1
|
Starska-Kowarska K. Role of Vitamin D in Head and Neck Cancer-Immune Function, Anti-Tumour Effect, and Its Impact on Patient Prognosis. Nutrients 2023; 15:nu15112592. [PMID: 37299554 DOI: 10.3390/nu15112592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) describes a heterogeneous group of human neoplasms of the head and neck with high rates of morbidity and mortality, constituting about 3% of all cancers and ~1.5% of all cancer deaths. HNSCC constituted the seventh most prevalent human malignancy and the most common human cancer in the world in 2020, according to multi-population observations conducted by the GLOBOCAN group. Since approximately 60-70% of patients present with stage III/IV neoplastic disease, HNSCC is still one of the leading causes of death in cancer patients worldwide, with an overall survival rate that is too low, not exceeding 40-60% of these patients. Despite the application of newer surgical techniques and the implementation of modern combined oncological treatment, the disease often follows a fatal course due to frequent nodal metastases and local neoplastic recurrences. The role of micronutrients in the initiation, development, and progression of HNSCC has been the subject of considerable research. Of particular interest has been vitamin D, the pleiotropic biologically active fat-soluble family of secosteroids (vitamin-D-like steroids), which constitutes a key regulator of bone, calcium, and phosphate homeostasis, as well as carcinogenesis and the further development of various neoplasms. Considerable evidence suggests that vitamin D plays a key role in cellular proliferation, angiogenesis, immunity, and cellular metabolism. A number of basic science, clinical, and epidemiological studies indicate that vitamin D has multidirectional biological effects and influences anti-cancer intracellular mechanisms and cancer risk, and that vitamin D dietary supplements have various prophylactic benefits. In the 20th century, it was reported that vitamin D may play various roles in the protection and regulation of normal cellular phenotypes and in cancer prevention and adjunctive therapy in various human neoplasms, including HNSCC, by regulating a number of intracellular mechanisms, including control of tumour cell expansion and differentiation, apoptosis, intercellular interactions, angio- and lymphogenesis, immune function, and tumour invasion. These regulatory properties mainly occur indirectly via epigenetic and transcriptional changes regulating the function of transcription factors, chromatin modifiers, non-coding RNA (ncRNAs), and microRNAs (miRs) through protein-protein interactions and signalling pathways. In this way, calcitriol enhances intercellular communication in cancer biology, restores the connection with the extracellular matrix, and promotes the epithelial phenotype; it thus counteracts the tumour-associated detachment from the extracellular matrix and inhibits the formation of metastases. Furthermore, the confirmation that the vitamin D receptor (VDR) is present in many human tissues confirmed the physiopathological significance of vitamin D in various human tumours. Recent studies indicate quantitative associations between exposure to vitamin D and the incidence of HNC, i.e., cancer risk assessment included circulating calcidiol plasma/serum concentrations, vitamin D intake, the presence of the VDR gene polymorphism, and genes involved in the vitamin D metabolism pathway. Moreover, the chemopreventive efficacy of vitamin D in precancerous lesions of the head and neck and their role as predictors of mortality, survival, and recurrence of head and neck cancer are also widely discussed. As such, it may be considered a promising potential anti-cancer agent for developing innovative methods of targeted therapy. The proposed review discusses in detail the mechanisms regulating the relationship between vitamin D and HNSCC. It also provides an overview of the current literature, including key opinion-forming systematic reviews as well as epidemiological, prospective, longitudinal, cross-sectional, and interventional studies based on in vitro and animal models of HNSCC, all of which are accessible via the PubMed/Medline/EMBASE/Cochrane Library databases. This article presents the data in line with increasing clinical credibility.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
2
|
Flamann C, Peter K, Kreutz M, Bruns H. Regulation of the Immune Balance During Allogeneic Hematopoietic Stem Cell Transplantation by Vitamin D. Front Immunol 2019; 10:2586. [PMID: 31749811 PMCID: PMC6848223 DOI: 10.3389/fimmu.2019.02586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
One of the most promising therapeutic approaches for numerous hematological malignancies represents the allogeneic hematopoietic stem cell transplantation (allo-HSCT). One major complication is the development of the life-threatening graft-vs.-host disease (GvHD) which limits beneficial effects of graft-vs.-leukemia (GvL) responses during allo-HSCT. Strengthening GvL effects without induction of severe GvHD is essential to decrease the relapse rate after allo-HSCT. An interesting player in this context is vitamin D3 since it has modulatory capacity in both preventing GvHD and boosting GvL responses. Current studies claim that vitamin D3 induces an immunosuppressive environment by dendritic cell (DC)-dependent generation of regulatory T cells (Tregs). Since vitamin D3 is known to support the antimicrobial defense by re-establishing the physical barrier as well as releasing defensins and antimicrobial peptides, it might also improve graft-vs.-infection (GvI) effects in patients. Beyond that, alloreactive T cells might be attenuated by vitamin D3-mediated inhibition of proliferation and activation. Despite the inhibitory effects of vitamin D3 on T cells, anti-tumor responses of GvL might be reinforced by vitamin D3-triggered phagocytic activity and antibody-based immunotherapy. Therefore, vitamin D3 treatment does not only lead to a shift from a pro-inflammatory toward a tolerogenic state but also promotes tumoricidal activity of immune cells. In this review we focus on vitamin D3 and its immunomodulatory effects by enhancing anti-tumor activity while alleviating harmful allogeneic responses in order to restore the immune balance.
Collapse
Affiliation(s)
- Cindy Flamann
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Katrin Peter
- Department of Internal Medicine III - Hematology and Internal Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III - Hematology and Internal Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
3
|
Trump DL. Calcitriol and cancer therapy: A missed opportunity. Bone Rep 2018; 9:110-119. [PMID: 30591928 PMCID: PMC6303233 DOI: 10.1016/j.bonr.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
The vitamin D receptor is expressed in most tissues of the body - and the cancers that arise from those tissues. The vitamin D signaling pathway is active in those tissues and cancers. This is at least consistent with the hypothesis that perturbing this signaling may have a favorable effect on the genesis and growth of cancers. Epidemiologic data indicate that vitamin D signaling may be important in the initiation and outcome of a number of types of cancer. Many studies have shown that calcitriol (1,25 dihydroxycholecalciferol) and other vitamin D compounds have antiproliferative, pro-apoptotic, anti-cell migration and antiangiogenic activity in a number of preclinical studies in many different cancer types. Unfortunately, the assessment of the activity of calcitriol or other vitamin D analogues in the treatment of cancer, as single agents or in combination with other anticancer agents has been stymied by the failure to adhere to commonly accepted principles of drug development and clinical trials conduct.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, United States of America
| |
Collapse
|
4
|
Yasuda K, Yogo Y, Sugimoto H, Mano H, Takita T, Ohta M, Kamakura M, Ikushiro S, Yasukawa K, Shiro Y, Sakaki T. Production of an active form of vitamin D 2 by genetically engineered CYP105A1. Biochem Biophys Res Commun 2017; 486:336-341. [DOI: 10.1016/j.bbrc.2017.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/12/2017] [Indexed: 12/29/2022]
|
5
|
Tee WV, Ripen AM, Mohamad SB. The conformational dynamics of H2-H3n and S2-H6 in gating ligand entry into the buried binding cavity of vitamin D receptor. Sci Rep 2016; 6:35937. [PMID: 27786277 PMCID: PMC5081507 DOI: 10.1038/srep35937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Crystal structures of holo vitamin D receptor (VDR) revealed a canonical conformation in which the ligand is entrapped in a hydrophobic cavity buried in the ligand-binding domain (LBD). The mousetrap model postulates that helix 12 is positioned away from the domain to expose the interior cavity. However, the extended form of helix 12 is likely due to artifacts during crystallization. In this study, we set out to investigate conformational dynamics of apo VDR using molecular dynamics simulation on microsecond timescale. Here we show the neighboring backbones of helix 2-helix 3n and beta strand 2-helix 6 of LBD, instead of the helix 12, undergo large-scale motion, possibly gating the entrance of ligand to the ligand binding domain. Docking analysis to the simulated open structure of VDR with the estimated free energy of -37.0 kJ/mol, would emphasise the role of H2-H3n and S2-H6 in facilitating the entrance of calcitriol to the LBD of VDR.
Collapse
Affiliation(s)
- Wei-Ven Tee
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Adiratna Mat Ripen
- Allergy and Immunology Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Centre of Research for Computational Sciences and Informatics in Biology, Bioindustry, Environment, Agriculture and Healthcare (CRYSTAL), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Early growth inhibition is followed by increased metastatic disease with vitamin D (calcitriol) treatment in the TRAMP model of prostate cancer. PLoS One 2014; 9:e89555. [PMID: 24586868 PMCID: PMC3935875 DOI: 10.1371/journal.pone.0089555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 12/27/2022] Open
Abstract
The active metabolite of vitamin D3, 1,25-dihydroxyvitamin D3 (calcitriol) has antiproliferative effects in non-aggressive prostate cancer, however, its effects in more aggressive model systems are still unclear. In these studies, effects of calcitriol and a less-calcemic vitamin D analog, QW-1624F2-2 (QW), were tested in vivo, using the aggressive autochthonous transgenic adenocarcinoma of mouse prostate (TRAMP) model. To study prevention of androgen-stimulated prostate cancer, vehicle, calcitriol (20 µg/kg), or QW (50 µg/kg) were administered to 4 week-old TRAMP mice intraperitoneal (i.p.) 3×/week on a MWF schedule for 14 weeks. Calcitriol and QW slowed progression of prostate cancer as indicated by reduced urogenital tract (p = 0.0022, calcitriol; p = 0.0009, QW) and prostate weights (p = 0.0178, calcitriol; p = 0.0086, QW). However, only calcitriol increased expression of the pro-differentiation marker, cadherin 1 (p = 0.0086), and reduced tumor proliferation (p = 0.0467). By contrast, neither vitamin D analog had any effect on castration resistant prostate cancer in mice treated pre- or post-castration. Interestingly, although vitamin D showed inhibitory activity against primary tumors in hormone-intact mice, distant organ metastases seemed to be enhanced following treatment (p = 0.0823). Therefore, TRAMP mice were treated long-term with calcitriol to further examine effects on metastasis. Calcitriol significantly increased the number of distant organ metastases when mice were treated from 4 weeks-of-age until development of palpable tumors (20–25 weeks-of-age)(p = 0.0003). Overall, data suggest that early intervention with vitamin D in TRAMP slowed androgen-stimulated tumor progression, but prolonged treatment resulted in development of a resistant and more aggressive disease associated with increased distant organ metastasis.
Collapse
|
7
|
Tang JY, Fu T, Lau C, Oh DH, Bikle DD, Asgari MM. Vitamin D in cutaneous carcinogenesis: part II. J Am Acad Dermatol 2013; 67:817.e1-11; quiz 827-8. [PMID: 23062904 DOI: 10.1016/j.jaad.2012.07.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 06/12/2012] [Accepted: 07/01/2012] [Indexed: 12/20/2022]
Abstract
The role of vitamin D in health maintenance and disease prevention in fields ranging from bone metabolism to cancer is currently under intensive investigation. A number of epidemiologic studies have suggested that vitamin D may have a protective effect on cancer risk and cancer-associated mortality. With regard to skin cancer, epidemiologic and laboratory studies suggest that vitamin D and its metabolites may have a similar risk reducing effect. Potential mechanisms of action include inhibition of the hedgehog signaling pathway and upregulation of nucleotide excision repair enzymes. The key factor complicating the association between vitamin D and skin cancer is ultraviolet B radiation. The same spectrum of ultraviolet B radiation that catalyzes the production of vitamin D in the skin also causes DNA damage that can lead to epidermal malignancies. Part II of this continuing medical education article will summarize the literature on vitamin D and skin cancer to identify evidence-based optimal serum levels of vitamin D and to recommend ways of achieving those levels while minimizing the risk of skin cancer.
Collapse
Affiliation(s)
- Jean Y Tang
- Department of Dermatology, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Dalirsani Z, Farajnia S, Javadzadeh Y, Mehdipour M, Koozegari S. The effects of 5-fluorouracil alone and in combination with 13-cis retinoic acid and vitamin D3 on human oral squamous cell carcinoma lines. J Contemp Dent Pract 2012; 13:345-50. [PMID: 22918008 DOI: 10.5005/jp-journals-10024-1149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM Oral squamous cell carcinoma (OSCC) is responsible for about 90% of oral malignancies and its incidence is increasing. Despite various treatment protocols, survival rate of OSCC is low. Chemotherapy that is used for treating this carcinoma in advanced stages is systemic therapy that destroys carcinogenic cells, and controls tumor metastasis. Chemotherapy is very toxic and has limitations, especially for patients in advanced stages. Considering positive effects of retinoid and vitamin D3 derivatives in treating some carcinomas, we decided to evaluate the effect of combination of these drugs on OSCC. In this study the effects of combination of 5-fluorouracil, 13-cis retinoic acid and vitamin D3 on cultured cell of OSCC have been evaluated. MATERIALS AND METHODS OSCC cells were cultured in culture media and different concentration of 5-fluorouracil, 13-cis retinoic acid and vitamin D3 were added to cultured cell as separately and in combinations. The effect of treatment on cell proliferation and induction of apoptosis were evaluated by MTT and TUNEL assays respectively. RESULTS Combination of 5-fluorouracil and 13- cis retinoic acid had the highest inhibitory effect on SCC cell proliferation. Combination of two drugs had more apoptotic effect than each of them separately, and combination of three drugs had more effect than combination of two drugs. CONCLUSION Because combination of drugs had more inhibitory effect on cell proliferation than one of them and combination of three drugs had the most apoptotic effect than one of these drugs separately, these drugs may have synergic effect on OSCC. CLINICAL SIGNIFICANCE Combination of three drugs has more inhibitory effect on cell proliferation and apoptotic effect than one of these drugs.
Collapse
Affiliation(s)
- Zohreh Dalirsani
- Department of Oral Medicine, Mashhad School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
9
|
Stepien T, Krupinski R, Sopinski J, Kuzdak K, Komorowski J, Lawnicka H, Stepien H. Decreased 1-25 dihydroxyvitamin D3 concentration in peripheral blood serum of patients with thyroid cancer. Arch Med Res 2010; 41:190-4. [PMID: 20682176 DOI: 10.1016/j.arcmed.2010.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/30/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Vitamin D(3), in addition to its role in calcium homeostasis, has been recognized as playing a role in human cancer development. However, little is known about the association between vitamin D status and the development of thyroid cancer. This study aimed to investigate vitamin D metabolism by measuring 25(OH) D(3), 1-25 (OH)(2) D(3), PTH and calcium concentrations in the peripheral blood of patients with different forms of thyroid tumors. METHODS The 25-hydroxyvitamin D(3) ,1-25- dihydoxyvitamin D(3), PTH and calcium serum levels of 50 consecutive patients with epithelial thyroid cancer 27 cases of papillary cancers (PTC), 16 follicular cancers (FTC), and seven cases of anaplastic cancers (ATC) and 34 multinodular nontoxic goiter (MNG) were measured by specific immunoassay. The control group consisted of 26 healthy volunteers. RESULTS Our results revealed significantly lower 1-25 (OH)(2) D(3) concentration in the PTC group (22.67 pg/mL +/- 8.12; p <0.05), FTC group (16.09 pg/mL +/- 6.15; p <0.02) and ATC group (9.48 pg/mL +/- 5.18; p <0.02). Levels of 1-25 (OH)(2) D(3) varied by cancer stage and were also significantly different. A significant decrease in circulating 1-25 (OH)(2) D(3) concentration was found in patients with stage I (24.12 pg/mL +/- 6.77; p <0.05), stage II (16.93 pg/mL +/- 4.55; p <0.05), stage III (12.44 +/- 8.98; p <0.02) and in stage IVa (6.18 +/- 2.22; p <0.01). There were no significant differences when comparing serum levels of 25(OH) D(3), PTH or calcium concentrations among individuals with multinodular goiter, thyroid cancer and age- and sex-matched control volunteers. CONCLUSIONS Our study revealed that impaired vitamin D(3) metabolism may play an important role in thyroid follicular cell oncogenesis.
Collapse
Affiliation(s)
- Tomasz Stepien
- Departament of Endocrine and General Surgery, Medical University of Lodz, Copernicus Memorial Hospital, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
10
|
Johnson CS, Chung I, Trump DL. Epigenetic silencing of CYP24 in the tumor microenvironment. J Steroid Biochem Mol Biol 2010; 121:338-42. [PMID: 20304059 PMCID: PMC2906617 DOI: 10.1016/j.jsbmb.2010.03.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 03/08/2010] [Accepted: 03/12/2010] [Indexed: 12/31/2022]
Abstract
Calcitriol (1,25 dihydroxycholecalciferol) has significant anti-tumor activity in vitro and in vivo in a number of tumor model systems. We developed a system for isolation of fresh endothelial cells from tumors and Matrigel environments which demonstrate that CYP24, the catabolic enzyme involved in vitamin D signaling, is epigenetically silenced selectively in tumor-derived endothelial cells (TDEC). TDEC maintain phenotypic characteristics which are distinct from endothelial cells isolated from normal tissues and from Matrigel plugs (MDEC). In TDEC, calcitriol induces G(0)/G(1) arrest, modulates p27 and p21, and induces apoptotic cell death and decreases P-Erk and P-Akt. In contrast, endothelial cells isolated from normal tissues and MDEC are unresponsive to calcitriol-mediated anti-proliferative effects despite intact signaling through the vitamin D receptor (VDR). In TDEC, which are sensitive to calcitriol, the CYP24 promoter is hypermethylated in two CpG island regions located at the 5'end; this hypermethylation may contribute to gene silencing of CYP24. The extent of methylation in these two regions is significantly less in MDEC. Lastly, treatment of TDEC with a DNA methyltransferase inhibitor restores calcitriol-mediated induction of CYP24 and resistance to calcitriol. These data suggest that epigenetic silencing of CYP24 modulates cellular responses to calcitriol.
Collapse
Affiliation(s)
- Candace S Johnson
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
11
|
Luo W, Chen Y, Liu M, Du K, Zheng G, Cai T, Zhang W, Zhao F, Yao T, Yang R, Chen J. EB1089 induces Skp2-dependent p27 accumulation, leading to cell growth inhibition and cell cycle G1 phase arrest in human hepatoma cells. Cancer Invest 2009; 27:29-37. [PMID: 19160095 DOI: 10.1080/07357900802438569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
EB1089 exhibits a high level of antiproliferative activity against various tumors. However, it is not known whether the mechanism of EB1089 induced the growth inhibition in human hepatic-carcinoma. Here we found that EB1089 significantly reduced cell growth in human hepatoma cells (Hep-G2) and blocked Hep-G2 cell-associated tumor formation in nude mice. The growth inhibition was linked to cell cycle G1 phase arrest by the accumulation of p27 and a reduction of Skp2. Knockdown of Skp2 reversed the p27 induction and G1 arrest. Taken together, our data indicate that EB1089 inhibitory activity is associated with alteration of cell cycle checkpoints through Skp2-dependent p27 induction in Hep-G2 cells.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Occupational and Environmental Health, Faculty of Preventive Medicine, Fourth Military Medical University, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shabtay A, Sharabani H, Barvish Z, Kafka M, Amichay D, Levy J, Sharoni Y, Uskokovic MR, Studzinski GP, Danilenko M. Synergistic antileukemic activity of carnosic acid-rich rosemary extract and the 19-nor Gemini vitamin D analogue in a mouse model of systemic acute myeloid leukemia. Oncology 2008; 75:203-14. [PMID: 18852491 DOI: 10.1159/000163849] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 06/05/2008] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Differentiation therapy with the hormonal form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25D(3)), is a promising approach to treatment of acute myeloid leukemia (AML); however, 1,25D(3) induces hypercalcemia at pharmacologically active doses. We investigated the in vitro and in vivoantileukemic efficacy of combined treatment with non-toxic doses of a low-calcemic 1,25D(3) analogue, 1,25-dihydroxy-21(3-hydroxy-3-methyl-butyl)-19-nor-cholecalciferol (19-nor-Gemini; Ro27-5646), and rosemary plant agents in a mouse model of AML. METHODS Proliferation and differentiation of WEHI-3B D- (WEHI) murine myelomonocytic leukemia cellsin vitro were determined by standard assays. Reactive oxygen species, glutathione and protein expression levels were measured by flow cytometry, enzymatic assay and Western blotting, respectively. Systemic AML was developed by intravenous injection of WEHI cells in syngeneic Balb/c mice. RESULTS 19-nor-Gemini had a higher potency than its parent compounds, Gemini (Ro27-2310) and 1,25D(3), in the induction of differentiation (EC(50) = 0.059 +/- 0.011, 0.275 +/- 0.093 and 0.652 +/- 0.085 nM, respectively) and growth arrest (IC(50) = 0.072 +/- 0.018, 0.165 +/- 0.061 and 0.895 +/- 0.144 nM, respectively) in WEHI cells in vitro, and lower in vivo toxicity. Combined treatment of leukemia-bearing mice with 19-nor-Gemini (injected intraperitoneally) and standardized rosemary extract (mixed with food) resulted in a synergistic increase in survival (from 42.2 +/- 2.5 days in untreated mice to 66.5 +/- 4.2 days, n = 3) and normalization of white blood cell and differential counts. This was consistent with strong cooperative antiproliferative and differentiation effects of low concentrations of 19-nor-Gemini or 1,25D(3) combined with rosemary extract or its major polyphenolic component, carnosic acid, as well as with the antioxidant action of rosemary agents and vitamin D derivatives in WEHI cell cultures. CONCLUSION Combined effectiveness of 1,25D(3) analogues and rosemary agents against mouse AML warrants further exploration of this therapeutic approach in translational models of human leukemia.
Collapse
Affiliation(s)
- Ayelet Shabtay
- Department of Clinical Biochemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lu L, Qiu J, Liu S, Luo W. Vitamin D3 analogue EB1089 inhibits the proliferation of human laryngeal squamous carcinoma cells via p57. Mol Cancer Ther 2008; 7:1268-74. [DOI: 10.1158/1535-7163.mct-07-2222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Bruno RD, Njar VC. Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorg Med Chem 2007; 15:5047-60. [PMID: 17544277 PMCID: PMC1958998 DOI: 10.1016/j.bmc.2007.05.046] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/15/2007] [Accepted: 05/17/2007] [Indexed: 11/25/2022]
Abstract
Cytochrome P450s (CYPs) represent a large class of heme-containing enzymes that catalyze the metabolism of multitudes of substrates both endogenous and exogenous. Until recently, however, CYPs have been largely overlooked in cancer drug development, acknowledged only for their role in phase I metabolism of chemotherapeutics. The first successful strategy targeting CYP enzymes in cancer therapy was the development of potent inhibitors of CYP19 (aromatase) for the treatment of breast cancer. Aromatase inhibitors ushered in a new era in hormone ablation therapy for estrogen dependent cancers, and have paved the way for similar strategies (i.e., inhibition of CYP17) that combat androgen dependent prostate cancer. Identification of CYPs involved in the inactivation of anti-cancer metabolites of vitamin D(3) and vitamin A has triggered development of agents that target these enzymes as well. The discovery of the over-expression of exogenous metabolizing CYPs, such as CYP1B1, in cancer cells has roused interest in the development of inhibitors for chemoprevention and of prodrugs designed to be activated by CYPs only in cancer cells. Finally, the expression of CYPs within tumors has been utilized in the development of bioreductive molecules that are activated by CYPs only under hypoxic conditions. This review offers the first comprehensive analysis of strategies in drug development that either inhibit or exploit CYP enzymes for the treatment of cancer.
Collapse
Affiliation(s)
- Robert D. Bruno
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, U.S.A
| | - Vincent C.O. Njar
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, U.S.A
- The University of Maryland Marlene and Stewart Greenebaum Cancer Center, School of Medicine, Baltimore, MD 21201-1559, U.S.A
| |
Collapse
|