1
|
Apelian S, Martincuks A, Whittum M, Yasukawa M, Nguy L, Mathyk B, Andikyan V, Anderson ML, Rutherford T, Cristea M, Stewart D, Kohut A. PARP Inhibitors in Ovarian Cancer: Resistance Mechanisms, Clinical Evidence, and Evolving Strategies. Biomedicines 2025; 13:1126. [PMID: 40426953 PMCID: PMC12108591 DOI: 10.3390/biomedicines13051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/29/2025] Open
Abstract
The introduction of poly (ADP-ribose) polymerase inhibitors (PARPi) into the management of ovarian cancer has transformed the treatment landscape for patients affected by this malignancy. However, as the use of PARPi expands into both frontline maintenance and recurrence settings, the emergence of drug resistance has become a significant clinical challenge in the treatment of these patients. Although platinum-based chemotherapy (PBC) and PARPi act through different mechanisms-PBC causes DNA damage while PARPi blocks its repair-both depend on the integrity of DNA damage repair (DDR) pathways, leading to overlapping mechanisms of resistance. Here, we review the key resistance mechanisms shared by PARPi and PBC, and then we discuss their clinical implications in the management of patients with ovarian cancer. We also examine clinical rationale supporting the hypothesis that prior PARPi exposure may reduce the efficacy of subsequent PBC in patients experiencing a disease recurrence. Furthermore, we review preliminary clinical data assessing the potential role of PARPi retreatment in patients who have previously progressed on PARPis.
Collapse
Affiliation(s)
- Shant Apelian
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Antons Martincuks
- Department of Immuno-Oncology, City of Hope National Medicinal Center, Duarte, CA 91010, USA;
| | - Michelle Whittum
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Maya Yasukawa
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Lindsey Nguy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Begum Mathyk
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
| | - Vaagn Andikyan
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Matthew L. Anderson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | - Thomas Rutherford
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| | | | - Daphne Stewart
- Department of Medicine, Division of Medical Oncology, USC Norris Comprehensive Cancer Center and Keck School of Medicine, Los Angeles, CA 90089, USA;
| | - Adrian Kohut
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of South Florida, Tampa, FL 33620, USA; (M.W.); (M.Y.); (L.N.); (B.M.); (V.A.); (M.L.A.); (T.R.); (A.K.)
- Division of Gynecologic Oncology, Tampa General Hospital Cancer Institute, Tampa, FL 33620, USA
| |
Collapse
|
2
|
Quesada S, Penault-Llorca F, Matias-Guiu X, Banerjee S, Barberis M, Coleman RL, Colombo N, DeFazio A, McNeish IA, Nogueira-Rodrigues A, Oaknin A, Pignata S, Pujade-Lauraine É, Rouleau É, Ryška A, Van Der Merwe N, Van Gorp T, Vergote I, Weichert W, Wu X, Ray-Coquard I, Pujol P. Homologous recombination deficiency in ovarian cancer: Global expert consensus on testing and a comparison of companion diagnostics. Eur J Cancer 2025; 215:115169. [PMID: 39693891 DOI: 10.1016/j.ejca.2024.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Poly (ADP ribose) polymerase inhibitors (PARPis) are a treatment option for patients with advanced high-grade serous or endometrioid ovarian carcinoma (OC). Recent guidelines have clarified how homologous recombination deficiency (HRD) may influence treatment decision-making in this setting. As a result, numerous companion diagnostic assays (CDx) have been developed to identify HRD. However, the optimal HRD testing strategy is an area of debate. Moreover, recently published clinical and translational data may impact how HRD status may be used to identify patients likely to benefit from PARPi use. We aimed to extensively compare available HRD CDx and establish a worldwide expert consensus on HRD testing in primary and recurrent OC. METHODS A group of 99 global experts from 31 different countries was formed. Using a modified Delphi process, the experts aimed to establish consensus statements based on a systematic literature search and CDx information sought from investigators, companies and/or publications. RESULTS Technical information, including analytical and clinical validation, were obtained from 14 of 15 available HRD CDx (7 academic; 7 commercial). Consensus was reached on 36 statements encompassing the following topics: 1) the predictive impact of HRD status on PARPi use in primary and recurrent OC; 2) analytical and clinical validation requirements of HRD CDx; 3) resource-stratified HRD testing; and 4) how future CDx may include additional approaches to help address unmet testing needs. CONCLUSION This manuscript provides detailed information on currently available HRD CDx and up-to-date guidance from global experts on HRD testing in patients with primary and recurrent OC.
Collapse
Affiliation(s)
- Stanislas Quesada
- Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM), Montpellier, France; Department of Cancer Genetics, University Hospital of Montpellier, Montpellier, France; Groupe d'Investigateurs Nationaux pour l'Etude des cancers de l'ovaire et du sein (GINECO), Paris, France; Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France
| | - Frédérique Penault-Llorca
- Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France; Department of Biology and Pathology, Centre de Lutte Contre le Cancer Jean Perrin, Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont Auvergne, UMR 1240 INSERM-UCA, Clermont-Ferrand, France; Cours St Paul, Saint Paul, Réunion, France
| | - Xavier Matias-Guiu
- Department of Pathology, Hospital Universitari Arnau de Vilanova, IRBLLEIDA, University of Lleida, Lleida, Spain; Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Barcelona, Spain; European Society of Pathology (ESP), Belgium
| | - Susana Banerjee
- The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK
| | - Massimo Barberis
- Division of Experimental Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Nicoletta Colombo
- Gynecologic Oncology Program, European Institute of Oncology IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Anna DeFazio
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Department of Gynaecological Oncology, Westmead Hospital, Sydney, NSW, Australia; The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW, Australia
| | - Iain A McNeish
- Division of Cancer and Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Angélica Nogueira-Rodrigues
- Federal University MG, Brazilian Group of Gynecologic Oncology (EVA), Latin American Cooperative Oncology Group (LACOG), Oncoclínicas, DOM Oncologia, Brazil
| | - Ana Oaknin
- Medical Oncology Service, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sandro Pignata
- Department of Urology and Gynecology, Istituto Nazionale Tumori di Napoli, IRCCS Fondazione Pascale, Napoli, Italy
| | - Éric Pujade-Lauraine
- Association de Recherche Cancers Gynécologiques - Groupe d'Investigateurs Nationaux pour l'Etude des Cancers de l'ovaire et du Sein (ARCAGY-GINECO), Paris, France
| | - Étienne Rouleau
- Coordinator of Gen&Tiss GFCO, Université Paris-Saclay, Gustave-Roussy Cancer Campus, Inserm U981, Villejuif, France; Cancer Genetics Laboratory, Medical Biology and Pathology Department, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Aleš Ryška
- European Society of Pathology (ESP), Belgium; The Fingerland Department of Pathology, Faculty of Medicine, Charles University and University Hospital, Hradec Kralove, Czech Republic
| | - Nerina Van Der Merwe
- Division of Human Genetics, National Health Laboratory Service, Universitas Hospital, Bloemfontein, South Africa; Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Toon Van Gorp
- Division of Gynaecological Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | - Ignace Vergote
- Division of Gynaecological Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium; Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | - Wilko Weichert
- Institute of Pathology, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Xiaohua Wu
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Isabelle Ray-Coquard
- Groupe d'Investigateurs Nationaux pour l'Etude des cancers de l'ovaire et du sein (GINECO), Paris, France; Medical Oncology, Centre Léon Bérard and Université Claude Bernard Lyon, Lyon, France
| | - Pascal Pujol
- Department of Medical Oncology, Institut régional du Cancer de Montpellier (ICM), Montpellier, France; Société Française de Médecine Prédictive et Personnalisée (SFMPP), Montpellier, France; Center for Ecological and Evolutionary Cancer Research (CREEC), Montpellier University, Montpellier, France.
| |
Collapse
|
3
|
Tan JZC, Zhang Z, Goh HX, Ngeow J. BRCA and Beyond: Impact on Therapeutic Choices Across Cancer. Cancers (Basel) 2024; 17:8. [PMID: 39796639 PMCID: PMC11718952 DOI: 10.3390/cancers17010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Identifying patients with gBRCAm is crucial to facilitate screening strategies, preventive measures and the usage of targeted therapeutics in their management. This review examines the evidence for the latest predictive and therapeutic approaches in BRCA-associated cancers. CLINICAL DESCRIPTION Data supports the use of adjuvant olaparib in patients with gBRCAm high-risk HER2-negative breast cancer. In advanced gBRCAm HER2-negative breast cancer, the PARPis talazoparib and olaparib have demonstrated benefit over standard chemotherapy. In ovarian cancer, olaparib, niraparib or rucaparib can be used as monotherapy in frontline maintenance. Olaparib and bevacizumab as a combination can also be used as frontline maintenance. In the relapsed platinum-sensitive setting, olaparib, niraparib and rucaparib are effective maintenance options in BRCAm patients who are PARPi naive. Both olaparib and rucaparib are effective options in BRCAm metastatic castrate-resistant prostate cancer (mCRPC). Evidence also exists for the benefit of PARPi combinations in mCRPC. In metastatic pancreatic cancer, olaparib can be used in gBRCAm patients who are responding to platinum chemotherapy. However, there may be a development of PARPi resistance. Understanding the pathophysiology that contributes to such resistance may allow the development of novel therapeutics. Combination therapy appears to have promising results in emerging trials. Seeking avenues for subsidised genetic testing can reduce the total costs of cancer management, leading to improve detection rates. CONCLUSION Identifying breast, ovarian, pancreatic and prostate cancer patients with gBRCAm plays a crucial predictive role in selecting those who will benefit significantly from PARPi therapy. The use of PARPi in gBRCAm HBOC-related cancers has resulted in significant survival benefits. Beyond BRCA1/2, HRR gene assessment and the consideration of other cancer predisposition syndromes may allow more patients to be eligible for and benefit from targeted therapies.
Collapse
Affiliation(s)
- Joshua Zhi Chien Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
| | - Zewen Zhang
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| | - Hui Xuan Goh
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 11 Mandalay Rd, Singapore 308232, Singapore
| |
Collapse
|
4
|
Morgan RD, Burghel GJ, Flaum N, Schlecht H, Clamp AR, Hasan J, Mitchell C, Salih Z, Moon S, Hogg M, Lord R, Forde C, Lalloo F, Woodward ER, Crosbie EJ, Taylor SS, Jayson GC, Evans DGR. Extended panel testing in ovarian cancer reveals BRIP1 as the third most important predisposition gene. Genet Med 2024; 26:101230. [PMID: 39096152 DOI: 10.1016/j.gim.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE The prevalence of germline pathogenic variants (PVs) in homologous recombination repair (HRR) and Lynch syndrome (LS) genes in ovarian cancer (OC) is uncertain. METHODS An observational study reporting the detection rate of germline PVs in HRR and LS genes in all OC cases tested in the North West Genomic Laboratory Hub between September 1996 and May 2024. Effect sizes are reported using odds ratios (ORs) and 95% confidence intervals (95% CI) for unselected cases tested between April 2021 and May 2024 versus 50,703 controls from the Breast Cancer Risk after Diagnostic Gene Sequencing study. RESULTS 2934 women were tested for BRCA1/2 and 433 (14.8%) had a PV. In up to 1572 women tested for PVs in non-BRCA1/2 HRR genes, detection rates were PALB2 = 0.8%, BRIP1 = 1.1%, RAD51C = 0.4% and RAD51D = 0.4%. In 940 unselected cases, BRIP1 (OR = 8.7, 95% CI 4.6-15.8) was the third most common OC predisposition gene followed by RAD51C (OR = 8.3, 95% CI 3.1-23.1), RAD51D (OR = 6.5, 95% CI 2.1-19.7), and PALB2 (OR = 3.9, 95% CI 1.5-10.3). No PVs in LS genes were detected in unselected cases. CONCLUSION Panel testing in OC resulted in a detection rate of 2% to 3% for germline PVs in non-BRCA1/2 HRR genes, with the largest contributor being BRIP1. Screening for LS in unselected cases of OC is unnecessary.
Collapse
Affiliation(s)
- Robert D Morgan
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
| | - George J Burghel
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicola Flaum
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom
| | - Andrew R Clamp
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Jurjees Hasan
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Claire Mitchell
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Zena Salih
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Sarah Moon
- University Hospitals of Morecambe Bay NHS Trust, Lancaster, United Kingdom
| | - Martin Hogg
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom
| | - Rosemary Lord
- Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Claire Forde
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Fiona Lalloo
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma R Woodward
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Emma J Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Gordon C Jayson
- The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - D Gareth R Evans
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom; Manchester University NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
5
|
Liu Y, Chen X, Lu H, Wu X, Liu X, Xu F, Ye D, Ding B, Lu X, Qiu L, Zhu J, Wang Y, Huang X, Shen Z, Zhu T, Shen Y, Zhou Y. Is the Homologous Recombination Repair Mutation Defined by a 15-Gene Panel Associated with the Prognosis of Epithelial Ovarian Cancer? Mol Diagn Ther 2024; 28:621-632. [PMID: 38967864 DOI: 10.1007/s40291-024-00726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND There is no consensus regarding the specific genes included in the homologous recombination repair (HRR) gene panel for identifying the HRR deficiency (HRD) status and predicting the prognosis of epithelial ovarian cancer (EOC) patients. OBJECTIVE We aimed to explore a 15-gene panel involving the HRR pathway as a predictive prognostic indicator in Chinese patients newly diagnosed with EOC. PATIENTS AND METHODS We reviewed the previously published reports about different HRR gene panels and prespecified the 15-gene panel. The genetic testing results in a 15-gene panel from 308 EOC patients diagnosed between 2014 and 2022 from six centers were collected. The association of clinicopathologic characteristics, the use of poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPis) and progression-free survival (PFS) with 15-gene panel HRR mutations (HRRm) status was assessed. RESULTS 43.2% (133/308) of patients were determined to carry 144 deleterious HRRm, among which 68.1% (98/144) were germline mutations and 32.8% (101/308) were BRCA1/2 gene lethal mutations. The hazard ratio (HR) (95% confidence interval, CI) for PFS (HRRm v HRR wild type, HRRwt) using the 15-gene panel HRRm was 0.42 (0.28-0.64) at all stages and 0.42 (0.27-0.65) at stages IIIC-IV. However, a prognostic difference was observed only between the BRCA mutation group and the HRRwt group, not between the non-BRCA HRRm group and the HRRwt group. For the subgroups of patients not using PARPis, the HR (95% CI) was 0.41 (0.24-0.68) at stages IIIC-IV. CONCLUSIONS This study provides evidence that 15-gene panel HRRm can predict the prognosis of EOC, of these only the BRCA1/2 mutations, not non-BRCA HRRm, contribute to prognosis prediction. Among patients without PARPis, the HRRm group presented a better PFS. This is the first study of this kind in the Chinese population.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xiaojun Chen
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China
| | - Huaiwu Lu
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Xin Wu
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200082, China
| | - Xuehan Liu
- Core Facility Center for Medical Sciences, The First Affiliated Hospital of USTC, Hefei, 230001, China
| | - Fei Xu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, 270 Dong-an Road, Shanghai, 200032, China
| | - Dongdong Ye
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Bo Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaoyan Lu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Ling Qiu
- Department of Gynecological Oncology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200082, China
| | - Jing Zhu
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yingying Wang
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhen Shen
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tao Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
6
|
Ali U, Vungarala S, Tiriveedhi V. Genomic Features of Homologous Recombination Deficiency in Breast Cancer: Impact on Testing and Immunotherapy. Genes (Basel) 2024; 15:162. [PMID: 38397152 PMCID: PMC10887603 DOI: 10.3390/genes15020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Genomic instability is one of the well-established hallmarks of cancer. The homologous recombination repair (HRR) pathway plays a critical role in correcting the double-stranded breaks (DSB) due to DNA damage in human cells. Traditionally, the BRCA1/2 genes in the HRR pathway have been tested for their association with breast cancer. However, defects in the HRR pathway (HRD, also termed 'BRCAness'), which has up to 50 genes, have been shown to be involved in tumorigenesis and treatment susceptibility to poly-ADP ribose polymerase inhibitors (PARPis), platinum-based chemotherapy, and immune checkpoint inhibitors (ICIs). A reliable consensus on HRD scores is yet to be established. Emerging evidence suggests that only a subset of breast cancer patients benefit from ICI-based immunotherapy. Currently, albeit with limitations, the expression of programmed death-ligand 1 (PDL1) and tumor mutational burden (TMB) are utilized as biomarkers to predict the favorable outcomes of ICI therapy in breast cancer patients. Preclinical studies demonstrate an interplay between the HRR pathway and PDL1 expression. In this review, we outline the current understanding of the role of HRD in genomic instability leading to breast tumorigenesis and delineate outcomes from various clinical trials. Furthermore, we discuss potential strategies for combining HRD-targeted therapy with immunotherapy to achieve the best healthcare outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Umer Ali
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
| | - Sunitha Vungarala
- Meharry-Vanderbilt Alliance, Vanderbilt University Medical Center, Nashville, TN 37209, USA;
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA;
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37209, USA
| |
Collapse
|
7
|
Morgan RD, Burghel GJ, Flaum N, Bulman M, Smith P, Clamp AR, Hasan J, Mitchell CL, Salih Z, Woodward ER, Lalloo F, Crosbie EJ, Edmondson RJ, Schlecht H, Jayson GC, Evans DGR. Is Reflex Germline BRCA1/2 Testing Necessary in Women Diagnosed with Non-Mucinous High-Grade Epithelial Ovarian Cancer Aged 80 Years or Older? Cancers (Basel) 2023; 15:730. [PMID: 36765687 PMCID: PMC9913244 DOI: 10.3390/cancers15030730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Women diagnosed with non-mucinous high-grade epithelial ovarian cancer (EOC) in England are often reflex-tested for germline and tumour BRCA1/2 variants. The value of germline BRCA1/2 testing in women diagnosed aged ≥80 is questionable. We performed an observational study of all women diagnosed with non-mucinous high-grade EOC who underwent germline and tumour BRCA1/2 testing by the North West of England Genomic Laboratory Hub. A subgroup of women also underwent germline testing using a panel of homologous recombination repair (HRR) genes and/or tumour testing for homologous recombination deficiency (HRD) using Myriad's myChoice® companion diagnostic. Seven-hundred-two patients successfully underwent both germline and tumour BRCA1/2 testing. Of these, 48 were diagnosed with non-mucinous high-grade EOC aged ≥80. In this age group, somatic BRCA1/2 pathogenic/likely pathogenic variants (PV/LPVs) were detected nine times more often than germline BRCA1/2 PV/LPVs. The only germline PV reported in a patient aged ≥80 was detected in germline and tumour DNA (BRCA2 c.4478_4481del). No patient aged ≥80 had a germline PV/LPVs in a non-BRCA1/2 HRR gene. Thirty-eight percent of patients aged ≥80 had a tumour positive for HRD. Our data suggest that tumour BRCA1/2 and HRD testing is adequate for patients diagnosed with non-mucinous high-grade EOC aged ≥80, with germline BRCA1/2 testing reserved for women with a tumour BRCA1/2 PV/LPVs.
Collapse
Affiliation(s)
- Robert D. Morgan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - George J. Burghel
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Nicola Flaum
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Michael Bulman
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Philip Smith
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Andrew R. Clamp
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Jurjees Hasan
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Claire L. Mitchell
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Zena Salih
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Emma R. Woodward
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Clinical Genetics, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Fiona Lalloo
- Department of Clinical Genetics, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Emma J. Crosbie
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Gynaecological Oncology, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Richard J. Edmondson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Gynaecological Oncology, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Gordon C. Jayson
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - D. Gareth R. Evans
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory Hub, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
- Department of Clinical Genetics, Saint Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK
| |
Collapse
|