1
|
Li Q, Cui M, She J, Sun S, Zhou L, Tang F, Guo Y, Liu Y. Preparation high quality camellia oil by combining ultrasound pre-treatment and microwave as drying method: Interactive effect on drying kinetics, metabolite profile and antioxidant ability. ULTRASONICS SONOCHEMISTRY 2025; 117:107338. [PMID: 40215790 PMCID: PMC12018082 DOI: 10.1016/j.ultsonch.2025.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/27/2025]
Abstract
This study systematically investigates the effects of different drying methods-Hot Air Drying (HAD), Microwave Drying (MWD), and Ultrasound-Microwave Combined Drying (UMWD)-on the drying kinetics, total phenolic content (TPC), antioxidant activity, and metabolome of Camellia oils (COs). UMWD significantly reduced drying time and increased TPC by 102.20 % and 395.94 % compared to MWD and HAD, respectively. The antioxidant capacity, as measured by FRAP, DPPH, and ABTS assays, was enhanced to 8.51, 11.35, and 37.68 µg VC/mL under UMWD conditions, showing marked improvements over MWD and HAD. Metabolomic analysis identified 1,350 metabolites, with 447 differential metabolites specific to UMWD. A total of 47 antioxidant-related metabolites (ACCMs) were identified, most of which exhibited up to a 10-fold increase in UMWD/HAD comparisons. These findings demonstrate that UMWD effectively enhances both the bioactive components and antioxidant capacity of COs, making a significant contribution to the preparation of high-quality camellia oil. Additionally, the study offers new insights into how ultrasound-assisted drying methods can enhance the bioactive components of food products.
Collapse
Affiliation(s)
- Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China; Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Jiarong She
- Hunan Academy of Forestry, Changsha 410000, PR China
| | - Shiman Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Lingyuan Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China.
| |
Collapse
|
2
|
Mancuso A, d’Avanzo N, Cristiano MC, Paolino D. Reflectance spectroscopy: a non-invasive strategy to explore skin reactions to topical products. Front Chem 2024; 12:1422616. [PMID: 38957405 PMCID: PMC11217347 DOI: 10.3389/fchem.2024.1422616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Reflectance spectroscopy has emerged as a powerful analytical technique in the field of dermatology, offering a non-invasive strategy to assess several cutaneous properties and skin response to topical products. By analyzing reflected light across different wavelengths, reflectance spectroscopy allows the quantification of cutaneous parameters, such as erythema index and melanin content. Moreover, this analytical technique enables the monitoring of any changes in skin physiology facilitating the assessment of long-term effects of topical products as well as predicting cutaneous diseases. This review provides an overview of the application of reflectance spectroscopy in investigating skin properties and reaction to topical applied products, including both pharmaceutical and cosmetic formulations, thereby aiding in the development of personalized solutions tailored to individual needs.
Collapse
Affiliation(s)
- Antonia Mancuso
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Research Center “ProHealth Translational Hub”, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Nicola d’Avanzo
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Research Center “ProHealth Translational Hub”, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
- Research Center “ProHealth Translational Hub”, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Ajan A, Roberg K, Fredriksson I, Abtahi J. Reproducibility of Laser Doppler Flowmetry in gingival microcirculation. A study on six different protocols. Microvasc Res 2024; 153:104666. [PMID: 38301938 DOI: 10.1016/j.mvr.2024.104666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVES Laser Doppler Flowmetry (LDF) is a non-invasive technique for the assessment of tissue blood flow, but increased reproducibility would facilitate longitudinal studies. The aim of the study was to assess the interday reproducibility of Laser Doppler Flowmetry (LDF) at rest, at elevated local temperatures, and with the use of the vasodilator Methyl Nicotinate (MN) in six interconnected protocols for the measurement of the blood supply to the microvascular bed of the gingiva. METHODS Ten healthy volunteers were included. Interweek LDF measurements with custom-made acrylic splints were performed. Six protocols were applied in separate regions of interest (ROI): 1; basal LDF, 2; LDF with thermoprobe 42 °C, 3; LDF with thermoprobe 45 °C, 4; LDF with thermoprobe 42 °C and MN, 5; LDF with thermoprobe 45 °C and MN and 6; LDF with MN. RESULTS Intra-individual reproducibility was assessed by the within-subject coefficient of variation (wCV) and the intraclass correlation coefficient (ICC). Basal LDF measurements demonstrated high reproducibility with wCV 11.1 in 2 min and 10.3 in 5 min. ICC was 0.9 and 0.92. wCV after heat and MN was 4.9-10.3 and ICC 0.82-0.93. The topically applied MN yielded increased blood flow. CONCLUSION This is the first study evaluating the reproducibility of basal LDF compared to single or multiple vasodilatory stimuli in gingiva. Multiple collector fibers probe and stabilizing acrylic splints are recommended. Vasodilatory stimulation showed a tendency toward higher reproducibility. Furthermore, MN yields vasodilation in gingiva.
Collapse
Affiliation(s)
- Aida Ajan
- Department of Oral and Maxillofacial Surgery, Linköping University Hospital, Linköping, Sweden; Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
| | - Karin Roberg
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden; Department of Otorhinolaryngology in Linköping, Region Östergötland, Linköping, Sweden.
| | - Ingemar Fredriksson
- Department of Biomedical Engineering (IMT), Linköping University, Linköping, Sweden.
| | - Jahan Abtahi
- Department of Oral and Maxillofacial Surgery, Linköping University Hospital, Linköping, Sweden; Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
| |
Collapse
|
4
|
Haxaire C, Liebel F, Portocarrero Huang G, Chen S, Knapp E, Idkowiak-Baldys J, Glynn J. Effect of L-4-Thiazolylalanine (Protinol™) on skin barrier strength and skin protection. Int J Cosmet Sci 2023; 45:725-738. [PMID: 37402136 DOI: 10.1111/ics.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/19/2023] [Accepted: 06/24/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVES Skin barrier properties are critical for maintaining epidermal water content, protecting from environmental factors and providing the first line of defense against pathogens. In this study, we investigated the non-proteinogenic amino acid L-4-Thiazolylalanine (L4) as a potential active ingredient in skin protection and barrier strength. METHODS L4 on wound healing, anti-inflammatory and anti-oxidant properties were evaluated using monolayers and 3D skin equivalents. The transepithelial electrical resistance (TEER) value was used in vitro as a strong indicator of barrier strength and integrity. Clinical L4 efficacy was assessed for the evaluation of the skin barrier integrity and soothing benefits. RESULTS In vitro treatments of L4 show beneficial effects in wound closure mechanism, and we demonstrate that L4 anti-oxidant benefits with markedly increased HSP70 and decreased reactive oxygen species production induced by UVs exposure. Barrier strength and integrity were significantly improved by L4, confirmed clinically by an increase in 12R-lipoxygenase enzymatic activity in the stratum corneum. In addition, soothing benefits of L4 have been shown clinically with the decrease in redness after methyl nicotinate application on the inner arm and the significant reduction of the erythema and the skin desquamation on the scalp. CONCLUSION L4 delivered multiple skin benefits by strengthening the skin barrier, accelerating the skin repair process as well as soothing the skin and the scalp with anti-inflammaging effects. The observed efficacy validates L4 as a desirable skincare ingredient for topical treatment.
Collapse
Affiliation(s)
- C Haxaire
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - F Liebel
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - G Portocarrero Huang
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - S Chen
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - E Knapp
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - J Idkowiak-Baldys
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| | - J Glynn
- Avon Skin Care Institute, Global Research and Development, Avon Products Inc., Suffern, New York, USA
| |
Collapse
|
5
|
Simultaneous Determination of Methyl Nicotinate and Three Salicylic Acid Derivatives in Pain Relief Spray Using HPLC–DAD. SEPARATIONS 2022. [DOI: 10.3390/separations9040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For the first time, the high-performance liquid chromatography–diode array detector (HPLC–DAD) approach was operated for the simultaneous assessment of methyl nicotinate (MN), methyl salicylate (MS), ethyl salicylate (ES) and 2-hydroxyethyl salicylate (HES) in one pharmaceutical formulation. The limits of detection of MN, HES, MS and ES were found to be 0.0144, 0.0455, 0.0087 and 0.0061 μg/mL. The recovery percentages and relative standard deviations ranged from 93.48 to 102.12% and 0.301 to 6.341% for all active ingredients. Accordingly, the previously described data demonstrate the sensitivity, accuracy and precision of the developed method. Therefore, the investigated approach was effectively applied for the simultaneous assessment of MN, HES, MS and ES in DEEP HEAT Spray.
Collapse
|
6
|
Ex vivo penetration analysis and anti-inflammatory efficacy of the association of ferulic acid and UV filters. Eur J Pharm Sci 2020; 156:105578. [PMID: 32998032 DOI: 10.1016/j.ejps.2020.105578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Unprotected chronic exposure to ultraviolet (UV) radiation generates many harmful effects to human skin and sunscreens are essential to health, however, traditional products do not provide enough protection against cutaneous oxidative stress, a process amplified by UV radiation. Therefore, the development of multifunctional photoprotective formulations seems to be a more efficacious approach, since these enable the absorption/reflection of UV radiation and maintain the cutaneous homeostasis. OBJECTIVES In the present study, ferulic acid (FA), a well-known antioxidant, has been combined with two UV filters, bemotrizinol and ethylhexyl triazone, and the safety and efficacy of this formulation has been assessed combining ex vivo and in vivo methods. METHODS Skin permeation assays were performed by applying the formulation in the volar forearm of participants, after which consecutive samples of the stratum corneum were collected by tape stripping, and the quantification of FA, bemotrizinol and ethylhexyl triazone was performed by high-performance liquid chromatography (HPLC). Also, the FA anti-inflammatory action in combination with the UV filters was probed through a method employing Laser Doppler flowmetry to measure the vasodilatory response to methyl nicotinate topical application. RESULTS Skin permeation assay was able to characterize the penetration depth of each substance. It should also be noted that a specific HPLC analytical method was developed in this study to enable the rapid simultaneous quantification of the three substances. Results from Laser Doppler flowmetry showed that the FA was able to mitigate the vasodilatory response. CONCLUSIONS FA proved to be a valuable resource in a multifunction sunscreen, not only providing an increase in the SPF of sunscreens, previously published, but also decreasing the extent of inflammation.
Collapse
|
7
|
Manoharan A, Rayner PJ, Iali W, Burns MJ, Perry VH, Duckett SB. Achieving Biocompatible SABRE: An in vitro Cytotoxicity Study. ChemMedChem 2018; 13:352-359. [PMID: 29232489 PMCID: PMC5838797 DOI: 10.1002/cmdc.201700725] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 01/09/2023]
Abstract
Production of a biocompatible hyperpolarized bolus for signal amplification by reversible exchange (SABRE) could open the door to simple clinical diagnosis via magnetic resonance imaging. Essential to successful progression to preclinical/clinical applications is the determination of the toxicology profile of the SABRE reaction mixture. Herein, we exemplify the cytotoxicity of the SABRE approach using in vitro cell assays. We conclude that the main cause of the observed toxicity is due to the SABRE catalyst. We therefore illustrate two catalyst removal methods: one involving deactivation and ion-exchange chromatography, and the second using biphasic catalysis. These routes produce a bolus suitable for future in vivo study.
Collapse
Affiliation(s)
- Anand Manoharan
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Peter J. Rayner
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Wissam Iali
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Michael J. Burns
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - V. Hugh Perry
- School of Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Simon B. Duckett
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| |
Collapse
|
8
|
Zhaowu Z, Xiaoli W, Yangde Z, Nianfeng L. Preparation of matrine ethosome, its percutaneous permeationin vitroand anti-inflammatory activityin vivoin rats. J Liposome Res 2009; 19:155-62. [DOI: 10.1080/08982100902722381] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Ross BM, Katzman M. Stability of methylnicotinate in aqueous solution as utilized in the 'niacin patch test'. BMC Res Notes 2008; 1:89. [PMID: 18816397 PMCID: PMC2562371 DOI: 10.1186/1756-0500-1-89] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/24/2008] [Indexed: 11/10/2022] Open
Abstract
Background The topical application of methylnicotinate results in a localized vasodilatatory response which has been found to differ from that observed to occur in healthy controls in a variety of medical conditions. The stability of the drug in aqueous solution is unclear while difficulties can be encountered when preparing methylnicotinate solutions for this purpose. To aid in the determination of how long solutions of the drug should be stored before discarding we have used a collection of aged batches of methylnicotinate to determine the stability of the drug in aqueous solution. Findings The degradation of methylnicotinate was determined in batches which had been stored at 4°C for between 5 and 1062 days prior to analysis by High Performance Liquid Chromatography. The major degradation product of methylnicotinate was nicotinic acid which formed at an approximate rate of 0.5% of the starting methylnicotinate concentration per annum. Furthermore, the ability of methylnicotinate solutions of different ages to induce vasodilatation was assessed in healthy volunteers. No significant difference in vasodilatatory response was apparent between batches which had been stored for between zero and 1057 days. Conclusion Methylnicotinate exhibits excellent chemical and biological stability in solution facilitating its use in clinical applications.
Collapse
Affiliation(s)
- Brian M Ross
- Northern Ontario School of Medicine, Lakehead University, Thunder Bay, Ontario, Canada.
| | | |
Collapse
|