1
|
Zou D, Xin X, Xu Y, Xu H, Huang L, Xu T. Improving the efficacy of immunotherapy for colorectal cancer: Targeting tumor microenvironment-associated immunosuppressive cells. Heliyon 2024; 10:e36446. [PMID: 39262952 PMCID: PMC11388603 DOI: 10.1016/j.heliyon.2024.e36446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Currently, immune checkpoint inhibitors (ICIs) have changed the treatment paradigm for many malignant tumors. As the most common digestive tract malignancy, colorectal cancer (CRC) shows a good response to ICIs only in a small subset of patients with MSI-H/dMMR CRC. In contrast, patients with MSS/pMMR CRC show minimal response to ICIs. The results of the REGONIVO study suggest that targeting the tumor microenvironment (TME) to improve immunotherapy outcomes in MSS/pMMR CRC patients is a feasible strategy. Therefore, this article focuses on exploring the feasibility of targeting the TME to enhance immunotherapy outcomes in CRC, collecting recent basic research on targeting the TME to enhance immunotherapy outcomes in CRC and analyzing ongoing clinical trials to provide a theoretical basis and future research directions for improving immunotherapy outcomes in MSS/pMMR CRC.
Collapse
Affiliation(s)
- Daoyang Zou
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xi Xin
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Yunxian Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Huangzhen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Linyan Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianwen Xu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| |
Collapse
|
2
|
Gruenwald A, Neururer M, Eidenhammer S, Nerlich A, Popper H. The cGAS-STING pathway drives inflammation in Usual Interstitial Pneumonia, phagocytosis could prevent inflammation but is inhibited by the don't eat me signal CD47. Pathol Res Pract 2024; 260:155432. [PMID: 38944022 DOI: 10.1016/j.prp.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Usual Interstitial Pneumonia (UIP) a fibrosing pneumonia is associated with idiopathic pulmonary fibrosis, chronic autoimmune disease (AID), or hypersensitivity pneumonia. Oxygen radicals, due to tobacco smoke, can damage DNA and might upregulate PARP1. Cytosolic DNA from dying pneumocytes activate cytosolic GMP-AMP-synthase-stimulator of interferon genes (cGAS-STING) pathway and TREX1. Prolonged inflammation induces senescence, which might be inhibited by phagocytosis, eliminating nuclear debris. We aimed to evaluate activation of cGAS-STING-TREX1 pathway in UIP, and if phagocytosis and anti-phagocytosis might counteract inflammation. METHODS 44 cases of UIP with IPF or AID were studied for the expression of cGAS, pSTING, TREX1 and PARP1. LAMP1 and Rab7 expression served as phagocytosis markers. CD47 protecting phagocytosis and p16 to identify senescent cells were also studied. RESULTS Epithelial cells in remodeled areas and macrophages expressed cGAS-pSTING, TREX1; epithelia but not macrophages stained for PARP1. Myofibroblasts, endothelia, and bronchial/bronchiolar epithelial cells were all negative except early myofibroblastic foci expressing cGAS. Type II pneumocytes expressed cGAS and PARP1, but less pSTING. TREX1 although expressed was not activated. Macrophages and many regenerating epithelial cells expressed LAMP1 and Rab7. CD47, the 'don't-eat-me-signal', was expressed by macrophages and epithelial cells including senescence cells within the remodeled areas. CONCLUSIONS The cGAS-STING pathway is activated in macrophages and epithelial cells within remodeled areas. LikelyTREX1 because not activated cannot sufficiently degrade DNA fragments. PARP1 activation points to smoking-induced oxygen radical release, prolonging inflammation and leading to fibrosis. By expressing CD47 epithelial cells within remodeled areas protect themselves from being eliminated by phagocytosis.
Collapse
Affiliation(s)
- Alissa Gruenwald
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Margarete Neururer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Sylvia Eidenhammer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria
| | - Andreas Nerlich
- Department of Pathology, Clinics München-Bogenhausen, Englschalkinger Straße 77, München 81925, Germany
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Austria.
| |
Collapse
|
3
|
Wu F, Pang H, Li F, Hua M, Song C, Tang J. Progress in cancer research on the regulator of phagocytosis CD47, which determines the fate of tumor cells (Review). Oncol Lett 2024; 27:256. [PMID: 38646501 PMCID: PMC11027102 DOI: 10.3892/ol.2024.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Cluster of differentiation 47 (CD47) is a transmembrane protein that is widely and moderately expressed on the surface of various cells and can have an essential role in mediating cell proliferation, migration, phagocytosis, apoptosis, immune homeostasis and other related responses by binding to its ligands, integrins, thrombospondin-1 and signal regulatory protein α. The poor prognosis of cancer patients is closely associated with high expression of CD47 in glioblastoma, ovarian cancer, breast cancer, bladder cancer, colon cancer and hepatocellular carcinoma. Upregulation of CD47 expression facilitates the growth of numerous types of tumor cells, while downregulation of its expression promotes phagocytosis of tumor cells by macrophages, thereby limiting tumor growth. In addition, blocking CD47 activates the cyclic GMP-AMP (cGAMP) synthase/cGAMP/interferon gene stimulating factor signaling pathway and initiates an adaptive immune response that kills tumor cells. The present review describes the structure, function and interactions of CD47 with its ligands, as well as its regulation of phagocytosis and tumor cell fate. It summarizes the therapeutics, mechanisms of action, research advances and challenges of targeting CD47. In addition, this paper provides an overview of the latest therapeutic options for targeting CD47, such as chimeric antigen receptor (CAR) T-cells, CAR macrophages and nanotechnology-based delivery systems, which are essential for future clinical research on targeting CD47.
Collapse
Affiliation(s)
- Fan Wu
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hongyuan Pang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Fan Li
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Mengqing Hua
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jie Tang
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
4
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
5
|
Zhu D, Hadjivassiliou H, Jennings C, Mikolon D, Ammirante M, Acharya S, Lloyd J, Abbasian M, Narla RK, Piccotti JR, Stamp K, Cho H, Hariharan K. CC-96673 (BMS-986358), an affinity-tuned anti-CD47 and CD20 bispecific antibody with fully functional fc, selectively targets and depletes non-Hodgkin's lymphoma. MAbs 2024; 16:2310248. [PMID: 38349008 PMCID: PMC10865928 DOI: 10.1080/19420862.2024.2310248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/22/2024] [Indexed: 02/15/2024] Open
Abstract
Cluster of differentiation 47 (CD47) is a transmembrane protein highly expressed in tumor cells that interacts with signal regulatory protein alpha (SIRPα) and triggers a "don't eat me" signal to the macrophage, inhibiting phagocytosis and enabling tumor escape from immunosurveillance. The CD47-SIRPα axis has become an important target for cancer immunotherapy. To date, the advancement of CD47-targeted modalities is hindered by the ubiquitous expression of the target, often leading to rapid drug elimination and hematologic toxicity including anemia. To overcome those challenges a bispecific approach was taken. CC-96673, a humanized IgG1 bispecific antibody co-targeting CD47 and CD20, is designed to bind CD20 with high affinity and CD47 with optimally lowered affinity. As a result of the detuned CD47 affinity, CC-96673 selectively binds to CD20-expressing cells, blocking the interaction of CD47 with SIRPα. This increased selectivity of CC-96673 over monospecific anti-CD47 approaches allows for the use of wild-type IgG1 Fc, which engages activating crystallizable fragment gamma receptors (FcγRs) to fully potentiate macrophages to engulf and destroy CD20+ cells, while sparing CD47+CD20- normal cells. The combined targeting of anti-CD20 and anti-CD47 results in enhanced anti- tumor activity compared to anti-CD20 targeting antibodies alone. Furthermore, preclinical studies have demonstrated that CC-96673 exhibits acceptable pharmacokinetic properties with a favorable toxicity profile in non-human primates. Collectively, these findings define CC-96673 as a promising CD47 × CD20 bispecific antibody that selectively destroys CD20+ cancer cells via enhanced phagocytosis and other effector functions.
Collapse
Affiliation(s)
- Dan Zhu
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | | | - Catherine Jennings
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - David Mikolon
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Massimo Ammirante
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Sharmistha Acharya
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Jon Lloyd
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Mahan Abbasian
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Rama Krishna Narla
- Oncogenesis Thematic Research Center, Bristol Myers Squibb, San Diego, CA, USA
| | - Joseph R. Piccotti
- Department of Nonclinical Development, Bristol Myers Squibb, San Diego, CA, USA
| | - Katie Stamp
- Department of Nonclinical Development, Bristol Myers Squibb, San Diego, CA, USA
| | - Ho Cho
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| | - Kandasamy Hariharan
- Department of Discovery Biotherapeutics, Bristol Myers Squibb, San Diego, CA, USA
| |
Collapse
|
6
|
CHEN QIUQIANG, GUO XUEJUN, MA WENXUE. Opportunities and challenges of CD47-targeted therapy in cancer immunotherapy. Oncol Res 2023; 32:49-60. [PMID: 38188674 PMCID: PMC10767231 DOI: 10.32604/or.2023.042383] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/09/2023] [Indexed: 01/09/2024] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy for the treatment of cancer, with the tumor microenvironment (TME) playing a pivotal role in modulating the immune response. CD47, a cell surface protein, has been identified as a crucial regulator of the TME and a potential therapeutic target for cancer therapy. However, the precise functions and implications of CD47 in the TME during immunotherapy for cancer patients remain incompletely understood. This comprehensive review aims to provide an overview of CD47's multifaced role in TME regulation and immune evasion, elucidating its impact on various types of immunotherapy outcomes, including checkpoint inhibitors and CAR T-cell therapy. Notably, CD47-targeted therapies offer a promising avenue for improving cancer treatment outcomes, especially when combined with other immunotherapeutic approaches. The review also discusses current and potential CD47-targeted therapies being explored for cancer treatment and delves into the associated challenges and opportunities inherent in targeting CD47. Despite the demonstrated effectiveness of CD47-targeted therapies, there are potential problems, including unintended effects on healthy cells, hematological toxicities, and the development if resistance. Consequently, further research efforts are warranted to fully understand the underlying mechanisms of resistance and to optimize CD47-targeted therapies through innovative combination approaches, ultimately improving cancer treatment outcomes. Overall, this comprehensive review highlights the significance of CD47 as a promising target for cancer immunotherapy and provides valuable insight into the challenges and opportunities in developing effective CD47-targeted therapies for cancer treatment.
Collapse
Affiliation(s)
- QIUQIANG CHEN
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University School of Medicine, Huzhou, 313000, China
| | - XUEJUN GUO
- Department of Hematology, Puyang Youtian General Hospital, Puyang, 457001, China
| | - WENXUE MA
- Department of Medicine, Moores Cancer Center, Sanford Stem Cell Institute, University of California San Diego, La Jolla, San Diego, 92093, USA
| |
Collapse
|
7
|
Zandi M, Shafaati M, Shenagari M, Naziri H. Targeting CD47 as a therapeutic strategy: A common bridge in the therapy of COVID-19-related cancers. Heliyon 2023; 9:e17959. [PMID: 37456027 PMCID: PMC10344805 DOI: 10.1016/j.heliyon.2023.e17959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Macrophages are essential mediators of innate immunity. Non-self-cells resist phagocytosis through the expression of the checkpoint molecule CD47. CD47, as the integrin-associated protein, is overexpressed on tumor and SARS-CoV-2-infected cells as a potential surface biomarker for immune surveillance evasion. CD47-signal-regulating protein alpha (SIRPα) interaction is a promising innate immunotarget. Previous findings based on monoclonal antibodies (mAbs) or fusion proteins that block CD47 or SIRPα have been developed in cancer research. While CD47 efficacy in infectious diseases, especially severe COVID-19 studies, is lacking, focus on macrophage-mediated immunotherapy that increases "eat me" signals in combination therapy with mAbs is optimistic. This integrin-related protein can be as a potential target to therapy for COVID-19. Here, we concentrate on the role of the CD47 signaling pathway as a novel therapeutic strategy for COVID-19-associated cancer treatment.
Collapse
Affiliation(s)
- Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shafaati
- Department of Microbiology, Faculty Science, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Mohammad Shenagari
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Naziri
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|