1
|
Santos-Pereira M, Pereira SC, Matos B, Fardilha M, Oliveira PF, Alves MG. Increased susceptibility to prostate cancer biomarkers in the offspring of male mouse progenitors with lifelong or early life exposure to high-fat diet. Eur J Nutr 2025; 64:212. [PMID: 40481981 PMCID: PMC12145303 DOI: 10.1007/s00394-025-03737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025]
Abstract
Obesity exacerbates hormonal dysregulation, inflammation, and oxidative stress, factors associated with Prostate Cancer (PCa) development. The (epi)genetic influences of obesity may be transgenerationally transmitted, potentially impacting PCa susceptibility in the offspring of fathers with obesity. Thus, we studied the impact of early-life or lifelong exposure to a high-fat diet (HFD) on PCa biomarkers [Homeobox B13 (HOXB13) and the Androgen Receptor (AR)] and their correlation with obesity-related markers. Furthermore, we focused on the offspring's PCa biomarkers outcomes and explored their potential link with paternal diet. A transgenerational Mus musculus model was established, with F0 males exposed to different diets (200 days): standard chow, lifelong HFD (HFD), and transient diet (60 days HFD, plus 140 days of standard chow) (HFDt). AR expression in the prostates was unaffected, whereas HOXB13, Fat Mass and Obesity Associated gene (FTO), and Tumor Necrosis Factor-Alpha (TNF-α) expression decreased in the F1 HFDt group. HOXB13 and AR prostate expression were positively correlated. There was also a positive correlation between FTO prostate expression and PCa biomarkers, and between TNF-α expression and FTO and PCa biomarkers. HOXB13 promoter methylation levels were unaffected, however, were positively correlated with FTO and HOXB13 expression. Finally, protein nitration remained unchanged in the prostates, while lipid peroxidation was increased in the F0 HFD group and decreased in the F1 and F2 HFD and HFDt groups. Our study highlights the intergenerational interplay between obesity-related factors and PCa biomarkers, suggesting that offspring of male progenitors subjected to HFD may face an increased risk for elevated PCa biomarkers expression.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, 4050-313, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, 4099-002, Portugal
| | - Sara C Pereira
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, 4050-313, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, 4099-002, Portugal
- Department of Chemistry, LAQV-REQUIMTE, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Bárbara Matos
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Pedro F Oliveira
- Department of Chemistry, LAQV-REQUIMTE, Campus Universitario de Santiago, Aveiro, 3810-193, Portugal
| | - Marco G Alves
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal.
| |
Collapse
|
2
|
Zhang R, Liao W, Chen X, Wang J, Li J, Chen G, Wu W, Wang X, Zhang Y, Chen Z, Zhu X, Lin Z, Zhu Y, Ma L, Yu H. PKCα regulates the secretion of PDL1-carrying small extracellular vesicles in a p53-dependent manner. Cell Death Dis 2025; 16:19. [PMID: 39809736 PMCID: PMC11733117 DOI: 10.1038/s41419-025-07341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/06/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Small extracellular vesicles (sEVs), carrying PD-L1, have been implicated in immune evasion and tumor progression. However, understanding how PD-L1 sEVs are secreted still needs to be improved. We found that the secretion dynamics of PD-L1 sEVs is similar to that of other sEVs. Intracellular calcium and the associated downstream PKC signaling plays pivotal roles in releasing PD-L1 sEVs in non-small cell lung cancer cells (NSCLC). Particularly, we observed that knocking down PKCα has profound impacts on PD-L1 sEVs secretion, especially in the resting state and in the activated state, when induced by an intracellular calcium rise. Furthermore, our study revealed that PKCα regulates PD-L1 expression and PD-L1 sEVs secretion by influencing STAT1 phosphorylation and nuclear translocation in a p53-dependent manner. Notably, p53 can regulate STAT1 phosphorylation and nuclear localization, but it does not affect PKCα expression. This suggests that PKCα plays a significant role in regulating PD-L1 expression. Our findings suggest that targeting PKCα to modulate PD-L1 dynamics in NSCLC may be a promising therapeutic strategy to enhance the efficacy of immunotherapeutic interventions.
Collapse
Grants
- Macau Science and Technology Development Fund, Macau, China, Project code 0062/2021/A2, 002/2023/ALC, 003/2022/ALC & 006/2023/SKL
- Macau Science and Technology Development Fund, Macau, China, Project code 003/2022/ALC
- Macau Science and Technology Development Fund, Macau, China, Project code 0062/2021/A2, 002/2023/ALC & 006/2023/SKL
Collapse
Affiliation(s)
- Ren Zhang
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weilin Liao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xi Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Basic Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Junyi Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jiaqi Li
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Weiyu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoxuan Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yao Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ziyu Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xiaoyu Zhu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zicong Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lijuan Ma
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Haijie Yu
- School of Pharmacy, Faculty of Medicine & State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
3
|
Campos Haedo MN, Díaz Albuja JA, Camarero S, Cayrol F, Sterle HA, Debernardi MM, Perona M, Saban M, Ernst G, Mendez J, Paulazo MA, Juvenal GJ, Díaz Flaqué MC, Cremaschi GA, Rosemblit C. PKCα Activation via the Thyroid Hormone Membrane Receptor Is Key to Thyroid Cancer Growth. Int J Mol Sci 2024; 25:12158. [PMID: 39596225 PMCID: PMC11594262 DOI: 10.3390/ijms252212158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Thyroid carcinoma (TC) is the most common endocrine neoplasia, with its incidence increasing in the last 40 years worldwide. The determination of genetic and/or protein markers for thyroid carcinoma could increase diagnostic precision. Accumulated evidence shows that Protein kinase C alpha (PKCα) contributes to tumorigenesis and therapy resistance in cancer. However, the role of PKCα in TC remains poorly studied. Our group and others have demonstrated that PKCs can mediate the proliferative effects of thyroid hormones (THs) through their membrane receptor, the integrin αvβ3, in several cancer types. We found that PKCα is overexpressed in TC cell lines, and it also appeared as the predominant expressed isoform in public databases of TC patients. PKCα-depleted cells significantly reduced THs-induced proliferation, mediated by the integrin αvβ3 receptor, through AKT and Erk activation. In databases of TC patients, higher PKCα expression was associated with lower overall survival. Further analyses showed a positive correlation between PKCα and genes from the MAPK and PI3K-Akt pathways. Finally, immunohistochemical analysis showed abnormal upregulation of PKCα in human thyroid tumors. Our findings establish a potential role for PKCα in the control of hormone-induced proliferation that can be explored as a therapeutic and/or diagnostic target for TC.
Collapse
Affiliation(s)
- Mateo N. Campos Haedo
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Johanna A. Díaz Albuja
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Sandra Camarero
- Histopathology Service, Hospital de Pediatría Garrahan, Buenos Aires C1245AAM, Argentina;
| | - Florencia Cayrol
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Helena A. Sterle
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - María M. Debernardi
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Marina Perona
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (M.P.); (G.J.J.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Melina Saban
- Endocrinology Service, Hospital Británico de Buenos Aires, Buenos Aires C1280AEB, Argentina;
| | - Glenda Ernst
- Scientific Committee, Hospital Británico de Buenos Aires, Buenos Aires C1280AEB, Argentina;
| | - Julián Mendez
- Histopathology Service, Hospital Británico de Buenos Aires, Buenos Aires C1280AEB, Argentina;
| | - María A. Paulazo
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Guillermo J. Juvenal
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (M.P.); (G.J.J.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - María C. Díaz Flaqué
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Graciela A. Cremaschi
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Cinthia Rosemblit
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| |
Collapse
|
4
|
Wu Y, Xu R, Wang J, Luo Z. Precision molecular insights for prostate cancer prognosis: tumor immune microenvironment and cell death analysis of senescence-related genes by machine learning and single-cell analysis. Discov Oncol 2024; 15:487. [PMID: 39331250 PMCID: PMC11436555 DOI: 10.1007/s12672-024-01277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignancy among men, primarily originating from the prostate epithelium. It ranks first in global cancer incidence and second in mortality rates, with a rising trend in China. PCa's subtle initial symptoms, such as urinary issues, necessitate diagnostic measures like digital rectal examination, prostate-specific antigen (PSA) testing, and tissue biopsy. Advanced PCa management typically involves a multifaceted approach encompassing surgery, radiation, chemotherapy, and hormonal therapy. The involvement of aging genes in PCa development and progression, particularly through the mTOR pathway, has garnered increasing attention. METHODS This study aimed to explore the association between aging genes and biochemical PCa recurrence and construct predictive models. Utilizing public gene expression datasets (GSE70768, GSE116918, and TCGA), we conducted extensive analyses, including Cox regression, functional enrichment, immune cell infiltration estimation, and drug sensitivity assessments. The constructed risk score model, based on aging-related genes (ARGs), demonstrated superior predictive capability for PCa prognosis compared to conventional clinical features. High-risk genes positively correlated with risk, while low-risk genes displayed a negative correlation. RESULTS An ARGs-based risk score model was developed and validated for predicting prognosis in prostate adenocarcinoma (PRAD) patients. LASSO regression analysis and cross-validation plots were employed to select ARGs with prognostic significance. The risk score outperformed traditional clinicopathological features in predicting PRAD prognosis, as evidenced by its high AUC (0.787). The model demonstrated good sensitivity and specificity, with AUC values of 0.67, 0.675, 0.696, and 0.696 at 1, 3, 5, and 8 years, respectively, in the GEO cohort. Similar AUC values were observed in the TCGA cohort at 1, 3, and 5 years (0.67, 0.659, 0.667, and 0.743). The model included 12 genes, with high-risk genes positively correlated with risk and low-risk genes negatively correlated. CONCLUSIONS This study presents a robust ARGs-based risk score model for predicting biochemical recurrence in PCa patients, highlighting the potential significance of aging genes in PCa prognosis and offering enhanced predictive accuracy compared to traditional clinical parameters. These findings open new avenues for research on PCa recurrence prediction and therapeutic strategies.
Collapse
Affiliation(s)
- Yuni Wu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Ran Xu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Jing Wang
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| |
Collapse
|
5
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Singh RK, Kumar S, Kumar S, Shukla A, Kumar N, Patel AK, Yadav LK, Kaushalendra, Antiwal M, Acharya A. Potential implications of protein kinase Cα in pathophysiological conditions and therapeutic interventions. Life Sci 2023; 330:121999. [PMID: 37536614 DOI: 10.1016/j.lfs.2023.121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
PKCα is a molecule with many functions that play an important role in cell survival and death to maintain cellular homeostasis. Alteration in the normal functioning of PKCα is responsible for the complicated etiology of many pathologies, including cancer, cardiovascular diseases, kidney complications, neurodegenerative diseases, diabetics, and many others. Several studies have been carried out over the years on this kinase's function, and regulation in normal physiology and pathological conditions. A lot of data with antithetical results have therefore accumulated over time to create a complex framework of physiological implications connected to the PKCα function that needs comprehensive elucidation. In light of this information, we critically analyze the multiple roles played by PKCα in basic cellular processes and their molecular mechanism during various pathological conditions. This review further discusses the current approaches to manipulating PKCα signaling amplitude in the patient's favour and proposed PKCα as a therapeutic target to reverse pathological states.
Collapse
Affiliation(s)
- Rishi Kant Singh
- Lab of Hematopoiesis and Leukemia, KSBS, Indian Institute of Technology, Delhi, New Delhi 110016, India; Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sanjay Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sandeep Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Alok Shukla
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Naveen Kumar
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Patel
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Lokesh Kumar Yadav
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Kaushalendra
- Department of Zoology, Pachhunga University College Campus, Mizoram University, Aizawl 796001, India
| | - Meera Antiwal
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arbind Acharya
- Cancer Immunology Lab, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
7
|
Cooke M, Zhang S, Cornejo Maciel F, Kazanietz MG. Gi/o GPCRs drive the formation of actin-rich tunneling nanotubes in cancer cells via a Gβγ/PKCα/FARP1/Cdc42 axis. J Biol Chem 2023; 299:104983. [PMID: 37390986 PMCID: PMC10374973 DOI: 10.1016/j.jbc.2023.104983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023] Open
Abstract
The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gβγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C β3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Suli Zhang
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fabiana Cornejo Maciel
- Departament of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; INBIOMED, CONICET, Buenos Aires, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|