1
|
Schmidt VF, Masthoff M, Czihal M, Cucuruz B, Häberle B, Brill R, Wohlgemuth WA, Wildgruber M. Imaging of peripheral vascular malformations - current concepts and future perspectives. Mol Cell Pediatr 2021; 8:19. [PMID: 34874510 PMCID: PMC8651875 DOI: 10.1186/s40348-021-00132-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular Malformations belong to the spectrum of orphan diseases and can involve all segments of the vascular tree: arteries, capillaries, and veins, and similarly the lymphatic vasculature. The classification according to the International Society for the Study of Vascular Anomalies (ISSVA) is of major importance to guide proper treatment. Imaging plays a crucial role to classify vascular malformations according to their dominant vessel type, anatomical extension, and flow pattern. Several imaging concepts including color-coded Duplex ultrasound/contrast-enhanced ultrasound (CDUS/CEUS), 4D computed tomography angiography (CTA), magnetic resonance imaging (MRI) including dynamic contrast-enhanced MR-angiography (DCE-MRA), and conventional arterial and venous angiography are established in the current clinical routine. Besides the very heterogenous phenotypes of vascular malformations, molecular and genetic profiling has recently offered an advanced understanding of the pathogenesis and progression of these lesions. As distinct molecular subtypes may be suitable for targeted therapies, capturing certain patterns by means of molecular imaging could enhance non-invasive diagnostics of vascular malformations. This review provides an overview of subtype-specific imaging and established imaging modalities, as well as future perspectives of novel functional and molecular imaging approaches. We highlight recent pioneering imaging studies including thermography, positron emission tomography (PET), and multispectral optoacoustic tomography (MSOT), which have successfully targeted specific biomarkers of vascular malformations.
Collapse
Affiliation(s)
- Vanessa F Schmidt
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Masthoff
- Clinic for Radiology, University Hospital Muenster, Muenster, Germany
| | - Michael Czihal
- Angiology Division, Department for Medicine IV, University Hospital, LMU Munich, Munich, Germany
| | - Beatrix Cucuruz
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Häberle
- Department for Pediatric Surgery, Dr. von Haunersches Kinderspital, University Hospital, LMU Munich, Munich, Germany
| | - Richard Brill
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Walter A Wohlgemuth
- Clinic and Policlinic of Radiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany. .,Clinic for Radiology, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
2
|
Lobeek D, Bouwman FCM, Aarntzen EHJG, Molkenboer-Kuenen JDM, Flucke UE, Nguyen HL, Vikkula M, Boon LM, Klein W, Laverman P, Oyen WJG, Boerman OC, Terry SYA, Schultze Kool LJ, Rijpkema M. A Clinical Feasibility Study to Image Angiogenesis in Patients with Arteriovenous Malformations Using 68Ga-RGD PET/CT. J Nucl Med 2019; 61:270-275. [PMID: 31519800 DOI: 10.2967/jnumed.119.231167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022] Open
Abstract
Arteriovenous malformations (AVMs) have an inherent capacity to form new blood vessels, resulting in excessive lesion growth, and this process is further triggered by the release of angiogenic factors. 68Ga-labeled arginine-glycine-aspartate tripeptide sequence (RGD) PET/CT imaging may provide insight into the angiogenic status and treatment response of AVMs. This clinical feasibility study was performed to demonstrate that 68Ga-RGD PET/CT imaging can be used to quantitatively assess angiogenesis in peripheral AVMs. Methods: Ten patients with a peripheral AVM (mean age, 40 y; 4 men and 6 women) and scheduled for endovascular embolization treatment were prospectively included. All patients underwent 68Ga-RGD PET/CT imaging 60 min after injection (mean dose, 207 ± 5 MBq). Uptake in the AVM, blood pool, and muscle was quantified as SUVmax and SUVpeak, and a descriptive analysis of the PET/CT images was performed. Furthermore, immunohistochemical analysis was performed on surgical biopsy sections of peripheral AVMs to investigate the expression pattern of integrin αvβ3 Results: 68Ga-RGD PET/CT imaging showed enhanced uptake in all AVM lesions (mean SUVmax, 3.0 ± 1.1; mean SUVpeak, 2.2 ± 0.9). Lesion-to-blood and lesion-to-muscle ratios were 3.5 ± 2.2 and 4.6 ± 2.8, respectively. Uptake in blood and muscle was significantly higher in AVMs than in background tissue (P = 0.0006 and P = 0.0014, respectively). Initial observations included uptake in multifocal AVM lesions and enhanced uptake in intraosseous components in those AVM cases affecting bone integrity. Immunohistochemical analysis revealed cytoplasmatic and membranous integrin αvβ3 expression in the endothelial cells of AVMs. Conclusion: This feasibility study showed increased uptake in AVMs with angiogenic activity, compared with surrounding tissue without angiogenic activity, suggesting that 68Ga-RGD PET/CT imaging can be used as a tool to quantitatively determine angiogenesis in AVMs. Further studies will be conducted to explore the potential of 68Ga-RGD PET/CT imaging for guiding current treatment decisions and for assessing response to antiangiogenic treatment.
Collapse
Affiliation(s)
- Daphne Lobeek
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frédérique C M Bouwman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik H J G Aarntzen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Uta E Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ha-Long Nguyen
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium
| | - Miikka Vikkula
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Centre for Vascular Anomalies (part of VASCERN European Reference Network), Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, University of Louvain, Brussels, Belgium.,Centre for Vascular Anomalies (part of VASCERN European Reference Network), Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Willemijn Klein
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Centre for Vascular Anomalies (part of VASCERN European Reference Network), Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Laverman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim J G Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Department of Radiology and Nuclear Medicine, Rijnstate Hospital, Arnhem, The Netherlands; and
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samantha Y A Terry
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Leo J Schultze Kool
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Centre for Vascular Anomalies (part of VASCERN European Reference Network), Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Brain arteriovenous malformation modeling, pathogenesis, and novel therapeutic targets. Transl Stroke Res 2014; 5:316-29. [PMID: 24723256 DOI: 10.1007/s12975-014-0343-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Patients harboring brain arteriovenous malformation (bAVM) are at life-threatening risk of rupture and intracranial hemorrhage (ICH). The pathogenesis of bAVM has not been completely understood. Current treatment options are invasive, and ≈ 20 % of patients are not offered interventional therapy because of excessive treatment risk. There are no specific medical therapies to treat bAVMs. The lack of validated animal models has been an obstacle for testing hypotheses of bAVM pathogenesis and testing new therapies. In this review, we summarize bAVM model development and bAVM pathogenesis and potential therapeutic targets that have been identified during model development.
Collapse
|
4
|
Eisele G, Roth P, Hasenbach K, Aulwurm S, Wolpert F, Tabatabai G, Wick W, Weller M. APO010, a synthetic hexameric CD95 ligand, induces human glioma cell death in vitro and in vivo. Neuro Oncol 2010; 13:155-64. [PMID: 21183510 DOI: 10.1093/neuonc/noq176] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Death receptor targeting has emerged as one of the promising novel approaches of cancer therapy. The activation of one such prototypic death receptor, CD95 (Fas/APO-1), has remained controversial because CD95 agonistic molecules have exhibited either too strong toxicity or too little activity. The natural CD95 ligand (CD95L) is a cytokine, which needs to trimerize to mediate a cell death signal. Mega-Fas-Ligand, now referred to as APO010, is a synthetic hexameric CD95 agonist that exhibits strong antitumor activity in various tumor models. Here, we studied the effects of APO010 in human glioma models in vitro and in vivo. Compared with a cross-linked soluble CD95L or a CD95-agonistic antibody, APO010 exhibited superior activity in glioma cell lines expressing CD95 and triggered caspase-dependent cell death. APO010 reduced glioma cell viability in synergy when combined with temozolomide. The locoregional administration of APO010 induced glioma cell death in vivo and prolonged the survival of tumor-bearing mice. A further exploration of APO010 as a novel antiglioma agent is warranted.
Collapse
Affiliation(s)
- Günter Eisele
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Nagane M, Shimizu S, Mori E, Kataoka S, Shiokawa Y. Predominant antitumor effects by fully human anti-TRAIL-receptor 2 (DR5) monoclonal antibodies in human glioma cells in vitro and in vivo. Neuro Oncol 2010; 12:687-700. [PMID: 20511188 PMCID: PMC2940669 DOI: 10.1093/neuonc/nop069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/29/2009] [Indexed: 11/12/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2 L) preferentially induces apoptosis in human tumor cells through its cognate death receptors DR4 or DR5, thereby being investigated as a potential agent for cancer therapy. Here, we applied fully human anti-human TRAIL receptor monoclonal antibodies (mAbs) to specifically target one of death receptors for TRAIL in human glioma cells, which could also reduce potential TRAIL-induced toxicity in humans. Twelve human glioma cell lines treated with several fully human anti-human TRAIL receptor mAbs were sensitive to only anti-DR5 mAbs, whereas they were totally insensitive to anti-DR4 mAb. Treatment with anti-DR5 mAbs exerted rapid cytotoxicity and lead to apoptosis induction. The cellular sensitivity was closely associated with cell-surface expression of DR5. Expression of c-FLIP(L), Akt, and Cyclin D1 significantly correlated with sensitivity to anti-DR5 mAbs. Primary cultures of glioma cells were also relatively resistant to anti-DR5 mAbs, exhibiting both lower DR5 and higher c-FLIP(L) expression. Downregulation of c-FLIP(L) expression resulted in the sensitization of human glioma cells to anti-DR5 mAbs, whereas overexpression of c-FLIP(L) conferred resistance to anti-DR5 mAb. Treatment of tumor-burden nude mice with the direct agonist anti-DR5 mAb KMTR2 significantly suppressed growth of subcutaneous glioma xenografts leading to complete regression. Similarly, treatment of nude mice bearing intracerebral glioma xenografts with KMTR2 significantly elongated lifespan without tumor recurrence. These results suggest that DR5 is the predominant TRAIL receptor mediating apoptotic signals in human glioma cells, and sensitivity to anti-DR5 mAbs was determined at least in part by the expression level of c-FLIP(L) and Akt. Specific targeting of death receptor pathway through DR5 using fully human mAbs might provide a novel therapeutic strategy for intractable malignant gliomas.
Collapse
Affiliation(s)
- Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan.
| | | | | | | | | |
Collapse
|
6
|
Moftakhar P, Hauptman JS, Malkasian D, Martin NA. Cerebral arteriovenous malformations. Part 1: cellular and molecular biology. Neurosurg Focus 2009; 26:E10. [PMID: 19408988 DOI: 10.3171/2009.2.focus09316] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ObjectThe scientific understanding of the nature of arteriovenous malformations (AVMs) in the brain is evolving. It is clear from current work that AVMs can undergo a variety of phenomena, including growth, remodeling, and/or regression—and the responsible processes are both molecular and physiological. A review of these complex processes is critical to directing future therapeutic approaches. The authors performed a comprehensive review of the literature to evaluate current information regarding the genetics, pathophysiology, and behavior of AVMs.MethodsA comprehensive literature review was conducted using PubMed to reveal the molecular biology of AVMs as it relates to their complex growth and behavior patterns.ResultsGrowth factors involved in AVMs include vascular endothelial growth factor, fibroblast growth factor, transforming growth factor β, angiopoietins, fibronectin, laminin, integrin, and matrix metalloproteinases.ConclusionsUnderstanding the complicated molecular milieu of developing AVMs is essential for defining their natural history. Growth factors, extracellular matrix proteins, and other molecular markers will be the key to unlocking novel targeted drug treatments for these brain malformations.
Collapse
Affiliation(s)
| | - Jason S. Hauptman
- 2Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Dennis Malkasian
- 2Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Neil A. Martin
- 2Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, California
| |
Collapse
|