ali N, Patel PC, Lee DH, Nakanishi S, Ferreira RB, Hyjek E, Mo Q, Cory S, Lawrence HR, Zhang L, Murphy DJ, Komrokji RS, Lee D, Kaufmann SH, Cleveland JL, Yun S. Trisomy 8 Defines a Distinct Subtype of Myeloproliferative Neoplasms Driven by the MYC-Alarmin Axis. Blood Cancer Discov 2024; 5:276-297. [PMID: 38713018 PMCID: PMC11215389 DOI: 10.1158/2643-3230.bcd-23-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/16/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024] Open
Abstract
Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPN) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for patients with triple-negative (TN) myelofibrosis (MF) who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in TN-MF and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs. Significance: This study establishes that MYC expression is increased in TN-MPNs via trisomy 8, that a MYC-S100A9 circuit manifest in these cases is sufficient to provoke myelofibrosis and inflammation in diverse hematopoietic cell types in the BM niche, and that the MYC-S100A9 circuit is targetable in TN-MPNs.
Collapse
Affiliation(s)
- Nicole D. Vincelette
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Andrew T. Kuykendall
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Jungwon Moon
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Siyuan Su
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois.
| | - Chia-Ho Cheng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Rinzine Sammut
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
- Département d’Hématologie Clinique, Centre Hospitalier Universitaire de Nice, Nice, France.
| | - Tiffany N. Razabdouski
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Hai V. Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
| | - Erika A. Eksioglu
- Department of Immunology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Onyee Chan
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Najla Al Ali
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Parth C. Patel
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
- Department of Internal Medicine, University of South Florida, Tampa, Florida.
| | - Dae H. Lee
- Division of Cardiovascular Science, Department of Internal Medicine, University of South Florida, Tampa, Florida
| | - Shima Nakanishi
- Department of Tumor Microenvironment & Metastasis, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Renan B. Ferreira
- Department of Drug Discovery, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Elizabeth Hyjek
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Suzanne Cory
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
| | - Harshani R. Lawrence
- Department of Drug Discovery, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Ling Zhang
- Department of Pathology and Laboratory Medicine, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.
- Cancer Research UK Scotland Institute, Glasgow, United Kingdom.
| | - Rami S. Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Daesung Lee
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois.
| | - Scott H. Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota.
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | - John L. Cleveland
- Department of Tumor Microenvironment & Metastasis, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Seongseok Yun
- Department of Malignant Hematology, Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
5
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Burger KL, Fernandez MR, Meads MB, Sudalagunta P, Oliveira PS, Renatino Canevarolo R, Alugubelli RR, Tungsevik A, De Avila G, Silva M, Graeter AI, Dai HA, Vincelette ND, Prabhu A, Magaletti D, Yang C, Li W, Kulkarni A, Hampton O, Koomen JM, Roush WR, Monastyrskyi A, Berglund AE, Silva AS, Cleveland JL, Shain KH. CK1δ and CK1ε Signaling Sustains Mitochondrial Metabolism and Cell Survival in Multiple Myeloma. Cancer Res 2023; 83:3901-3919. [PMID: 37702657 PMCID: PMC10690099 DOI: 10.1158/0008-5472.can-22-2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Mario R. Fernandez
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Mark B. Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Praneeth Sudalagunta
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Paula S. Oliveira
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Rafael Renatino Canevarolo
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Alexandre Tungsevik
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Gabe De Avila
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Maria Silva
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Allison I. Graeter
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Nicole D. Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Antony Prabhu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Dario Magaletti
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Chunying Yang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Weimin Li
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | | | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Andrii Monastyrskyi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Ariosto S. Silva
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John L. Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Kenneth H. Shain
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
7
|
Zoncu R, Perera RM. Emerging roles of the MiT/TFE factors in cancer. Trends Cancer 2023; 9:817-827. [PMID: 37400313 DOI: 10.1016/j.trecan.2023.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
The microphthalmia/transcription factor E (MiT/TFE) transcription factors (TFs; TFEB, TFE3, MITF, and TFEC) play a central role in cellular catabolism and quality control and are subject to extensive layers of regulation that influence their localization, stability, and activity. Recent studies have highlighted a broader role for these TFs in driving diverse stress-adaptation pathways, which manifest in a context- and tissue-dependent manner. Several human cancers upregulate the MiT/TFE factors to survive extreme fluctuations in nutrients, energy, and pharmacological challenges. Emerging data suggest that reduced activity of the MiT/TFE factors can also promote tumorigenesis. Here, we outline recent findings relating to novel mechanisms of regulation and activity of MiT/TFE proteins across some of the most aggressive human cancers.
Collapse
Affiliation(s)
- Roberto Zoncu
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Rushika M Perera
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Mutvei AP, Nagiec MJ, Blenis J. Balancing lysosome abundance in health and disease. Nat Cell Biol 2023; 25:1254-1264. [PMID: 37580388 DOI: 10.1038/s41556-023-01197-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/28/2023] [Indexed: 08/16/2023]
Abstract
Lysosomes are catabolic organelles that govern numerous cellular processes, including macromolecule degradation, nutrient signalling and ion homeostasis. Aberrant changes in lysosome abundance are implicated in human diseases. Here we outline the mechanisms of lysosome biogenesis and turnover, and discuss how changes in the lysosome pool impact physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Anders P Mutvei
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Huddinge, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Michal J Nagiec
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - John Blenis
- Meyer Cancer Center and Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
9
|
Nakanishi S, Li J, Berglund AE, Kim Y, Zhang Y, Zhang L, Yang C, Song J, Mirmira RG, Cleveland JL. The Polyamine-Hypusine Circuit Controls an Oncogenic Translational Program Essential for Malignant Conversion in MYC-Driven Lymphoma. Blood Cancer Discov 2023; 4:294-317. [PMID: 37070973 PMCID: PMC10320645 DOI: 10.1158/2643-3230.bcd-22-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/01/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023] Open
Abstract
The MYC oncoprotein is activated in a broad spectrum of human malignancies and transcriptionally reprograms the genome to drive cancer cell growth. Given this, it is unclear if targeting a single effector of MYC will have therapeutic benefit. MYC activates the polyamine-hypusine circuit, which posttranslationally modifies the eukaryotic translation factor eIF5A. The roles of this circuit in cancer are unclear. Here we report essential intrinsic roles for hypusinated eIF5A in the development and maintenance of MYC-driven lymphoma, where the loss of eIF5A hypusination abolishes malignant transformation of MYC-overexpressing B cells. Mechanistically, integrating RNA sequencing, ribosome sequencing, and proteomic analyses revealed that efficient translation of select targets is dependent upon eIF5A hypusination, including regulators of G1-S phase cell-cycle progression and DNA replication. This circuit thus controls MYC's proliferative response, and it is also activated across multiple malignancies. These findings suggest the hypusine circuit as a therapeutic target for several human tumor types. SIGNIFICANCE Elevated EIF5A and the polyamine-hypusine circuit are manifest in many malignancies, including MYC-driven tumors, and eIF5A hypusination is necessary for MYC proliferative signaling. Not-ably, this circuit controls an oncogenic translational program essential for the development and maintenance of MYC-driven lymphoma, supporting this axis as a target for cancer prevention and treatment. See related commentary by Wilson and Klein, p. 248. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Shima Nakanishi
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jiannong Li
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anders E. Berglund
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Youngchul Kim
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Yonghong Zhang
- Department of Bioinformatics and Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Ling Zhang
- Department of Pathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Chunying Yang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jinming Song
- Department of Pathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - John L. Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
10
|
Gong D, Zhao Q, Liu J, Zhao S, Yi C, Lv J, Yu H, Bian E, Tian D. Identification of a novel MYC target gene set signature for predicting the prognosis of osteosarcoma patients. Front Oncol 2023; 13:1169430. [PMID: 37342196 PMCID: PMC10277635 DOI: 10.3389/fonc.2023.1169430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023] Open
Abstract
Osteosarcoma is a primary malignant tumor found mainly in teenagers and young adults. Patients have very little long-term survival. MYC controls tumor initiation and progression by regulating the expression of its target genes; thus, constructing a risk signature of osteosarcoma MYC target gene set will benefit the evaluation of both treatment and prognosis. In this paper, we used GEO data to download the ChIP-seq data of MYC to obtain the MYC target gene. Then, a risk signature consisting of 10 MYC target genes was developed using Cox regression analysis. The signature indicates that patients in the high-risk group performed poorly. After that, we verified it in the GSE21257 dataset. In addition, the difference in tumor immune function among the low- and high-risk populations was compared by single sample gene enrichment analysis. Immunotherapy and prediction of response to the anticancer drug have shown that the risk signature of the MYC target gene set was positively correlated with immune checkpoint response and drug sensitivity. Functional analysis has demonstrated that these genes are enriched in malignant tumors. Finally, STX10 was selected for functional experimentation. STX10 silence has limited osteosarcoma cell migration, invasion, and proliferation. Therefore, these findings indicated that the MYC target gene set risk signature could be used as a potential therapeutic target and prognostic indicator in patients with osteosarcoma.
Collapse
Affiliation(s)
- Deliang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingzhong Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shibing Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengfeng Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianwei Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hang Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Wang QQ, Hussain L, Yu PH, Yang C, Zhu CY, Ma YF, Wang SC, Yang T, Kang YY, Yu WJ, Maimaitiyiming Y, Naranmandura H. Hyperthermia promotes degradation of the acute promyelocytic leukemia driver oncoprotein ZBTB16/RARα. Acta Pharmacol Sin 2023; 44:822-831. [PMID: 36216898 PMCID: PMC10042863 DOI: 10.1038/s41401-022-01001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
The acute promyelocytic leukemia (APL) driver ZBTB16/RARα is generated by the t(11;17) (q23;q21) chromosomal translocation, which is resistant to combined treatment of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) or conventional chemotherapy, resulting in extremely low survival rates. In the current study, we investigated the effects of hyperthermia on the oncogenic fusion ZBTB16/RARα protein to explore a potential therapeutic approach for this variant APL. We showed that Z/R fusion protein expressed in HeLa cells was resistant to ATO, ATRA, and conventional chemotherapeutic agents. However, mild hyperthermia (42 °C) rapidly destabilized the ZBTB16/RARα fusion protein expressed in HeLa, 293T, and OCI-AML3 cells, followed by robust ubiquitination and proteasomal degradation. In contrast, hyperthermia did not affect the normal (i.e., unfused) ZBTB16 and RARα proteins, suggesting a specific thermal sensitivity of the ZBTB16/RARα fusion protein. Importantly, we found that the destabilization of ZBTB16/RARα was the initial step for oncogenic fusion protein degradation by hyperthermia, which could be blocked by deletion of nuclear receptor corepressor (NCoR) binding sites or knockdown of NCoRs. Furthermore, SIAH2 was identified as the E3 ligase participating in hyperthermia-induced ubiquitination of ZBTB16/RARα. In short, these results demonstrate that hyperthermia could effectively destabilize and subsequently degrade the ZBTB16/RARα fusion protein in an NCoR-dependent manner, suggesting a thermal-based therapeutic strategy that may improve the outcome in refractory ZBTB16/RARα-driven APL patients in the clinic.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, 310003, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Pei-Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen-Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ya-Fang Ma
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Si-Chun Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Tao Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuan-Yuan Kang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wen-Juan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310031, China.
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Zhejiang Province Key Laboratory of Haematology Oncology Diagnosis and Treatment, Hangzhou, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Carbó JM, Cornet-Masana JM, Cuesta-Casanovas L, Delgado-Martínez J, Banús-Mulet A, Clément-Demange L, Serra C, Catena J, Llebaria A, Esteve J, Risueño RM. A Novel Family of Lysosomotropic Tetracyclic Compounds for Treating Leukemia. Cancers (Basel) 2023; 15:1912. [PMID: 36980800 PMCID: PMC10047683 DOI: 10.3390/cancers15061912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological cancer characterized by poor prognosis and frequent relapses. Aside from specific mutation-related changes, in AML, the overall function of lysosomes and mitochondria is drastically altered to fulfill the elevated biomass and bioenergetic demands. On the basis of previous results, in silico drug discovery screening was used to identify a new family of lysosome-/mitochondria-targeting compounds. These novel tetracyclic hits, with a cationic amphiphilic structure, specifically eradicate leukemic cells by inducing both mitochondrial damage and apoptosis, and simultaneous lysosomal membrane leakiness. Lysosomal leakiness does not only elicit canonical lysosome-dependent cell death, but also activates the terminal differentiation of AML cells through the Ca2+-TFEB-MYC signaling axis. In addition to being an effective monotherapy, its combination with the chemotherapeutic arsenic trioxide (ATO) used in other types of leukemia is highly synergistic in AML cells, widening the therapeutic window of the treatment. Moreover, the compounds are effective in a wide panel of cancer cell lines and possess adequate pharmacological properties rendering them promising drug candidates for the treatment of AML and other neoplasias.
Collapse
Affiliation(s)
- José M. Carbó
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Leukos Biotech, 08021 Barcelona, Spain
| | | | - Laia Cuesta-Casanovas
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Faculty of Biosciences, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Jennifer Delgado-Martínez
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Juanlo Catena
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
- SIMChem, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry and Synthesis, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Jordi Esteve
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
- Department of Hematology, Hospital Clínic, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain
| |
Collapse
|
13
|
Martina JA, Jeong E, Puertollano R. p38 MAPK-dependent phosphorylation of TFEB promotes monocyte-to-macrophage differentiation. EMBO Rep 2023; 24:e55472. [PMID: 36507874 PMCID: PMC9900348 DOI: 10.15252/embr.202255472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
The transcription factor EB (TFEB) regulates energy homeostasis and cellular response to a wide variety of stress conditions, including nutrient deprivation, oxidative stress, organelle damage, and pathogens. Here we identify S401 as a novel phosphorylation site within the TFEB proline-rich domain. Phosphorylation of S401 increases significantly in response to oxidative stress, UVC light, growth factors, and LPS, whereas this increase is prevented by p38 MAPK inhibition or depletion, revealing a new role for p38 MAPK in TFEB regulation. Mutation of S401 in THP1 cells demonstrates that the p38 MAPK/TFEB pathway plays a particularly relevant role during monocyte differentiation into macrophages. TFEB-S401A monocytes fail to upregulate the expression of multiple immune genes in response to PMA-induced differentiation, including critical cytokines, chemokines, and growth factors. Polarization of M0 macrophages into M1 inflammatory macrophages is also aberrant in TFEB-S401A cells. These results indicate that TFEB-S401 phosphorylation links differentiation signals to the transcriptional control of monocyte differentiation.
Collapse
Affiliation(s)
- José A Martina
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Eutteum Jeong
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| | - Rosa Puertollano
- Cell and Developmental Biology CenterNational Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
14
|
Gasic V, Karan-Djurasevic T, Pavlovic D, Zukic B, Pavlovic S, Tosic N. Diagnostic and Therapeutic Implications of Long Non-Coding RNAs in Leukemia. Life (Basel) 2022; 12:1770. [PMID: 36362925 PMCID: PMC9695865 DOI: 10.3390/life12111770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Leukemia is a heterogenous group of hematological malignancies categorized in four main types (acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myeloid leukemia (CML) and chronic lymphocytic leukemia (CLL). Several cytogenetic and molecular markers have become a part of routine analysis for leukemia patients. These markers have been used in diagnosis, risk-stratification and targeted therapy application. Recent studies have indicated that numerous regulatory RNAs, such as long non-coding RNAs (lncRNAs), have a role in tumor initiation and progression. When it comes to leukemia, data for lncRNA involvement in its etiology, progression, diagnosis, treatment and prognosis is limited. The aim of this review is to summarize research data on lncRNAs in different types of leukemia, on their expression pattern, their role in leukemic transformation and disease progression. The usefulness of this information in the clinical setting, i.e., for diagnostic and prognostic purposes, will be emphasized. Finally, how particular lncRNAs could be used as potential targets for the application of targeted therapy will be considered.
Collapse
Affiliation(s)
- Vladimir Gasic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
15
|
Ravichandran M, Hu J, Cai C, Ward NP, Venida A, Foakes C, Kuljanin M, Yang A, Hennessey CJ, Yang Y, Desousa BR, Rademaker G, Staes AA, Cakir Z, Jain IH, Aguirre AJ, Mancias JD, Shen Y, DeNicola GM, Perera RM. Coordinated Transcriptional and Catabolic Programs Support Iron-Dependent Adaptation to RAS-MAPK Pathway Inhibition in Pancreatic Cancer. Cancer Discov 2022; 12:2198-2219. [PMID: 35771494 PMCID: PMC9444964 DOI: 10.1158/2159-8290.cd-22-0044] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/23/2022] [Accepted: 06/27/2022] [Indexed: 12/30/2022]
Abstract
The mechanisms underlying metabolic adaptation of pancreatic ductal adenocarcinoma (PDA) cells to pharmacologic inhibition of RAS-MAPK signaling are largely unknown. Using transcriptome and chromatin immunoprecipitation profiling of PDA cells treated with the MEK inhibitor (MEKi) trametinib, we identify transcriptional antagonism between c-MYC and the master transcription factors for lysosome gene expression, the MiT/TFE proteins. Under baseline conditions, c-MYC and MiT/TFE factors compete for binding to lysosome gene promoters to fine-tune gene expression. Treatment of PDA cells or patient organoids with MEKi leads to c-MYC downregulation and increased MiT/TFE-dependent lysosome biogenesis. Quantitative proteomics of immunopurified lysosomes uncovered reliance on ferritinophagy, the selective degradation of the iron storage complex ferritin, in MEKi-treated cells. Ferritinophagy promotes mitochondrial iron-sulfur cluster protein synthesis and enhanced mitochondrial respiration. Accordingly, suppressing iron utilization sensitizes PDA cells to MEKi, highlighting a critical and targetable reliance on lysosome-dependent iron supply during adaptation to KRAS-MAPK inhibition. SIGNIFICANCE Reduced c-MYC levels following MAPK pathway suppression facilitate the upregulation of autophagy and lysosome biogenesis. Increased autophagy-lysosome activity is required for increased ferritinophagy-mediated iron supply, which supports mitochondrial respiration under therapy stress. Disruption of ferritinophagy synergizes with KRAS-MAPK inhibition and blocks PDA growth, thus highlighting a key targetable metabolic dependency. See related commentary by Jain and Amaravadi, p. 2023. See related article by Santana-Codina et al., p. 2180. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Mirunalini Ravichandran
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jingjie Hu
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Charles Cai
- Department of Neurology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nathan P. Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anthony Venida
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Callum Foakes
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Miljan Kuljanin
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Annan Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Connor J. Hennessey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yang Yang
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Brandon R. Desousa
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Gilles Rademaker
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Annelot A.L. Staes
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zeynep Cakir
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Isha H. Jain
- Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94158, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Joseph D. Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yin Shen
- Department of Neurology, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gina M. DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Rushika M. Perera
- Department of Anatomy, Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Seliger B, Massa C. Modulation of Lymphocyte Functions in the Microenvironment by Tumor Oncogenic Pathways. Front Immunol 2022; 13:883639. [PMID: 35663987 PMCID: PMC9160824 DOI: 10.3389/fimmu.2022.883639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 01/10/2023] Open
Abstract
Despite the broad application of different immunotherapeutic strategies for the treatment of solid as well as hematopoietic cancers, the efficacy of these therapies is still limited, with only a minority of patients having a long-term benefit resulting in an improved survival rate. In order to increase the response rates of patients to the currently available immunotherapies, a better understanding of the molecular mechanisms underlying the intrinsic and/or extrinsic resistance to treatment is required. There exist increasing evidences that activation of different oncogenic pathways as well as inactivation of tumor suppressor genes (TSG) in tumor cells inhibit the immune cell recognition and influegnce the composition of the tumor microenvironment (TME), thus leading to an impaired anti-tumoral immune response. A deeper understanding of the link between the tumor milieu and genomic alterations of TSGs and oncogenes is indispensable for the optimization of immunotherapies and to predict the patients’ response to these treatments. This review summarizes the role of different cancer-related, oncogene- and TSG-controlled pathways in the context of anti-tumoral immunity and response to different immunotherapies.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
17
|
Seo W, Silwal P, Song IC, Jo EK. The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol 2022; 15:51. [PMID: 35526025 PMCID: PMC9077970 DOI: 10.1186/s13045-022-01262-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematologic malignancy prevalent in older patients, and the identification of potential therapeutic targets for AML is problematic. Autophagy is a lysosome-dependent catabolic pathway involved in the tumorigenesis and/or treatment of various cancers. Mounting evidence has suggested that autophagy plays a critical role in the initiation and progression of AML and anticancer responses. In this review, we describe recent updates on the multifaceted functions of autophagy linking to genetic alterations of AML. We also summarize the latest evidence for autophagy-related genes as potential prognostic predictors and drivers of AML tumorigenesis. We then discuss the crosstalk between autophagy and tumor cell metabolism into the impact on both AML progression and anti-leukemic treatment. Moreover, a series of autophagy regulators, i.e., the inhibitors and activators, are described as potential therapeutics for AML. Finally, we describe the translation of autophagy-modulating therapeutics into clinical practice. Autophagy in AML is a double-edged sword, necessitating a deeper understanding of how autophagy influences dual functions in AML tumorigenesis and anti-leukemic responses.
Collapse
Affiliation(s)
- Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
18
|
Cell Origin-Dependent Cooperativity of Mutant Dnmt3a and Npm1 in Clonal Hematopoiesis and Myeloid Malignancy. Blood Adv 2022; 6:3666-3677. [PMID: 35413095 DOI: 10.1182/bloodadvances.2022006968] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/31/2022] [Indexed: 11/20/2022] Open
Abstract
In adult acute myeloid leukemia (AML), acquisition of driver somatic mutations may be preceded by a benign state termed clonal hematopoiesis (CH). To develop therapeutic strategies to prevent leukemia development from CH, it is important to understand the mechanisms by which CH-driving and AML-driving mutations cooperate. Here, we use mice with inducible mutant alleles common in human CH (DNMT3AR882; mouse Dnmt3aR878H) and AML (NPM1c; mouse Npm1cA). We find that Dnmt3aR878H/+ hematopoietic stem cells (HSCs), but not multipotent progenitor cell (MPP) subsets, have reduced expression of cytokine and pro-inflammatory transcriptional signatures and a functional competitive advantage over their wild-type counterparts. Dnmt3aR878H/+ HSCs are the most potent cell type transformed by Npm1cA, generating myeloid malignancies in which few additional cooperating somatic mutation events were detected. At a molecular level, Npm1cA in cooperation with Dnmt3aR878H acutely increased accessibility of a distinct set of promoters in HSCs compared to MPP cells. These promoters were enriched for cell cycling, PI3K/AKT/mTOR signaling, stem cell signatures, and targets of transcription factors including NFAT and the chromatin binding factor HMGB1, which have been implicated in human AML. These results demonstrate cooperativity between pre-existing Dnmt3aR878H and Npm1cA at the chromatin level, where specific loci altered in accessibility by Npm1cA are dependent on cell context as well as Dnmt3a mutation status. These findings have implications for biological understanding and therapeutic intervention into transformation from CH to AML.
Collapse
|
19
|
Jain V, Bose S, Arya AK, Arif T. Lysosomes in Stem Cell Quiescence: A Potential Therapeutic Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:1618. [PMID: 35406389 PMCID: PMC8996909 DOI: 10.3390/cancers14071618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are cellular organelles that regulate essential biological processes such as cellular homeostasis, development, and aging. They are primarily connected to the degradation/recycling of cellular macromolecules and participate in cellular trafficking, nutritional signaling, energy metabolism, and immune regulation. Therefore, lysosomes connect cellular metabolism and signaling pathways. Lysosome's involvement in the critical biological processes has rekindled clinical interest towards this organelle for treating various diseases, including cancer. Recent research advancements have demonstrated that lysosomes also regulate the maintenance and hemostasis of hematopoietic stem cells (HSCs), which play a critical role in the progression of acute myeloid leukemia (AML) and other types of cancer. Lysosomes regulate both HSCs' metabolic networks and identity transition. AML is a lethal type of blood cancer with a poor prognosis that is particularly associated with aging. Although the genetic landscape of AML has been extensively described, only a few targeted therapies have been produced, warranting the need for further research. This review summarizes the functions and importance of targeting lysosomes in AML, while highlighting the significance of lysosomes in HSCs maintenance.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center, Department of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA;
| | - Swaroop Bose
- Department of Dermatology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA;
| | - Awadhesh K. Arya
- Department of Anesthesiology, Shock, Trauma and Anesthesiology Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Tasleem Arif
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| |
Collapse
|
20
|
Fernandez MR, Schaub FX, Yang C, Li W, Yun S, Schaub SK, Dorsey FC, Liu M, Steeves MA, Ballabio A, Tzankov A, Chen Z, Koomen JM, Berglund AE, Cleveland JL. Disrupting the MYC-TFEB Circuit Impairs Amino Acid Homeostasis and Provokes Metabolic Anergy. Cancer Res 2022; 82:1234-1250. [PMID: 35149590 DOI: 10.1158/0008-5472.can-21-1168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/07/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022]
Abstract
MYC family oncoproteins are regulators of metabolic reprogramming that sustains cancer cell anabolism. Normal cells adapt to nutrient-limiting conditions by activating autophagy, which is required for amino acid (AA) homeostasis. Here we report that the autophagy pathway is suppressed by Myc in normal B cells, in premalignant and neoplastic B cells of Eμ-Myc transgenic mice, and in human MYC-driven Burkitt lymphoma. Myc suppresses autophagy by antagonizing the expression and function of transcription factor EB (TFEB), a master regulator of autophagy. Mechanisms that sustained AA pools in MYC-expressing B cells include coordinated induction of the proteasome and increases in AA transport. Reactivation of the autophagy-lysosomal pathway by TFEB disabled the malignant state by disrupting mitochondrial functions, proteasome activity, amino acid transport, and amino acid and nucleotide metabolism, leading to metabolic anergy, growth arrest and apoptosis. This phenotype provides therapeutic opportunities to disable MYC-driven malignancies, including AA restriction and treatment with proteasome inhibitors.
Collapse
Affiliation(s)
- Mario R Fernandez
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute
| | - Franz X Schaub
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute
| | - Chunying Yang
- Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute
| | - Weimin Li
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute
| | | | | | | | - Min Liu
- Proteomics Core, Moffitt Cancer Center
| | | | | | | | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center
| | - John M Koomen
- Department of Molecular Oncology, Moffitt Cancer Center
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, Division of Population Sciences, H. Lee Moffitt Cancer Center & Research Institute
| | - John L Cleveland
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute
| |
Collapse
|
21
|
Gajzer D, Logothetis CN, Sallman DA, Calon G, Babu A, Chan O, Vincelette ND, Volpe VO, Al Ali NH, Basra P, Talati C, Kuykendall AT, Mo Q, Padron E, Sweet K, Komrokji RS, Lancet JE, Yun S, Zhang L. MYC overexpression is associated with an early disease progression from MDS to AML. Leuk Res 2021; 111:106733. [PMID: 34749168 DOI: 10.1016/j.leukres.2021.106733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Recent studies demonstrated that MYC epigenetically regulates AML cell survival and differentiation by suppressing IDH1/2-TET2-5hmC signaling and that MYC overexpression is associated with poor survival outcomes in multiple AML patient cohorts. However, the oncogenic roles of MYC in MDS remain to be explored. A total of 41 patients with de novo MDS were retrospectively identified using the Total Cancer Care database at the Moffitt Cancer Center. A total of 61 % of patients had low MYC expression and 39 % of patients had high MYC expression defined as MYC reactivity by immunohistochemical staining in ≥5% of bone marrow (BM) cells at the time of MDS diagnosis. The median MDS-to-AML progression free survival (PFS) was significantly shorter in the high MYC group (median PFS 9.3 vs. 17.7 months, HR = 2.328, p = 0.013). Further, overall survival (OS) was also shorter in the high MYC patients (median OS 19.7 vs. 51.7 months, HR = 2.299, p = 0.053). Multivariate analyses demonstrated that high MYC expression is an independent poor prognostic factor for the MDS-to-AML progression (HR = 2.275, p = 0.046). Our observations indicate that MYC may play a crucial role in MDS transformation to AML and the underlying mechanisms of MYC-driven MDS clonal expansion and leukemic transformation require further investigation.
Collapse
Affiliation(s)
- David Gajzer
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - David A Sallman
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Abida Babu
- University of South Florida, Internal Medicine, Tampa, FL, USA
| | - Onyee Chan
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nicole D Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Virginia O Volpe
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Najla H Al Ali
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Pukhraz Basra
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chetasi Talati
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Andrew T Kuykendall
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric Padron
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Kendra Sweet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Rami S Komrokji
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Jeffrey E Lancet
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Seongseok Yun
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
22
|
Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021; 10:cells10102752. [PMID: 34685734 PMCID: PMC8534995 DOI: 10.3390/cells10102752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Correspondence: (S.K.); (R.S.)
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Fidel-Nicolás Lolo
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Raffaele Strippoli
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Correspondence: (S.K.); (R.S.)
| | | |
Collapse
|
23
|
Maimaitiyiming Y, Wang QQ, Yang C, Ogra Y, Lou Y, Smith CA, Hussain L, Shao YM, Lin J, Liu J, Wang L, Zhu Y, Lou H, Huang Y, Li X, Chang KJ, Chen H, Li H, Huang Y, Tse E, Sun J, Bu N, Chiou SH, Zhang YF, Hua HY, Ma LY, Huang P, Ge MH, Cao FL, Cheng X, Sun H, Zhou J, Vasliou V, Xu P, Jin J, Bjorklund M, Zhu HH, Hsu CH, Naranmandura H. Hyperthermia Selectively Destabilizes Oncogenic Fusion Proteins. Blood Cancer Discov 2021; 2:388-401. [PMID: 34661159 PMCID: PMC8513904 DOI: 10.1158/2643-3230.bcd-20-0188] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The PML/RARα fusion protein is the oncogenic driver in acute promyelocytic leukemia (APL). Although most APL cases are cured by PML/RARα-targeting therapy, relapse and resistance can occur due to drug-resistant mutations. Here we report that thermal stress destabilizes the PML/RARα protein, including clinically identified drug-resistant mutants. AML1/ETO and TEL/AML1 oncofusions show similar heat shock susceptibility. Mechanistically, mild hyperthermia stimulates aggregation of PML/RARα in complex with nuclear receptor corepressors leading to ubiquitin-mediated degradation via the SIAH2 E3 ligase. Hyperthermia and arsenic therapy destabilize PML/RARα via distinct mechanisms and are synergistic in primary patient samples and in vivo, including three refractory APL cases. Collectively, our results suggest that by taking advantage of a biophysical vulnerability of PML/RARα, thermal therapy may improve prognosis in drug-resistant or otherwise refractory APL. These findings serve as a paradigm for therapeutic targeting of fusion oncoprotein-associated cancers by hyperthermia. SIGNIFICANCE Hyperthermia destabilizes oncofusion proteins including PML/RARα and acts synergistically with standard arsenic therapy in relapsed and refractory APL. The results open up the possibility that heat shock sensitivity may be an easily targetable vulnerability of oncofusion-driven cancers.See related commentary by Wu et al., p. 300.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Chang Yang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Yasumitsu Ogra
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yinjun Lou
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Clayton A. Smith
- Blood Disorders and Cellular Therapies Center, University of Colorado Hospital, Denver, Colorado
| | - Liaqat Hussain
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Ming Shao
- Department of Pharmacology, Inner Mongolia Medical University, Hohhot, China
| | - Jiebo Lin
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfeng Liu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Wang
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhu
- Department of Environmental Sciences, Yale University School of Public Health, New Haven, Connecticut
| | - Haiyan Lou
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Huang
- Zhejiang Province Lishui Municipal Hospital, Lishui, China
| | - Xiaoxia Li
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Kao-Jung Chang
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan, China
| | - Hao Chen
- Division of Newborn Medicine and Program in Epigenetics, Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hongyan Li
- Department of Chemistry, the University of Hong Kong, Hong Kong, China
| | - Ying Huang
- Institute of Genetics, Zhejiang University, and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Eric Tse
- Department of Medicine, the University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - Jie Sun
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Na Bu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shih-Hwa Chiou
- Taipei Veterans General Hospital Department of Medical Research, Taipei, Taiwan, China
| | - Yan Fang Zhang
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Li Ya Ma
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ming Hua Ge
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Feng-Lin Cao
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiaodong Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongzhe Sun
- Department of Chemistry, the University of Hong Kong, Hong Kong, China
| | - Jin Zhou
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Vasilis Vasliou
- Department of Environmental Sciences, Yale University School of Public Health, New Haven, Connecticut
| | - Pengfei Xu
- Institute of Genetics, Zhejiang University, and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Jin
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mikael Bjorklund
- Zhejiang University–University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong-Hu Zhu
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Women's Hospital, Institute of Genetics, and Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
24
|
Abstract
Although the MYC transcription factor has been consistently implicated in acute myeloid leukemia (AML), its gene targets and precise role in leukemogenesis remain unknown. In this issue of Blood Cancer Discovery, Yun and colleagues provide evidence that MYC directly suppresses the expression of TFEB, an mTORC1-regulated transcription factor. They show that, in the context of the myelocytic/granulocytic lineage, TFEB acts as a tumor suppressor by inducing the IDH1/2-TET pathway, which in turn, leads to altered DNA methylation and increased expression of genes involved in myeloid differentiation and apoptosis. Therefore, high levels of MYC suppress an epigenetic pathway that should normally act to attenuate leukemic progression. Identification of the components of this pathway is likely to inform new therapeutic tactics for AML and possibly other cancers. See related article by Yun et al., p. 162.
Collapse
Affiliation(s)
- Xiaoying Wu
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Robert N Eisenman
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| |
Collapse
|