Galeotti N, Bartolini A, Ghelardini C. Role of intracellular calcium in acute thermal pain perception.
Neuropharmacology 2005;
47:935-44. [PMID:
15527827 DOI:
10.1016/j.neuropharm.2004.07.001]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 06/11/2004] [Accepted: 06/30/2004] [Indexed: 11/24/2022]
Abstract
The role of intracellular calcium in acute thermal nociception was investigated in the mouse hot-plate test. Intracerebroventricular (i.c.v.) administration of TMB-8, a blocker of Ca++ release from intracellular stores, produced hypernociception. By contrast, i.c.v. pretreatment with thapsigargin, a depletor of Ca++ intracellular stores, produced an increase of the mouse pain threshold. Furthermore, non-analgesic doses of thapsigargin prevented the hypernociception produced by TMB-8. In mice undergoing treatment with heparin, an InsP3-receptor antagonist, or ryanodine, a ryanodine receptor (RyR) antagonist, a dose-dependent reduction of the pain threshold was observed. Pretreatment with D-myo inositol, compound which produces InsP3, and 4-chloro-m-cresol, a RyR agonist, induced an antinociceptive effect. The heparin hypernociception was prevented by D-myo inositol, but not by L-myo inositol, used as negative control. In the same experimental conditions, the antinociception induced by D-myo inositol was prevented by a non-hyperalgesic dose of heparin. Similarly, the reduction of pain threshold produced by ryanodine was reversed by non-analgesic doses of 4-chloro-m-cresol, whereas the antinocicpetion induced by 4-chloro-m-cresol was prevented by non-hyperalgesic doses of ryanodine. The pharmacological treatments employed did not produce any behavioral impairment of mice as revealed by the rota-rod and hole-board tests. These results indicate that a variation of intracellular calcium contents at a supraspinal level is involved in the modulation of acute thermal nociception. In particular, the stimulation of both InsP3- and Ry-receptors appears to play an important role in the induction of antinociception in mice, whereas a blockade of these receptors is involved in an hypernociceptive response to acute thermal pain.
Collapse