1
|
Stephenson SEM, Aumann TD, Taylor JM, Riseley JR, Li R, Mann JR, Tomas D, Lockhart PJ. Generation and characterisation of a parkin-Pacrg knockout mouse line and a Pacrg knockout mouse line. Sci Rep 2018; 8:7528. [PMID: 29760428 PMCID: PMC5951884 DOI: 10.1038/s41598-018-25766-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/25/2018] [Indexed: 11/24/2022] Open
Abstract
Mutations in PARK2 (parkin) can result in Parkinson's disease (PD). Parkin shares a bidirectional promoter with parkin coregulated gene (PACRG) and the transcriptional start sites are separated by only ~200 bp. Bidirectionally regulated genes have been shown to function in common biological pathways. Mice lacking parkin have largely failed to recapitulate the dopaminergic neuronal loss and movement impairments seen in individuals with parkin-mediated PD. We aimed to investigate the function of PACRG and test the hypothesis that parkin and PACRG function in a common pathway by generating and characterizing two novel knockout mouse lines harbouring loss of both parkin and Pacrg or Pacrg alone. Successful modification of the targeted allele was confirmed at the genomic, transcriptional and steady state protein levels for both genes. At 18-20 months of age, there were no significant differences in the behaviour of parental and mutant lines when assessed by openfield, rotarod and balance beam. Subsequent neuropathological examination suggested there was no gross abnormality of the dopaminergic system in the substantia nigra and no significant difference in the number of dopaminergic neurons in either knockout model compared to wildtype mice.
Collapse
Affiliation(s)
- Sarah E M Stephenson
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Timothy D Aumann
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Juliet M Taylor
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessica R Riseley
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Ruili Li
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
- Surgical Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Jeffrey R Mann
- Monash Genome Modification Platform, Monash University, Clayton, Victoria, Australia
| | - Doris Tomas
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul J Lockhart
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Flemington Road, Parkville, Victoria, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Ideraabdullah FY, Thorvaldsen JL, Myers JA, Bartolomei MS. Tissue-specific insulator function at H19/Igf2 revealed by deletions at the imprinting control region. Hum Mol Genet 2014; 23:6246-59. [PMID: 24990148 DOI: 10.1093/hmg/ddu344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Δ2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ∼75% of the ICR. Surprisingly, the Δ2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.
Collapse
Affiliation(s)
- Folami Y Ideraabdullah
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, USA
| | - Joanne L Thorvaldsen
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| | - Jennifer A Myers
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 9-123 SCTR, 3400 Civic Center Boulevard, Philadelphia PA 19104, USA and
| |
Collapse
|
3
|
Tang MCW, Jacobs SA, Wong LH, Mann JR. Conditional allelic replacement applied to genes encoding the histone variant H3.3 in the mouse. Genesis 2013; 51:142-6. [PMID: 23315948 DOI: 10.1002/dvg.22366] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/03/2012] [Indexed: 11/09/2022]
Abstract
Post-translational modifications to residues in core histones convey epigenetic information. Their function can be evaluated in amino acid substitution mutants, although to date this method has not been used in mice. To this end, we have evaluated gene targeting vectors designed for Cre recombinase-mediated conditional allelic replacement at the two unlinked genes encoding the histone variant H3.3. The conditional alleles consist of an uninterrupted wild-type H3.3 coding sequence upstream of a desired alternative or proxy coding sequence. The arrangement of two loxP sites allows Cre-mediated replacement of the wild-type coding sequence with the proxy. To demonstrate proof of principle, at each locus we replaced the wild-type coding sequence with a fluorescent reporter. This produced null alleles that will be useful to analyse the effects of H3.3 deficiency in development. Each targeting vector can readily be retrofitted with a proxy coding sequence encoding a modified H3.3 protein. Such vectors will allow for the conditional substitution of specific residues in order to dissect the roles of H3.3 post-translational modifications in development and disease.
Collapse
Affiliation(s)
- Michelle C W Tang
- Theme of Genetic Disorders, Murdoch Childrens Research Institute, The Royal Children's Hospital, Victoria, 3052, Australia
| | | | | | | |
Collapse
|
4
|
Okamura E, Matsuzaki H, Sakaguchi R, Takahashi T, Fukamizu A, Tanimoto K. The H19 imprinting control region mediates preimplantation imprinted methylation of nearby sequences in yeast artificial chromosome transgenic mice. Mol Cell Biol 2013; 33:858-71. [PMID: 23230275 PMCID: PMC3571351 DOI: 10.1128/mcb.01003-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/06/2012] [Indexed: 12/30/2022] Open
Abstract
In the mouse Igf2/H19 imprinted locus, differential methylation of the imprinting control region (H19 ICR) is established during spermatogenesis and is maintained in offspring throughout development. Previously, however, we observed that the paternal H19 ICR, when analyzed in yeast artificial chromosome transgenic mice (YAC-TgM), was preferentially methylated only after fertilization. To identify the DNA sequences that confer methylation imprinting, we divided the H19 ICR into two fragments (1.7 and 1.2 kb), ligated them to both ends of a λ DNA fragment into which CTCF binding sites had been inserted, and analyzed this in YAC-TgM. The maternally inherited λ sequence, normally methylated after implantation in the absence of H19 ICR sequences, became hypomethylated, demonstrating protective activity against methylation within the ICR. Meanwhile, the paternally inherited λ sequence was hypermethylated before implantation only when a 1.7-kb fragment was ligated. Consistently, when two subfragments of the H19 ICR were individually investigated for their activities in YAC-TgM, only the 1.7-kb fragment was capable of introducing paternal allele-specific DNA methylation. These results show that postfertilization methylation imprinting is conferred by a paternal allele-specific methylation activity present in a 1.7-kb DNA fragment of the H19 ICR, while maternal allele-specific activities protect the allele from de novo DNA methylation.
Collapse
Affiliation(s)
- Eiichi Okamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryuuta Sakaguchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takuya Takahashi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Takahashi T, Matsuzaki H, Tomizawa SI, Okamura E, Ichiyanagi T, Fukamizu A, Sasaki H, Tanimoto K. Sequences in the H19 ICR that are transcribed as small RNA in oocytes are dispensable for methylation imprinting in YAC transgenic mice. Gene 2012; 508:26-34. [PMID: 22890135 DOI: 10.1016/j.gene.2012.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022]
Abstract
Allele-specific methylation of the endogenous H19 imprinting control region (ICR) is established in sperm. We previously showed that the paternal H19 ICR in yeast artificial chromosome (YAC) transgenic mice (TgM) was preferentially methylated in somatic cells, but not in germ cells, suggesting that differential methylation could be established after fertilization. In this report, we discovered small RNA molecules in growing oocytes, the nucleotide sequences of which mapped to the H19 ICR. To test if these small RNA sequences play a role in the establishment of differential methylation, we deleted the sequences from the H19 ICR DNA and generated YAC TgM. In somatic cells of these mice, methylation imprinting of the transgene was normally established. In addition, the mutant fragment was not methylated in sperm and eggs. These data demonstrate that sequences in the H19 ICR that correspond to the small RNA sequences are dispensable for methylation imprinting in YAC TgM.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Cells, Cultured
- Chromosomes, Artificial, Yeast
- DNA Methylation
- Female
- Fertilization/genetics
- Genomic Imprinting
- Locus Control Region/genetics
- Male
- Mice
- Mice, Transgenic
- Oocytes/metabolism
- RNA, Long Noncoding
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Testis/metabolism
Collapse
Affiliation(s)
- Takuya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Skinner MK, Mohan M, Haque MM, Zhang B, Savenkova MI. Epigenetic transgenerational inheritance of somatic transcriptomes and epigenetic control regions. Genome Biol 2012; 13:R91. [PMID: 23034163 PMCID: PMC3491419 DOI: 10.1186/gb-2012-13-10-r91] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/23/2012] [Accepted: 10/03/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Environmentally induced epigenetic transgenerational inheritance of adult onset disease involves a variety of phenotypic changes, suggesting a general alteration in genome activity. RESULTS Investigation of different tissue transcriptomes in male and female F3 generation vinclozolin versus control lineage rats demonstrated all tissues examined had transgenerational transcriptomes. The microarrays from 11 different tissues were compared with a gene bionetwork analysis. Although each tissue transgenerational transcriptome was unique, common cellular pathways and processes were identified between the tissues. A cluster analysis identified gene modules with coordinated gene expression and each had unique gene networks regulating tissue-specific gene expression and function. A large number of statistically significant over-represented clusters of genes were identified in the genome for both males and females. These gene clusters ranged from 2-5 megabases in size, and a number of them corresponded to the epimutations previously identified in sperm that transmit the epigenetic transgenerational inheritance of disease phenotypes. CONCLUSIONS Combined observations demonstrate that all tissues derived from the epigenetically altered germ line develop transgenerational transcriptomes unique to the tissue, but common epigenetic control regions in the genome may coordinately regulate these tissue-specific transcriptomes. This systems biology approach provides insight into the molecular mechanisms involved in the epigenetic transgenerational inheritance of a variety of adult onset disease phenotypes.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University,
Pullman, WA 99164-4236, USA
| | - Manikkam Mohan
- Center for Reproductive Biology, School of Biological Sciences, Washington State University,
Pullman, WA 99164-4236, USA
| | - Md M Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University,
Pullman, WA 99164-4236, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Mount
Sinai School of Medicine, New York, NY 10029, USA
| | - Marina I Savenkova
- Center for Reproductive Biology, School of Biological Sciences, Washington State University,
Pullman, WA 99164-4236, USA
| |
Collapse
|
7
|
Normal DNA methylation dynamics in DICER1-deficient mouse embryonic stem cells. PLoS Genet 2012; 8:e1002919. [PMID: 22969435 PMCID: PMC3435250 DOI: 10.1371/journal.pgen.1002919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022] Open
Abstract
Reduced DNA methylation has been reported in DICER1-deficient mouse ES cells. Reductions seen at pericentric satellite repeats have suggested that siRNAs are required for the proper assembly of heterochromatin. More recent studies have postulated that the reduced methylation is an indirect effect: the loss of Mir290 cluster miRNAs leads to upregulation of the transcriptional repressor RBL2 that targets the downregulation of DNA methyltransferase (Dnmt) genes. However, the observations have been inconsistent. We surmised that the inconsistency could be related to cell line “age,” given that DNA methylation is lost progressively with passage in DNMT-deficient ES cells. We therefore subjected Dicer1−/− ES cells to two experimental regimes to rigorously test the level of functional DNMT activity. First, we cultured them for a prolonged period. If DNMT activity was reduced, further losses of methylation would occur. Second, we measured their DNMT activity in a rebound DNA methylation assay: DNA methylation was stripped from Cre/loxP conditionally mutant Dicer1 ES cells using a shRNA targeting Dnmt1 mRNA. Cre expression then converted these cells to Dicer1−/−, allowing for DNMT1 recovery and forcing the cells to remethylate in the absence of RNAi. In both cases, we found functional DNMT activity to be normal. Finally, we also show that the level of RBL2 protein is not at excess levels in Dicer1−/− ES cells as has been assumed. These studies reveal that reduced functional DNMT activity is not a salient feature of DICER1-deficient ES cells. We suggest that the reduced DNA methylation sometimes observed in these cells could be due to stochastic alterations in DNA methylation patterns that could offer growth or survival advantages in culture, or to the dysregulation of pathways acting in opposition to the DNMT pathway. In mammalian cells, DNA methylation is required for the maintenance of genome stability. Recent studies have shown that the genome-wide levels of DNA methylation can be reduced in DICER1-deficient mouse embryonic stem (ES) cells, suggesting that the activity of DNA methylating enzymes (DNMTs) may be regulated by small RNA molecules. The enzyme DICER1 catalyses the production of these small RNAs that serve as sequence-specific guides for modifying chromatin or transcription. However, these observations of defective DNA methylation have been inconsistent. We surmised that this inconsistency could be due to cell line “age,” because it can take many cell divisions before reduced DNMT activity may result in loss of DNA methylation. To test this idea, we rigorously assayed the functional level of DNMT activity in DICER1-deficient ES cells. First, we tested their ability to maintain DNA methylation over prolonged culture. Second, we tested their ability to rebound in DNA methylation after first stripping it from the genome. In both cases functional DNMT activity was entirely normal. We suggest that losses of DNA methylation sometimes seen in DICER1-deficient ES cells is stochastic and could involve cell line adaptation.
Collapse
|
8
|
Mann JR, Mattiske DM. RNA interference in mammalian DNA methylation1This review is part of Special Issue entitled Asilomar Chromatin and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2012; 90:70-7. [DOI: 10.1139/o11-050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAi and Dicer-dependent siRNAs are required for constitutive heterochromatin formation in fission yeast and for establishing DNA methylation at repetitive elements in plants. In the mammalian male germ line, DICER1-independent piRNAs are required for the full establishment of DNA methylation of dispersed repetitive transposable elements. However, in other mammalian cell types, no clear picture has yet emerged of the role of RNAi in establishing heterochromatin and DNA methylation. In mouse embryonic stem cells, which remain viable on loss of DICER1 and ablation of RNAi, while no firm evidence has been obtained for defective heterochromatin formation, there are indications of defective DNA methylation. The latter has been attributed to an indirect effect of reduced DNA methyltransferase (DNMT) activity due to a loss of miRNA-mediated gene regulation. However, it is unclear whether the reductions in DNMT activity were sufficient to affect DNA methylation. We consider it equally likely that the defects in DNA methylation that can be observed in DICER1-deficient embryonic stem cells are the result of nonspecific effects related to RNAi loss aside from reduced DNMT activity.
Collapse
Affiliation(s)
- Jeffrey R. Mann
- Theme of Genetic Disorders, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville 3052, Victoria, Australia
| | - Deidre M. Mattiske
- Theme of Genetic Disorders, Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville 3052, Victoria, Australia
| |
Collapse
|
9
|
Weth O, Renkawitz R. CTCF function is modulated by neighboring DNA binding factors. Biochem Cell Biol 2011; 89:459-68. [PMID: 21895576 DOI: 10.1139/o11-033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The zinc-finger protein CTCF was originally identified in the context of gene silencing and gene repression (Baniahmad et al. 1990; Lobanenkov et al. 1990). CTCF was later shown to be involved in several transcriptional mechanisms such as gene activation (Vostrov et al. 2002) and enhancer blocking (Filippova et al. 2001; Hark et al. 2000; Kanduri et al. 2000; Lutz et al. 2003; Szabó et al. 2000; Tanimoto et al. 2003; Phillips and Corces 2009; Bell et al. 1999; Zlatanova and Caiafa 2009a, 2009b). Insulators block the action of enhancers when positioned between enhancer and promoter. CTCF was found to be required in almost all cases of enhancer blocking tested in vertebrates. This CTCF-mediated enhancer blocking is in many instances conferred by constitutive CTCF action. For some examples however, a modulation of the enhancer blocking activity was documented (Lutz et al. 2003; Weth et al. 2010). One mechanism is achieved by regulation of binding to DNA. It was shown that CTCF is not able to bind to those binding-sites containing methylated CpG sequences. At the imprinting control region (ICR) of the Igf2/H19 locus the binding-site for CTCF on the paternal allele is methylated. This prevents DNA-binding of CTCF, resulting in the loss of enhancer blocking (Bell and Felsenfeld 2000; Chao et al. 2002; Filippova et al. 2001; Hark et al. 2000; Kanduri et al. 2000, 2002; Szabó et al. 2000; Takai et al. 2001). Not only can DNA methylation interfere with CTCF binding to DNA, it was also shown in one report that RNA transcription through the CTCF binding site results in CTCF eviction (Lefevre et al. 2008). In contrast to these cases most of the DNA sites are not differentially bound by CTCF. Even CTCF interaction with its cofactor cohesin does not seem to differ in different cell types (Schmidt et al. 2010). These results indicate that regulation of CTCF activity might be achieved by neighboring factors bound to DNA. In fact, whole genome analyses of CTCF binding sites identified several classes of neighboring sequences (Dickson et al. 2010; Boyle et al. 2010; Essien et al. 2009). Therefore, in this review we will summarize those results for which a combined action of CTCF with factors bound adjacently was found. These neighboring factors include the RNA polymerases I, II and III, another zinc finger factor VEZF1 and the factors YY1, SMAD, TR and Oct4. Each of these seems to influence, modulate or determine the function of CTCF. Thereby, at least some of the pleiotropic effects of CTCF can be explained.
Collapse
Affiliation(s)
- Oliver Weth
- Institute for Genetics, Justus-Liebig-University Giessen, D35392 Giessen, Germany.
| | | |
Collapse
|
10
|
Lee DH, Singh P, Tsark WMK, Szabó PE. Complete biallelic insulation at the H19/Igf2 imprinting control region position results in fetal growth retardation and perinatal lethality. PLoS One 2010; 5:e12630. [PMID: 20838620 PMCID: PMC2935888 DOI: 10.1371/journal.pone.0012630] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/16/2010] [Indexed: 11/18/2022] Open
Abstract
Background The H19/Igf2 imprinting control region (ICR) functions as an insulator exclusively in the unmethylated maternal allele, where enhancer-blocking by CTCF protein prevents the interaction between the Igf2 promoter and the distant enhancers. DNA methylation inhibits CTCF binding in the paternal ICR allele. Two copies of the chicken β-globin insulator (ChβGI)2 are capable of substituting for the enhancer blocking function of the ICR. Insulation, however, now also occurs upon paternal inheritance, because unlike the H19 ICR, the (ChβGI)2 does not become methylated in fetal male germ cells. The (ChβGI)2 is a composite insulator, exhibiting enhancer blocking by CTCF and chromatin barrier functions by USF1 and VEZF1. We asked the question whether these barrier proteins protected the (ChβGI)2 sequences from methylation in the male germ line. Methodology/Principal Findings We genetically dissected the ChβGI in the mouse by deleting the binding sites USF1 and VEZF1. The methylation of the mutant versus normal (ChβGI)2 significantly increased from 11% to 32% in perinatal male germ cells, suggesting that the barrier proteins did have a role in protecting the (ChβGI)2 from methylation in the male germ line. Contrary to the H19 ICR, however, the mutant (mChβGI)2 lacked the potential to attain full de novo methylation in the germ line and to maintain methylation in the paternal allele in the soma, where it consequently functioned as a biallelic insulator. Unexpectedly, a stricter enhancer blocking was achieved by CTCF alone than by a combination of the CTCF, USF1 and VEZF1 sites, illustrated by undetectable Igf2 expression upon paternal transmission. Conclusions/Significance In this in vivo model, hypomethylation at the ICR position together with fetal growth retardation mimicked the human Silver-Russell syndrome. Importantly, late fetal/perinatal death occurred arguing that strict biallelic insulation at the H19/Igf2 ICR position is not tolerated in development.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, California, United States of America
| | - Purnima Singh
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, California, United States of America
| | - Walter M. K. Tsark
- Transgenic Mouse Facility, City of Hope National Medical Center, Duarte, California, United States of America
| | - Piroska E. Szabó
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Modular insulators: genome wide search for composite CTCF/thyroid hormone receptor binding sites. PLoS One 2010; 5:e10119. [PMID: 20404925 PMCID: PMC2852416 DOI: 10.1371/journal.pone.0010119] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/18/2010] [Indexed: 02/07/2023] Open
Abstract
The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations.
Collapse
|
12
|
Nunez E, Fu XD, Rosenfeld MG. Nuclear organization in the 3D space of the nucleus - cause or consequence? Curr Opin Genet Dev 2009; 19:424-36. [PMID: 19846290 DOI: 10.1016/j.gde.2009.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/24/2009] [Accepted: 07/24/2009] [Indexed: 11/28/2022]
Abstract
Recent evidence suggests that dynamic three-dimensional genomic interactions in the nucleus exert critical roles in regulated gene expression. Here, we review a series of recent paradigm-shifting experiments that highlight the existence of specific gene networks within the self-organizing space of the nucleus. These gene networks, evidenced by long-range intrachromosomal and interchromosomal interactions, can be considered as the cause or consequence of regulatory biological programs. Changes in nuclear architecture are a hallmark of laminopathies and likely potentiate genome rearrangements critical for tumor progression, in addition to potential vital contribution of noncoding RNAs and DNA repeats. It is virtually certain that we will witness an ever-increasing rate of discoveries that uncover new roles of nuclear architecture in transcription, DNA damage/repair, aging, and disease.
Collapse
Affiliation(s)
- Esperanza Nunez
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Diego School of Medicine, La Jolla, CA 92093-0651, USA
| | | | | |
Collapse
|
13
|
A randomly integrated transgenic H19 imprinting control region acquires methylation imprinting independently of its establishment in germ cells. Mol Cell Biol 2009; 29:4595-603. [PMID: 19546235 DOI: 10.1128/mcb.00275-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The imprinted expression of the mouse Igf2/H19 locus is governed by the differential methylation of the imprinting control region (ICR), which is established initially in germ cells and subsequently maintained in somatic cells, depending on its parental origin. By grafting a 2.9-kbp H19 ICR fragment into a human beta-globin yeast artificial chromosome in transgenic mice, we previously showed that the ICR could recapitulate imprinted methylation and expression at a heterologous locus, suggesting that the H19 ICR in the beta-globin locus contained sufficient information to maintain the methylation mark (K. Tanimoto, M. Shimotsuma, H. Matsuzaki, A. Omori, J. Bungert, J. D. Engel, and A. Fukamizu, Proc. Natl. Acad. Sci. USA 102:10250-10255, 2005). Curiously, however, the transgenic H19 ICR was not methylated in sperm, which was distinct from that seen in the endogenous locus. Here, we reevaluated the ability of the H19 ICR to mark the parental origin using more rigid criteria. In the testis, the methylation levels of the solitary 2.9-kbp transgenic ICR fragment varied significantly between six transgenic mouse lines. However, in somatic cells, the paternally inherited ICR fragment exhibited consistently higher methylation levels at five out of six randomly integrated sites in the mouse genome. These results clearly demonstrated that the H19 ICR could acquire parent-of-origin-dependent methylation after fertilization independently of the chromosomal integration site or the prerequisite methylation acquisition in male germ cells.
Collapse
|
14
|
Mattiske DM, Han L, Mann JR. Meiotic maturation failure induced by DICER1 deficiency is derived from primary oocyte ooplasm. Reproduction 2009; 137:625-32. [DOI: 10.1530/rep-08-0475] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RNA interference (RNAi) has diverse functions across cellular processes, including a role in the development of the mammalian oocyte. Mouse primary oocytes deficient in the key RNAi enzyme DICER1 exhibit pronounced defects in chromosome congression and spindle formation during meiotic maturation. The cause of this meiotic maturation failure is unknown. In this study, observations of chromosomes and spindle microtubules during prometaphase in DICER1-deficient oocytes indicate that chromosome congression and spindle formation are overtly normal. Spindle breakdown and chromosome displacement occur after the metaphase plate has formed, during the metaphase to anaphase transition. We hypothesised that this defect could be attributed to either RNAi-mediated regulation of nuclear factors, such as the regulation of centromere chromatin assembly, or the regulation of mRNA expression within the cytoplasm. By transplanting germinal vesicles between DICER1-deficient and wild-type primary oocytes, we show that, unexpectedly, the meiotic failure is not caused by a deficiency derived from the germinal vesicle component. Instead, we reveal that the ooplasm of primary oocytes contains DICER1-dependent factors that are crucial for chromosome segregation and meiotic maturation.
Collapse
|
15
|
Prindull GA, Fibach E. Are postnatal hemangioblasts generated by dedifferentiation from committed hematopoietic stem cells? Exp Hematol 2007; 35:691-701. [PMID: 17577919 DOI: 10.1016/j.exphem.2007.01.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell dedifferentiation occurs in different cell systems. In spite of a relative paucity of data it seems reasonable to assume that cell dedifferentiation exists in reversible equilibrium with differentiation, to which cells resort in response to intercellular signals. The current literature is indeed compatible with the concept that dedifferentiation is guided by structural rearrangements of nuclear chromatin, directed by epigenetic cell memory information available as silenced genes stored on heterochromatin, and that gene transcription exists in reversible "fluctuating continua" during parental cell cycles. Here, we review the molecular mechanisms of cell dedifferentiation and suggest for hematopoietic development that postnatal hemangioblasts are generated by dedifferentiation of committed hematopoietic stem cells.
Collapse
Affiliation(s)
- Gregor A Prindull
- Department of Pediatrics,University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany.
| | | |
Collapse
|