1
|
Han J, Li J, Liu L, Li K, Zhang C, Han Y. 20-HETE mediates Ang II-induced cardiac hypertrophy via ROS and Ca 2+ signaling in H9c2 cells. Sci Rep 2025; 15:2342. [PMID: 39825084 PMCID: PMC11742049 DOI: 10.1038/s41598-025-85992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025] Open
Abstract
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA. The role of 20-HETE in Ang II-induced cardiac hypertrophy was examined using DHE, MitoSOX, and JC-1 staining to evaluate reactive oxygen species (ROS) generation and mitochondrial membrane potential changes. The ERK/Akt and CaN/NFAT3 signaling pathways were analyzed through Western blot. Ang II was found to promote CYP4A expression and 20-HETE production in H9c2 cells via an AT1 receptor-dependent mechanism. Additionally, the upregulation of AT1 receptor expression by 20-HETE further confirms its facilitatory effect on the Ang II signaling pathway. Inhibition of 20-HETE synthesis or blockade of its receptor, G-protein-coupled receptor 75 (GPR75), significantly reversed Ang II-induced cardiac hypertrophy. This reversal was closely associated with 20-HETE-induced ROS production, oxidative stress, and activation of the Ca2+/CaN/NFAT3 signaling pathway. This study demonstrated that 20-HETE mediated Ang II-induced cardiac hypertrophy and, for the first time, highlighted the significant role of the GPR75 receptor in this process. These findings suggested that targeting 20-HETE reduction or blocking its receptor action could offer a novel therapeutic approach for cardiovascular diseases associated with Ang II.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Jiaojiao Li
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Lianlian Liu
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Kaiyuan Li
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Chun Zhang
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China
| | - Yong Han
- Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
| |
Collapse
|
2
|
Li H, Wang L, Zhang H, Yu W, Li Y, Jiang H, Wang D, Wang Y. Study on material basis and anti-hypertensive metabolomics of Zhengan-Xifeng-Tang(ZXT): A comparison between ZXT decoction and granules. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124063. [PMID: 38447242 DOI: 10.1016/j.jchromb.2024.124063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
High blood pressure is a serious human health problem and one of the leading risk factors for fatal complications in cardiovascular disease. The ZXT granules were prepared based on the Zhengan-Xifeng-Tang (ZXT) decoction. However, the therapeutic effects of ZXT granules on spontaneous hypertension and the metabolic pathways in which they may intervene are unclear. The aim of this study was to investigate the antihypertensive effect of ZXT granules on spontaneously hypertensive rats (SHR) and to analyze the metabolic pathway of intervention through chemical composition characterization, pharmacodynamics, and serum metabolomics analysis. After eight weeks of administration, serum and aortic arch samples were collected for biochemical, histopathology and serum metabolomics analysis to assess the effect of ZXT granules on SHR. The results showed that ZXT granules reduced aortic arch injury and blood pressure in SHR rats. Serum data from rats in each group was collected using LC-MS and 74 potential biomarkers were identified that showed significant differences between the model and control groups. Of these, 18 potential biomarkers were found to be deregulated after intervention with ZXT granules. These 18 potential differential metabolic markers are primarily involved in bile acid biosynthesis, arachidonic acid metabolism pathway, and fatty acid degradation. The results demonstrated that ZXT granules significantly affected blood lipids, aortic arch, and metabolic disorders in SHR rats. ZXT granules offer a new possibility for effective and convenient treatment of hypertensive patients.
Collapse
Affiliation(s)
- Haichao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihua Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hao Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenchi Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haiqing Jiang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yu Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
3
|
Li H, Wang L, Zhang L, Liu J, Zhang H, Wang D, Yang W. Study on material basis and anti-hypertensive metabolomics of different extraction methods of the Uncaria rhynchophylla Scrophularia Formula. J Pharm Biomed Anal 2023; 233:115464. [PMID: 37209496 DOI: 10.1016/j.jpba.2023.115464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Hypertension is one of the most challenging public health problems worldwide. Previous studies suggested that the Uncaria rhynchophylla Scrophularia Formula (URSF), a medical institution preparation of the affiliated Hospital of Shandong University of Traditional Chinese Medicine, is effective for essential hypertension. However, the efficacy of URSF for hypertension remains unclear. We aimed to clarify the anti-hypertensive mechanism of the URSF. The material basis of URSF was identified by the LC-MS. We also evaluated the antihypertensive efficacy of URSF on SHR rats by body weight, blood pressure and biochemical indicators. The LC-MS spectrometry-based serum non-targeted metabolomics was used to seek potential biomarkers and relevant pathways for URSF in the treatment of SHR rats. 56 biomarkers were metabolically disturbed in SHR rats in the model group compared with the control group. After URSF intervention, 13 biomarkers showed a recovery in the optimal method compared with the other three groups. We identified 3 metabolic pathways in which URSF is involved: the arachidonic acid metabolism pathway, the niacin and nicotinamide metabolism pathway, and the purine metabolism pathway. These discoveries offer a basis for the study of URSF for the treatment of hypertension.
Collapse
Affiliation(s)
- Haichao Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihua Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinlei Liu
- Shandong Gujinzhong Medicine Technology Co., Ltd, Jinan 250104, China
| | - Hao Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenqing Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
4
|
Altaie AM, Mohammad MG, Madkour MI, Shakartalla SB, Jayakumar MN, K G AR, Halwani R, Samsudin AR, Hamoudi RA, Soliman SSM. The Essential Role of 17-Octadecynoic Acid in the Pathogenesis of Periapical Abscesses. J Endod 2023; 49:169-177.e3. [PMID: 36528175 DOI: 10.1016/j.joen.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Periapical abscesses are 1 of the most frequent pathologic lesions in the alveolar bone. Recently, we have identified 17-octadecynoic acid (17-ODYA) as the highest unique metabolite in periapical abscesses. Therefore, the aim of this study was to investigate the immunologic and pathophysiological roles of this metabolite in the initiation and development of periapical abscesses. METHODS Periodontal ligament fibroblasts and peripheral blood mononuclear cells were treated with 17-ODYA. Gene expression analysis and interleukin (IL)-8 release were determined using quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophage polarization and cytokine release were also determined using flow cytometry and Luminex bioassay (R&D Systems, Minneapolis, MN), respectively. RESULTS In periodontal ligament fibroblasts, 17-ODYA caused significant (P < .0001) up-regulation of IL-1α, IL-1β, IL-6, matrix metalloproteinase-1, and monocyte chemoattractant protein-1 at 10 μmol/L after 6 days of treatment and up-regulation of platelet-derived growth factor alpha and vascular endothelial growth factor alpha at all tested concentrations after 2 days of treatment. In peripheral blood mononuclear cells, 17-ODYA significantly increased the expression of IL-1α, IL-1β, IL-6, matrix metalloproteinase-1, and monocyte chemoattractant protein-1 at 10 μmol/L (P < .0001) and vascular endothelial growth factor alpha and platelet-derived growth factor alpha at 1 μmol/L 17-ODYA (P < .0001). 17-ODYA polarized macrophages toward a proinflammatory phenotype (M1) and suppressed the release of pro- and anti-inflammatory cytokines. 17-ODYA significantly enhanced the release of IL-8. CONCLUSIONS This study was the first to identify the pathologic role of 17-ODYA in the development of periapical abscesses. The results of this study are important in shedding light on the pathogenesis of periapical abscesses in relation to microbial metabolites.
Collapse
Affiliation(s)
- Alaa M Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad G Mohammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed I Madkour
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Sarra B Shakartalla
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aghila Rani K G
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rabih Halwani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - A R Samsudin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat A Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Division of Surgery and Interventional Science, University College London, London, United Kingdom.
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
5
|
Froogh G, Garcia V, Laniado Schwartzman M. The CYP/20-HETE/GPR75 axis in hypertension. ADVANCES IN PHARMACOLOGY 2022; 94:1-25. [PMID: 35659370 PMCID: PMC10123763 DOI: 10.1016/bs.apha.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a bioactive lipid generated from the ω-hydroxylation of arachidonic acid (AA) by enzymes of the cytochrome P450 (CYP) family, primarily the CYP4A and CYP4F subfamilies. 20-HETE is most notably identified as a modulator of vascular tone, regulator of renal function, and a contributor to the onset and development of hypertension and cardiovascular disease. 20-HETE-mediated signaling promotes hypertension by sensitizing the vasculature to constrictor stimuli, inducing endothelial dysfunction, and potentiating vascular inflammation. These bioactions are driven by the activation of the G-protein coupled receptor 75 (GPR75), a 20-HETE receptor (20HR). Given the capacity of 20-HETE signaling to drive pro-hypertensive mechanisms, the CYP/20-HETE/GPR75 axis has the potential to be a significant therapeutic target for the treatment of hypertension and cardiovascular diseases associated with increases in blood pressure. In this chapter, we review 20-HETE-mediated cellular mechanisms that promote hypertension, highlight important data in humans such as genetic variants in the CYP genes that potentiate 20-HETE production and describe recent findings in humans with 20HR/GPR75 mutations. Special emphasis is given to the 20HR and respective receptor blockers that have the potential to pave a path to translational and clinical studies for the treatment of 20-HETE-driven hypertension, and obesity/metabolic syndrome.
Collapse
|
6
|
Drummond HA. What Evolutionary Evidence Implies About the Identity of the Mechanoelectrical Couplers in Vascular Smooth Muscle Cells. Physiology (Bethesda) 2021; 36:292-306. [PMID: 34431420 DOI: 10.1152/physiol.00008.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Loss of pressure-induced vasoconstriction increases susceptibility to renal and cerebral vascular injury. Favored paradigms underlying initiation of the response include transient receptor potential channels coupled to G protein-coupled receptors or integrins as transducers. Degenerin channels may also mediate the response. This review addresses the 1) evolutionary role of these molecules in mechanosensing, 2) limitations to identifying mechanosensitive molecules, and 3) paradigm shifting molecular model for a VSMC mechanosensor.
Collapse
Affiliation(s)
- Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
7
|
Chen L, Tang S, Zhang FF, Garcia V, Falck JR, Schwartzman ML, Arbab AS, Guo AM. CYP4A/20-HETE regulates ischemia-induced neovascularization via its actions on endothelial progenitor and preexisting endothelial cells. Am J Physiol Heart Circ Physiol 2019; 316:H1468-H1479. [PMID: 30951365 PMCID: PMC6620690 DOI: 10.1152/ajpheart.00690.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) was recently identified as a novel contributor of ischemia-induced neovascularization based on the key observation that pharmacological interferences of CYP4A/20-HETE decrease ischemic neovascularization. The objective of the present study is to examine whether the underlying cellular mechanisms involve endothelial progenitor cells (EPCs) and preexisting endothelial cells (ECs). We found that ischemia leads to a time-dependent increase of cyp4a12 expression and 20-HETE production, which are endothelial in origin, using immunofluorescent microscopy, Western blot analysis, and LC-MS/MS. This is accompanied by increases in the tissue stromal cell-derived factor-1α (SDF-1α) expressions as well as SDF-1α plasma levels, EPC mobilization from bone marrow, and subsequent homing to ischemic tissues. Pharmacological interferences of CYP4A/20-HETE with a 20-HETE synthesis inhibitor, dibromo-dodecenyl-methylsulfimide (DDMS), or a 20-HETE antagonist, N-(20-hydroxyeicosa-6(Z), 15(Z)-dienoyl) glycine (6, 15-20-HEDGE), significantly attenuated these increases. Importantly, we also determined that 20-HETE plays a novel role in maintaining EPC functions and increasing the expression of Oct4, Sox2, and Nanog, which are indicative of increased progenitor cell stemness. Flow cytometric analysis revealed that pharmacological interferences of CYP4A/20-HETE decrease the EPC population in culture, whereas 20-HETE increases the cultured EPC population. Furthermore, ischemia also markedly increased the proliferation, oxidative stress, and ICAM-1 expression in the preexisting EC in the hindlimb gracilis muscles. We found that these increases were markedly negated by DDMS and 6, 15-20-HEDGE. Taken together, CYP4A/20-HETE regulates ischemia-induced compensatory neovascularization via its combined actions on promoting EPC and local preexisting EC responses that are associated with increased neovascularization. NEW & NOTEWORTHY CYP4A/20-hydroxyeicosatetraenoic acid (20-HETE) was recently discovered as a novel contributor of ischemia-induced neovascularization. However, the underlying molecular and cellular mechanisms are completely unknown. Here, we show that CYP4A/20-HETE regulates the ischemic neovascularization process via its combined actions on both endothelial progenitor cells (EPCs) and preexisting endothelial cells. Moreover, this is the first study, to the best of our knowledge, that associates CYP4A/20-HETE with EPC differentiation and stemness.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center , Guangzhou , People's Republic of China
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Samantha Tang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Frank F Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - John R Falck
- University of Texas Southwestern Medical Center , Dallas, Texas
| | | | - Ali S Arbab
- Cancer Center, Augusta University , Augusta, Georgia
| | - Austin M Guo
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
8
|
Zhang C, Booz GW, Yu Q, He X, Wang S, Fan F. Conflicting roles of 20-HETE in hypertension and renal end organ damage. Eur J Pharmacol 2018; 833:190-200. [PMID: 29886242 PMCID: PMC6057804 DOI: 10.1016/j.ejphar.2018.06.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
20-HETE is a cytochrome P450-derived metabolite of arachidonic acid that has both pro- and anti-hypertensive actions that result from modulation of vascular and kidney function. In the vasculature, 20-HETE sensitizes vascular smooth muscle cells to constrictor stimuli and increases myogenic tone. By promoting smooth muscle cell migration and proliferation, as well as by acting on the vascular endothelium to cause endothelial dysfunction, angiotensin converting enzyme (ACE) expression, and inflammation, 20-HETE contributes to adverse vascular remodeling and increased blood pressure. A G protein-coupled receptor was recently identified as the effector for the vascular actions of 20-HETE. In addition, evidence suggests that 20-HETE contributes to hypertension via positive regulation of the renin-angiotensin-aldosterone system, as well as by causing renal fibrosis. On the other hand, 20-HETE exerts anti-hypertensive actions by inhibiting sodium reabsorption by the kidney in both the proximal tubule and thick ascending limb of Henle. This review discusses the pro- and anti-hypertensive roles of 20-HETE in the pathogenesis of hypertension-associated renal disease, the association of gene polymorphisms of cytochrome P450 enzymes with the development of hypertension and renal end organ damage in humans, and 20-HETE related pharmaceutical agents.
Collapse
MESH Headings
- Animals
- Antihypertensive Agents/metabolism
- Antihypertensive Agents/pharmacology
- Arachidonic Acid/metabolism
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Fibrosis
- Humans
- Hydroxyeicosatetraenoic Acids/pharmacology
- Hydroxyeicosatetraenoic Acids/physiology
- Hypertension/complications
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/physiopathology
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Peptidyl-Dipeptidase A/metabolism
- Polymorphism, Genetic
- Receptors, G-Protein-Coupled/metabolism
- Renal Elimination/physiology
- Renal Insufficiency/drug therapy
- Renal Insufficiency/etiology
- Renal Insufficiency/metabolism
- Renal Insufficiency/physiopathology
- Renin-Angiotensin System/physiology
- Sodium/metabolism
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Chao Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA; Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Qing Yu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaochen He
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA.
| |
Collapse
|
9
|
Abstract
20-HETE, the ω-hydroxylation product of arachidonic acid catalyzed by enzymes of the cytochrome P450 (CYP) 4A and 4F gene families, is a bioactive lipid mediator with potent effects on the vasculature including stimulation of smooth muscle cell contractility, migration and proliferation as well as activation of endothelial cell dysfunction and inflammation. Clinical studies have shown elevated levels of plasma and urinary 20-HETE in human diseases and conditions such as hypertension, obesity and metabolic syndrome, myocardial infarction, stroke, and chronic kidney diseases. Studies of polymorphic associations also suggest an important role for 20-HETE in hypertension, stroke and myocardial infarction. Animal models of increased 20-HETE production are hypertensive and are more susceptible to cardiovascular injury. The current review summarizes recent findings that focus on the role of 20-HETE in the regulation of vascular and cardiac function and its contribution to the pathology of vascular and cardiac diseases.
Collapse
Affiliation(s)
- Petra Rocic
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY, United States
| | | |
Collapse
|
10
|
Plenty NL, Faulkner JL, Cotton J, Spencer SK, Wallace K, LaMarca B, Murphy SR. Arachidonic acid metabolites of CYP4A and CYP4F are altered in women with preeclampsia. Prostaglandins Other Lipid Mediat 2018; 136:15-22. [DOI: 10.1016/j.prostaglandins.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/24/2018] [Accepted: 03/01/2018] [Indexed: 01/25/2023]
|
11
|
El-Sherbeni AA, El-Kadi AOS. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev 2016; 49:1-17. [DOI: 10.1080/03602532.2016.1257021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Fan F, Ge Y, Lv W, Elliott MR, Muroya Y, Hirata T, Booz GW, Roman RJ. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed) 2016; 21:1427-63. [PMID: 27100515 DOI: 10.2741/4465] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Matthew R Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Yoshikazu Muroya
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan
| | - Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216,
| |
Collapse
|
13
|
20-HETE contributes to ischemia-induced angiogenesis. Vascul Pharmacol 2016; 83:57-65. [PMID: 27084395 DOI: 10.1016/j.vph.2016.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 01/26/2023]
Abstract
Angiogenesis is an important adaptation for recovery from peripheral ischemia. Here, we determined whether 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia-induced angiogenesis and assessed its underlying molecular and cellular mechanisms using a mouse hindlimb-ischemia angiogenesis model. Hindlimb blood flow was measured by Laser Doppler Perfusion Imaging and microvessel density was determined by CD31 and tomato lectin staining. We found that systemic and local administration of a 20-HETE synthesis inhibitor, DDMS, or a 20-HETE antagonist, 6,15-20-HEDGE significantly reduced blood flow recovery and microvessel formation in response to ischemia. 20-HETE production, measured by LC/MS/MS, was markedly increased in ischemic muscles (91±11 vs. 8±2pg/mg in controls), which was associated with prominent upregulation of the 20-HETE synthase, CYP4A12. Immunofluorescence co-localized increased CYP4A12 expression in response to ischemia to CD31-positive EC in the ischemic hindlimb microvessels. We further showed that ischemia increased HIF-1α, VEGF, and VEGFR2 expression in gracilis muscles and that these increases were negated by DDMS and 6,15-20-HEDGE. Lastly, we showed that ERK1/2 of MAPK is a component of 20-HETE regulated ischemic angiogenesis. Taken together, these data indicate that 20-HETE is a critical contributor of ischemia-induced angiogenesis in vivo.
Collapse
|
14
|
El-Sherbeni AA, El-Kadi AOS. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism. Mol Pharm 2016; 13:1278-88. [PMID: 26918316 DOI: 10.1021/acs.molpharmaceut.5b00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
15
|
Lakhkar A, Dhagia V, Joshi SR, Gotlinger K, Patel D, Sun D, Wolin MS, Schwartzman ML, Gupte SA. 20-HETE-induced mitochondrial superoxide production and inflammatory phenotype in vascular smooth muscle is prevented by glucose-6-phosphate dehydrogenase inhibition. Am J Physiol Heart Circ Physiol 2016; 310:H1107-17. [PMID: 26921441 DOI: 10.1152/ajpheart.00961.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
20-Hydroxyeicosatetraeonic acid (20-HETE) produced by cytochrome P-450 monooxygenases in NADPH-dependent manner is proinflammatory, and it contributes to the pathogenesis of systemic and pulmonary hypertension. In this study, we tested the hypothesis that inhibition of glucose-6-phosphate dehydrogenase (G6PD), a major source of NADPH in the cell, prevents 20-HETE synthesis and 20-HETE-induced proinflammatory signaling that promotes secretory phenotype of vascular smooth muscle cells. Lipidomic analysis indicated that G6PD inhibition and knockdown decreased 20-HETE levels in pulmonary arteries as well as 20-HETE-induced 1) mitochondrial superoxide production, 2) activation of mitogen-activated protein kinase 1 and 3, 3) phosphorylation of ETS domain-containing protein Elk-1 that activate transcription of tumor necrosis factor-α gene (Tnfa), and 4) expression of tumor necrosis factor-α (TNF-α). Moreover, inhibition of G6PD increased protein kinase G1α activity, which, at least partially, mitigated superoxide production and Elk-1 and TNF-α expression. Additionally, we report here for the first time that 20-HETE repressed miR-143, which suppresses Elk-1 expression, and miR-133a, which is known to suppress synthetic/secretory phenotype of vascular smooth muscle cells. In summary, our findings indicate that 20-HETE elicited mitochondrial superoxide production and promoted secretory phenotype of vascular smooth muscle cells by activating MAPK1-Elk-1, all of which are blocked by inhibition of G6PD.
Collapse
Affiliation(s)
- Anand Lakhkar
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Sachindra Raj Joshi
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Katherine Gotlinger
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Dhara Patel
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and
| | - Dong Sun
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and
| | - Michael S Wolin
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and Translational Centre for Pulmonary Hypertension, New York Medical College School of Medicine, Valhalla, New York
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York; Translational Centre for Pulmonary Hypertension, New York Medical College School of Medicine, Valhalla, New York
| |
Collapse
|
16
|
Abstract
20-Hydroxy-5, 8, 11, 14-eicosatetraenoic acid (20-HETE) is a cytochrome P450 (CYP)-derived omega-hydroxylation metabolite of arachidonic acid. 20-HETE has been shown to play a complex role in blood pressure regulation. In the kidney tubules, 20-HETE inhibits sodium reabsorption and promotes natriuresis, thus, contributing to antihypertensive mechanisms. In contrast, in the microvasculature, 20-HETE has been shown to play a pressor role by sensitizing smooth muscle cells to constrictor stimuli and increasing myogenic tone, and by acting on the endothelium to further promote endothelial dysfunction and endothelial activation. In addition, 20-HETE induces endothelial angiotensin-converting enzyme, thus, setting forth a potential feed forward prohypertensive mechanism by stimulating the renin-angiotensin-aldosterone system. With the advancement of gene sequencing technology, numerous polymorphisms in the regulatory coding and noncoding regions of 20-HETE-producing enzymes, CYP4A11 and CYP4F2, have been associated with hypertension. This in-depth review article discusses the biosynthesis and function of 20-HETE in the cardiovascular system, the pharmacological agents that affect 20-HETE action, and polymorphisms of CYP enzymes that produce 20-HETE and are associated with systemic hypertension in humans.
Collapse
|
17
|
El-Sherbeni AA, El-Kadi AOS. Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: the involvement of CYP1As. Drug Metab Dispos 2014; 42:1498-507. [PMID: 24969701 DOI: 10.1124/dmd.114.057836] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytochrome P450 (P450) enzymes mediate arachidonic acid (AA) oxidation to several biologically active metabolites. Our aims in this study were to characterize AA metabolism by different recombinant rat P450 enzymes and to identify new targets for modulating P450-AA metabolism in vivo. A liquid chromatography-mass spectrometry method was developed and validated for the simultaneous measurements of AA and 15 of its P450 metabolites. CYP1A1, CYP1A2, CYP2B1, CYP2C6, and CYP2C11 were found to metabolize AA with high catalytic activity, and CYP2A1, CYP2C13, CYP2D1, CYP2E1, and CYP3A1 had lower activity. CYP1A1 and CYP1A2 produced ω-1→4 hydroxyeicosatetraenoic acids (HETEs) as 88.7 and 62.7%, respectively, of the total metabolites formed. CYP2C11 produced epoxyeicosatrienoic acids (EETs) as 61.3%, and CYP2C6 produced midchain HETEs and EETs as 48.3 and 29.4%, respectively, of the total metabolites formed. The formation of CYP1A1, CYP1A2, CYP2C6, and CYP2C11 major metabolites followed an atypical kinetic profile of substrate inhibition. CYP1As inhibition by α-naphthoflavone or anti-CYP1As antibodies significantly reduced ω-1→4 HETE formation in the lungs and liver, whereas CYP1As induction by 3-methylcholanthrene resulted in a significant increase in ω-1→4 HETEs formation in the heart, lungs, kidney, and livers by 370, 646, 532, and 848%, respectively. In conclusion, our results suggest that CYP1As and CYP2Cs are major players in the metabolism of AA. The significant contribution of CYP1As to AA metabolism and their strong inducibility suggest their possible use as targets for the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
LU SHUAIJUN, ZHU CHANGLING, LONG ANXIONG, TAN LONGYI, LI QIAN, ZHU YULI. Effect of 20-hydroxyeicosatetraenoic acid on biological behavior of human villous trophoblasts and uterine vascular smooth muscle cells. Mol Med Rep 2014; 9:1889-94. [DOI: 10.3892/mmr.2014.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/12/2014] [Indexed: 11/05/2022] Open
|
19
|
Liu Y, Wang D, Wang H, Qu Y, Xiao X, Zhu Y. The protective effect of HET0016 on brain edema and blood–brain barrier dysfunction after cerebral ischemia/reperfusion. Brain Res 2014; 1544:45-53. [DOI: 10.1016/j.brainres.2013.11.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/22/2013] [Accepted: 11/29/2013] [Indexed: 12/20/2022]
|
20
|
El-Sherbeni AA, El-Kadi AOS. Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol 2013; 87:456-66. [PMID: 24300133 DOI: 10.1016/j.bcp.2013.11.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 01/01/2023]
Abstract
Cardiac hypertrophy is a major risk factor for many serious heart diseases. Recent data demonstrated the role of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites in cardiovascular pathophysiology. In the current study our aim was to determine the aberrations in CYP-mediated AA metabolism in the heart during cardiac hypertrophy. Pressure overload cardiac hypertrophy was induced in Sprague Dawley rats using the descending aortic constriction procedure. Five weeks post-surgery, the cardiac levels of AA metabolites were determined in hypertrophied and normal hearts. In addition, the formation rate of AA metabolites, as well as, CYP expression in cardiac microsomal fraction was also determined. AA metabolites were measured by liquid chromatography-electrospray ionization-mass spectroscopy, whereas, the expression of CYPs was determined by Western blot analysis. Non-parametric analysis was performed to examine the association between metabolites formation and CYP expressions. Our results showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), and 5-, 12-, 15-, and 20-hydroxyeicosatetraenoic acids (HETEs) levels were increased, whereas, 19-HETE formation was decreased in hypertrophied hearts. The increase in EETs was linked to CYP2B2. On the other hand, CYP1B1 and CYP2J3 were involved in mid-chain HETE metabolism, whereas, CYP4A2/3 inhibition was involved in the decrease in 19-HETE formation in hypertrophied hearts. In conclusion, CYP1B1 played cardiotoxic role, whereas, CYP2B2, CYP2J3 and CYP4A2/3 played cardioprotective roles during pressure overload-induced cardiac hypertrophy. These CYP can be valid targets for the development of drugs to treat and prevent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| |
Collapse
|
21
|
Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 2013; 45:173-95. [PMID: 23600686 DOI: 10.3109/03602532.2012.754460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A plethora of studies have demonstrated the expression of cytochrome P450 (CYP) and soluble epoxide hydrolase (sEH) enzymes in the heart and other cardiovascular tissues. In addition, the expression of these enzymes is altered during several cardiovascular diseases (CVDs), including cardiac hypertrophy (CH). The alteration in CYP and sEH expression results in derailed CYP-mediated arachidonic acid (AA) metabolism. In animal models of CH, it has been reported that there is an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and a decrease in epoxyeicosatrienoic acids (EETs). Further, inhibiting 20-HETE production by CYP ω-hydroxylase inhibitors and increasing EET stability by sEH inhibitors have been proven to protect against CH as well as other CVDs. Therefore, CYP-mediated AA metabolites 20-HETE and EETs are potential key players in the pathogenesis of CH. Some studies have investigated the molecular mechanisms by which these metabolites mediate their effects on cardiomyocytes and vasculature leading to pathological CH. Activation of several intracellular signaling cascades, such as nuclear factor of activated T cells, nuclear factor kappa B, mitogen-activated protein kinases, Rho-kinases, Gp130/signal transducer and activator of transcription, extracellular matrix degradation, apoptotic cascades, inflammatory cytokines, and oxidative stress, has been linked to the pathogenesis of CH. In this review, we discuss how 20-HETE and EETs can affect these signaling pathways to result in, or protect from, CH, respectively. However, further understanding of these metabolites and their effects on intracellular cascades will be required to assess their potential translation to therapeutic approaches for the prevention and/or treatment of CH and heart failure.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Center for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
22
|
Gandhi AV, Saxena S, Relles D, Sarosiek K, Kang CY, Chipitsyna G, Sendecki JA, Yeo CJ, Arafat HA. Differential expression of cytochrome P450 omega-hydroxylase isoforms and their association with clinicopathological features in pancreatic ductal adenocarcinoma. Ann Surg Oncol 2013; 20 Suppl 3:S636-43. [PMID: 23846787 DOI: 10.1245/s10434-013-3128-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND The cytochrome P450 (CYP) superfamily consists of enzymes that catalyze the oxidation of lipids, steroids, and drugs. In particular, the CYP4 family plays an essential role in lipid metabolism by the ω-hydroxylation of terminal ends of fatty acids. Disturbance of this system has been associated with increased angiogenesis, proliferation, and metastasis of several cancers. This study aimed to detect the expression of CYP4 isoforms (CYP4A11, CYP4F2, CYP4F3) in pancreatic ductal adenocarcinoma (PDA) and their association with clinicopathological features. METHODS Pancreatic specimens were collected from 73 patients who underwent surgical resection at the Thomas Jefferson University Hospital. Quantitative polymerase chain reaction was used to examine the cytochrome P450 isoforms in PDA (n = 62), adjacent-normal (n = 30), and benign tissues (n = 11). Logistic regression models were used to analyze gene expression among tissue types. Spearman rank correlations were calculated for isoform expression and for age. Differences in expression by gender were assessed via t test. Other clinicopathological variables (diabetes, smoking, obesity, T stage, perineural invasion, nodal status) were analyzed by Wilcoxon rank sum. RESULTS CYP4 expression for isoforms was significantly higher in PDA tissues versus matched-adjacent tissues (p < 0.01). PDA tumors expressed significantly higher levels of CYP4F2 and CYP4F3 when compared to benign lesions (p < 0.01). Significant associations were found between low levels of CYP4F2 and CYP4F3 and increased age of PDA patients. Interestingly, all isoforms were expressed at higher levels in male patients. CONCLUSIONS Transcriptional upregulation of cytochrome P450 ω-hydroxylase suggests that these enzymes have the potential to be used as distinguishing markers in pancreatic pathology.
Collapse
Affiliation(s)
- Ankit V Gandhi
- Department of Surgery, Jefferson Pancreatic Biliary and Related Cancer Center, Thomas Jefferson University Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ding Y, Wu CC, Garcia V, Dimitrova I, Weidenhammer A, Joseph G, Zhang F, Manthati VL, Falck JR, Capdevila JH, Schwartzman ML. 20-HETE induces remodeling of renal resistance arteries independent of blood pressure elevation in hypertension. Am J Physiol Renal Physiol 2013; 305:F753-63. [PMID: 23825080 DOI: 10.1152/ajprenal.00292.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 (Cyp)-derived arachidonic acid metabolite that has been shown to increase smooth muscle contractions and proliferation, stimulate endothelial dysfunction and activation, and promote hypertension. We examined if 20-HETE contributes to microvascular remodeling in hypertension. In Sprague-Dawley rats, administration of the 20-HETE biosynthesis inhibitor HET0016 or the 20-HETE antagonist N-20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) prevented 5α-dihydrotestosterone (DHT)-induced increases in blood pressure as well as abrogated DHT-induced increases in the media-to-lumen ratio (M/L), media thickness, and collagen IV deposition in renal interlobar arteries. Reserpine prevented blood pressure elevation in DHT-treated rats but did not affect microvascular remodeling (M/L, media thickness, and collagen deposition); under these conditions, treatment with the 20-HETE antagonist attenuated microvascular remodeling, suggesting that 20-HETE contributes to DHT-induced vascular remodeling independent of blood pressure elevation. In Cyp4a14(-/-) mice, which display androgen-driven and 20-HETE-dependent hypertension, treatment with the 20-HETE antagonist abolished remodeling of renal resistance arteries measured as media thickness (24 ± 1 vs. 15 ± 1 μm) and M/L (0.29 ± 0.03 vs. 0.17 ± 0.01). Moreover, in Cyp4a12 transgenic mice in which the expression of Cyp4a12-20-HETE synthase is driven by a tetracycline-sensitive promoter, treatment with doxycycline resulted in blood pressure elevation (140 ± 4 vs. 92 ± 5 mmHg) and a significant increase in remodeling of renal resistance arteries (media thickness: 23 ± 1 vs. 16 ± 1 μm; M/L: 0.39 ± 0.04 vs. 0.23 ± 0.02); these increases were abrogated by cotreatment with 20-HEDE. This study demonstrated that 20-HETE is a key regulator of microvascular remodeling in hypertension; its effect is independent of blood pressure elevation and androgen levels.
Collapse
Affiliation(s)
- Yan Ding
- 1Department of Pharmacology, New York Medical College, 15 Dana Road, BSB Rm. 530, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Orozco LD, Liu H, Perkins E, Johnson DA, Chen BB, Fan F, Baker RC, Roman RJ. 20-Hydroxyeicosatetraenoic acid inhibition attenuates balloon injury-induced neointima formation and vascular remodeling in rat carotid arteries. J Pharmacol Exp Ther 2013; 346:67-74. [PMID: 23658377 PMCID: PMC3684845 DOI: 10.1124/jpet.113.203844] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/07/2013] [Indexed: 02/02/2023] Open
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE) contributes to the migration and proliferation of vascular smooth muscle cells (VSMC) in vitro, but there are few studies that address its effects on vascular remodeling in vivo. The present study determined whether inhibition of 20-HETE production attenuates intimal hyperplasia (IH) and vascular remodeling after balloon injury (BI). Sprague Dawley rats underwent BI of the common carotid artery and were treated with vehicle, 1-aminobenzotriazole (ABT, 50 mg/kg i.p. once daily), or HET0016 (N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine) (2 mg/kg s.c. twice daily) for 14 days. Fourteen days after BI and treatment, the animals underwent carotid angiography, and the arteries were harvested for morphometric, enzymatic and immunohistochemical analysis. There was a 96% reduction of angiographic stenosis in the rats treated with 1-ABT. There was a 61 and 66% reduction of the intima/media area ratios in the 1-ABT and HET0016 treated rats compared with the vehicle-treated group. 20-HETE levels were elevated in BI carotid arteries, and the levels were markedly suppressed in the groups treated with 1-ABT and HET0016 (P < 0.001). Immunostaining revealed that the expression of CYP4A enzyme was markedly increased in the neointima of BI arteries, and it colocalized with the expression of smooth muscle-specific actin, indicating increased proliferation of VSMC. An increase in the expression of CYP4A and the production of 20-HETE contributes to neointimal growth in BI rat carotid arteries. Systemic administration 1-ABT or HET0016 prevents the increase in 20-HETE levels and attenuates VSMC migration and proliferation, resulting in a marked reduction in IH and vascular remodeling after endothelial injury.
Collapse
MESH Headings
- Amidines/therapeutic use
- Angioplasty, Balloon, Coronary/adverse effects
- Animals
- Carotid Artery Injuries/drug therapy
- Carotid Artery Injuries/etiology
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/physiopathology
- Carotid Artery, Common/drug effects
- Carotid Artery, Common/metabolism
- Carotid Artery, Common/pathology
- Carotid Stenosis/etiology
- Carotid Stenosis/metabolism
- Carotid Stenosis/pathology
- Carotid Stenosis/prevention & control
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cytochrome P-450 CYP4A/antagonists & inhibitors
- Cytochrome P-450 CYP4A/metabolism
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P450 Family 4
- Disease Models, Animal
- Enzyme Inhibitors/therapeutic use
- Hydroxyeicosatetraenoic Acids/antagonists & inhibitors
- Hydroxyeicosatetraenoic Acids/metabolism
- Hyperplasia
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Neointima/etiology
- Neointima/prevention & control
- Rats
- Rats, Sprague-Dawley
- Triazoles/therapeutic use
- Tunica Intima/drug effects
- Tunica Intima/injuries
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Ludwig D Orozco
- Department of Neurosurgery, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS 39216, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Alexanian A, Sorokin A. Targeting 20-HETE producing enzymes in cancer - rationale, pharmacology, and clinical potential. Onco Targets Ther 2013; 6:243-55. [PMID: 23569388 PMCID: PMC3615879 DOI: 10.2147/ott.s31586] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies demonstrate that lipid mediator 20-Hydroxyeicosatetraenoic acid (20-HETE) synthesis and signaling are associated with the growth of cancer cells in vitro and in vivo. Stable 20-HETE agonists promote the proliferation of cancer cells, whereas selective inhibitors of the 20-HETE-producing enzymes of the Cytochrome (CYP450)4A and CYP4F families can block the proliferation of glioblastoma, prostate, renal cell carcinoma, and breast cancer cell lines. A recent observation that the expression of CYP4A/4F genes was markedly elevated in thyroid, breast, colon, and ovarian cancer further highlights the significance of 20-HETE-producing enzymes in the progression of different types of human cancer. These findings provide the rationale for targeting 20-HETE-producing enzymes in human cancers and set the basis for the development of novel therapeutic strategies for anticancer treatment.
Collapse
Affiliation(s)
- Anna Alexanian
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
26
|
Iida M, Tanabe K, Matsushima-Nishiwaki R, Kozawa O, Iida H. Adenosine monophosphate-activated protein kinase regulates platelet-derived growth factor-BB-induced vascular smooth muscle cell migration. Arch Biochem Biophys 2013; 530:83-92. [DOI: 10.1016/j.abb.2012.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/26/2012] [Accepted: 12/17/2012] [Indexed: 11/28/2022]
|
27
|
Kim DH, Puri N, Sodhi K, Falck JR, Abraham NG, Shapiro J, Schwartzman ML. Cyclooxygenase-2 dependent metabolism of 20-HETE increases adiposity and adipocyte enlargement in mesenchymal stem cell-derived adipocytes. J Lipid Res 2013; 54:786-793. [PMID: 23293373 PMCID: PMC3617952 DOI: 10.1194/jlr.m033894] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
20-Hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a product of the cytochrome
P450 (CYP)-catalyzed ω-hydroxylation of arachidonic acid, induces
oxidative stress and, in clinical studies, is associated with increased body
mass index (BMI) and the metabolic syndrome. This study was designed to examine
the effects of exogenous 20-HETE on mesenchymal stem cell (MSC)-derived
adipocytes. The expression levels of CYP4A11 and CYP4F2 (major 20-HETE synthases
in humans) in MSCs decreased during adipocyte differentiation; however,
exogenous administration of 20-HETE (0.1–1 μM) increased adipogenesis
in a dose-dependent manner in these cells (P < 0.05). The
inability of a 20-HETE analog to reproduce these effects suggested the
involvement of a metabolic product of 20-HETE in mediating its pro-adipogenic
effects. A cyclooxygenase (COX)-1 selective inhibitor enhanced, whereas a COX-2
selective or a dual COX-1/2 inhibitor attenuated adipogenesis induced by
20-HETE. The COX-derived metabolite of 20-HETE, 20-OH-PGE2, enhanced
adipogenesis and lipid accumulation in MSCs. The pro-adipogenic effects of
20-HETE and 20-OH-PGE2 resulted in the increased expression of the
adipogenic regulators PPARγ and β-catenin in MSC-derived adipocytes.
Taken together we show for the first time that 20-HETE-derived COX-2-dependent
20-OH-PGE2 enhances mature inflamed adipocyte hypertrophy in MSC
undergoing adipogenic differentiation.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Nitin Puri
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - John R Falck
- Department of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center of Dallas, Dallas, TX
| | - Nader G Abraham
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Joseph Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | | |
Collapse
|
28
|
Shinde DD, Kim KB, Oh KS, Abdalla N, Liu KH, Bae SK, Shon JH, Kim HS, Kim DH, Shin JG. LC–MS/MS for the simultaneous analysis of arachidonic acid and 32 related metabolites in human plasma: Basal plasma concentrations and aspirin-induced changes of eicosanoids. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:113-21. [DOI: 10.1016/j.jchromb.2012.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 11/25/2022]
|
29
|
Cheng J, Garcia V, Ding Y, Wu CC, Thakar K, Falck JR, Ramu E, Schwartzman ML. Induction of angiotensin-converting enzyme and activation of the renin-angiotensin system contribute to 20-hydroxyeicosatetraenoic acid-mediated endothelial dysfunction. Arterioscler Thromb Vasc Biol 2012; 32:1917-24. [PMID: 22723444 DOI: 10.1161/atvbaha.112.248344] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE 20-hydroxyeicosatetraenoic acid (20-HETE) promotes endothelial dysfunction by uncoupling endothelial NO synthase, stimulating O(2)(-) production, and reducing NO bioavailability. Moreover, 20-HETE-dependent vascular dysfunction and hypertension are associated with upregulation of the renin-angiotensin system This study was undertaken to examine the contribution of renin-angiotensin system to 20-HETE actions in the vascular endothelium. METHODS AND RESULTS In endothelial cells, 20-HETE induced angiotensin-converting enzyme (ACE) mRNA levels and increased ACE protein and activity by 2- to 3-fold; these effects were negated with addition of the 20-HETE antagonist, 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20 HEDE). 20-HETE induced ACE expression was protein kinase C independent and epidermal growth factor receptor tyrosine kinase and IκB kinase β dependent. ACE short interfering RNA abolished 20-HETE-mediated inhibition of NO production and stimulation of O(2)(-) generation, whereas angiotensin II type 1 receptor short interfering RNA attenuated these effects by 40%. 20-HETE-stimulated O(2)(-) production was negated by 20-HEDE and was attenuated by lisinopril and losartan. Importantly, 20-HETE-mediated impairment of acetylcholine-induced relaxation in rat renal interlobar arteries was also attenuated by lisinopril and losartan. CONCLUSIONS These results indicate that ACE and angiotensin II type 1 receptor activation contribute to 20-HETE-mediated endothelial cell and vascular dysfunction and further enforce the notion that excessive production of 20-HETE within the vasculature leads to hypertension via mechanisms that include the induction of endothelial ACE, thus, perpetuating an increase in vascular angiotensin which, together with 20-HETE, promotes vascular dysfunction.
Collapse
Affiliation(s)
- Jennifer Cheng
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen L, Ackerman R, Guo AM. 20-HETE in neovascularization. Prostaglandins Other Lipid Mediat 2011; 98:63-8. [PMID: 22227460 DOI: 10.1016/j.prostaglandins.2011.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/09/2011] [Accepted: 12/19/2011] [Indexed: 12/18/2022]
Abstract
Cytochrome P450 4A/F (CYP4A/F) converts arachidonic acid (AA) to 20-HETE by ω-hydroxylation. The contribution of 20-HETE to the regulation of myogenic response, blood pressure, and mitogenic actions has been well summarized. This review focuses on the emerging role of 20-HETE in physiological and pathological vascularization. 20-HETE has been shown to regulate vascular smooth muscle cells (VSMC) and endothelial cells (EC) by affecting their proliferation, migration, survival, and tube formation. Furthermore, the proliferation, migration, secretion of proangiogenic molecules (such as HIF-1α, VEGF, SDF-1α), and tube formation of endothelial progenitor cells (EPC) are stimulated by 20-HETE. These effects are mediated through c-Src- and EGFR-mediated downstream signaling pathways, including MAPK and PI3K/Akt pathways, eNOS uncoupling, and NOX/ROS system activation. Therefore, the CYP4A/F-20-HETE system may be a therapeutic target for the treatment of abnormal angiogenic diseases.
Collapse
Affiliation(s)
- Li Chen
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | |
Collapse
|
31
|
Jennings BL, Anderson LJ, Estes AM, Fang XR, Song CY, Campbell WB, Malik KU. Involvement of cytochrome P-450 1B1 in renal dysfunction, injury, and inflammation associated with angiotensin II-induced hypertension in rats. Am J Physiol Renal Physiol 2011; 302:F408-20. [PMID: 22088434 DOI: 10.1152/ajprenal.00542.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated the contribution of cytochrome P-450 1B1 (CYP1B1) to renal dysfunction and organ damage associated with ANG II-induced hypertension in rats. ANG II (300 ng·kg(-1)·min(-1)) or vehicle were infused for 2 wk, with daily injections of a selective CYP1B1 inhibitor, 2,4,3',5'-tetramethoxystilbene (TMS; 300 μg/kg ip), or its vehicle. ANG II increased blood pressure and renal CYP1B1 activity that were prevented by TMS. ANG II also increased water intake and urine output, decreased glomerular filtration rate, increased urinary Na(+) and K(+) excretion, and caused proteinuria, all of which were prevented by TMS. ANG II infusion caused hypertrophy, endothelial dysfunction, and increased reactivity of renal and interlobar arteries to vasoconstrictor agents and renal vascular resistance and interstitial fibrosis as indicated by accumulation of α-smooth muscle actin, fibronectin, and collagen, and inflammation as indicated by increased infiltration of CD-3(+) cells; these effects were inhibited by TMS. ANG II infusion also increased production of reactive oxygen species (ROS) and activities of NADPH oxidase, ERK1/2, p38 MAPK, and c-Src that were prevented by TMS. TMS alone had no effect on any of the above parameters. These data suggest that CYP1B1 contributes to the renal pathophysiological changes associated with ANG II-induced hypertension, most likely via increased ROS production and activation of ERK1/2, p38 MAPK, and c-Src and that CYP1B1 could serve as a novel target for treating renal disease associated with hypertension.
Collapse
Affiliation(s)
- Brett L Jennings
- Dept. of Pharmacology, College of Medicine, Univ. of Tennessee Health Science Center, 874 Union Ave., Memphis, TN 38163, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
The eicosanoids 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs), which are generated from the metabolism of arachidonic acid by cytochrome P450 (CYP) enzymes, possess a wide array of biological actions, including the regulation of blood flow to organs. 20-HETE and EETs are generated in various cell types in the brain and cerebral blood vessels, and contribute significantly to cerebral blood flow autoregulation and the coupling of regional brain blood flow to neuronal activity (neurovascular coupling). Investigations are beginning to unravel the molecular and cellular mechanisms by which these CYP eicosanoids regulate cerebral vascular function and the changes that occur in pathological states. Intriguingly, 20-HETE and the soluble epoxide hydrolase (sEH) enzyme that regulates EET levels have been explored as molecular therapeutic targets for cerebral vascular diseases. Inhibition of 20-HETE, or increasing EET levels by inhibiting the sEH enzyme, decreases cerebral damage following stroke. The improved outcome following cerebral ischaemia is a consequence of improving cerebral vascular structure or function and protecting neurons from cell death. Thus, the CYP eicosanoids are key regulators of cerebral vascular function and novel therapeutic targets for cardiovascular diseases and neurological disorders.
Collapse
|
33
|
Yu W, Chen L, Yang YQ, Falck JR, Guo AM, Li Y, Yang J. Cytochrome P450 ω-hydroxylase promotes angiogenesis and metastasis by upregulation of VEGF and MMP-9 in non-small cell lung cancer. Cancer Chemother Pharmacol 2010; 68:619-29. [PMID: 21120482 DOI: 10.1007/s00280-010-1521-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 11/03/2010] [Indexed: 12/31/2022]
Abstract
PURPOSE Cytochrome P450 (CYP) ω-hydroxylase, mainly consisting of CYP4A and CYP4F, converts arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE) that induces angiogenic responses in vivo and in vitro. The present study examined the role of CYP ω-hydroxylase in angiogenesis and metastasis of human non-small cell lung cancer (NSCLC). METHODS The effect of WIT003, a stable 20-HETE analog, on invasion was evaluated using a modified Boyden chamber in three NSCLC cell lines. A549 cells were transfected with CYP4A11 expression vector or exposed to CYP ω-hydroxylase inhibitor (HET0016) or 20-HETE antagonist (WIT002), and then ω-hydroxylation activity toward arachidonic acid and the levels of matrix metalloproteinases (MMPs) and VEGF were detected. The in vivo effects of CYP ω-hydroxylase were tested in established tumor xenografts and an experimental metastasis model in athymic mice. RESULTS Addition of WIT003 or overexpression of CYP4A11 with an associated increase in 20-HETE production significantly induced invasion and expression of VEGF and MMP-9. Treatment of A549 cells with HET0016 or WIT002 inhibited invasion with reduction in VEGF and MMP-9. The PI3 K or ERK inhibitors also attenuated expression of VEGF and MMP-9. Compared with control, CYP4A11 transfection significantly increased tumor weight, microvessel density (MVD), and lung metastasis by 2.5-fold, 2-fold, and 3-fold, respectively. In contrast, WIT002 or HET0016 decreased tumor volume, MVD, and spontaneous pulmonary metastasis occurrences. CONCLUSION CYP ω-hydroxylase promotes tumor angiogenesis and metastasis by upregulation of VEGF and MMP-9 via PI3 K and ERK1/2 signaling in human NSCLC cells.
Collapse
Affiliation(s)
- Wei Yu
- Department of Pharmacology, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Jennings BL, Sahan-Firat S, Estes AM, Das K, Farjana N, Fang XR, Gonzalez FJ, Malik KU. Cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiology. Hypertension 2010; 56:667-74. [PMID: 20805442 DOI: 10.1161/hypertensionaha.110.154518] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypertension is the leading cause of cardiovascular diseases, and angiotensin II is one of the major components of the mechanisms that contribute to the development of hypertension. However, the precise mechanisms for the development of hypertension are unknown. Our recent study showing that angiotensin II-induced vascular smooth muscle cell growth depends on cytochrome P450 1B1 led us to investigate its contribution to hypertension caused by this peptide. Angiotensin II was infused via miniosmotic pump into rats (150 ng/kg per minute) or mice (1000 μg/kg per day) for 13 days resulting in increased blood pressure, increased cardiac and vascular hypertrophy, increased vascular reactivity to vasoconstrictor agents, increased vascular reactive oxygen species production, and endothelial dysfunction in both species. The increase in blood pressure and associated pathophysiological changes were minimized by the cytochrome P450 1B1 inhibitor 2,3',4,5'-tetramethoxystilbene in both species and was markedly reduced in Cyp1b1(-/-) mice. These data suggest that cytochrome P450 1B1 contributes to angiotensin II-induced hypertension and associated pathophysiological changes. Moreover, 2,3',4,5'-tetramethoxystilbene, which prevents both cytochrome P450 1B1-dependent and -independent components of angiotensin II-induced hypertension and inhibits associated pathophysiological changes could be clinically useful in the treatment of hypertension and associated cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Brett L Jennings
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tenn 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Yaghini FA, Song CY, Lavrentyev EN, Ghafoor HUB, Fang XR, Estes AM, Campbell WB, Malik KU. Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation. Hypertension 2010; 55:1461-7. [PMID: 20439821 DOI: 10.1161/hypertensionaha.110.150029] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 1B1, expressed in vascular smooth muscle cells, can metabolize arachidonic acid in vitro into several products including 12- and 20-hydroxyeicosatetraenoic acids that stimulate vascular smooth muscle cell growth. This study was conducted to determine whether cytochrome P450 1B1 contributes to angiotensin II-induced rat aortic smooth muscle cell migration, proliferation, and protein synthesis. Angiotensin II stimulated migration of these cells, measured by the wound healing approach, by 1.78-fold; and DNA synthesis, measured by [(3)H]thymidine incorporation, by 1.44-fold after 24 hours; and protein synthesis, measured by [(3)H]leucine incorporation, by 1.40-fold after 48 hours. Treatment of vascular smooth muscle cells with the cytochrome P450 1B1 inhibitor 2,4,3',5'-tetramethoxystilbene or transduction of these cells with adenovirus cytochrome P450 1B1 small hairpin RNA but not its scrambled control reduced the activity of this enzyme and abolished angiotensin II- and arachidonic acid-induced cell migration, as well as [(3)H]thymidine and [(3)H]leucine incorporation. Metabolism of arachidonic acid to 5-, 12-, 15-, and 20-hydoxyeicosatetraenoic acids in these cells was not altered, but angiotensin II- and arachidonic acid-induced reactive oxygen species production and extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase activity were inhibited by 2,4,3',5'-tetramethoxystilbene and cytochrome P450 1B1 small hairpin RNA (shRNA) and by Tempol, which inactivates reactive oxygen species. Tempol did not alter cytochrome P450 1B1 activity. These data suggest that angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by reactive oxygen species generated from arachidonic acid by cytochrome P450 1B1 and activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Fariborz A Yaghini
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Cheng J, Wu CC, Gotlinger KH, Zhang F, Falck JR, Narsimhaswamy D, Schwartzman ML. 20-hydroxy-5,8,11,14-eicosatetraenoic acid mediates endothelial dysfunction via IkappaB kinase-dependent endothelial nitric-oxide synthase uncoupling. J Pharmacol Exp Ther 2010; 332:57-65. [PMID: 19841472 PMCID: PMC2802478 DOI: 10.1124/jpet.109.159863] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/16/2009] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction and activation occur in the vasculature and are believed to contribute to the pathogenesis of cardiovascular diseases. We have shown that 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE), a cytochrome P450 4A-derived eicosanoid that promotes vasoconstriction in the microcirculation, uncouples endothelial nitric-oxide synthase (eNOS) and reduces nitric oxide (NO) levels via the dissociation of the 90-kDa heat shock protein (HSP90) from eNOS. It also causes endothelial activation by stimulating nuclear factor-kappaB (NF-kappaB) and increasing levels of pro-inflammatory cytokines. In this study, we examined signaling mechanisms that may link 20-HETE-induced endothelial dysfunction and activation. Under conditions in which 20-HETE inhibited NO production, it also stimulated inhibitor of NF-kappaB (IkappaB) phosphorylation. Both effects were prevented by inhibition of tyrosine kinases and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK). It is noteworthy that inhibitor of IkappaB kinase (IKK) activity negated the 20-HETE-mediated inhibition of NO production. Immunoprecipitation experiments revealed that treatment of ionophore-stimulated cells with 20-HETE brings about a decrease in HSP90-eNOS association and an increase in HSP90-IKKbeta association, suggesting that the activation by 20-HETE of NF-kappaB is linked to its action on eNOS. Furthermore, addition of inhibitors of tyrosine kinase MAPK and IKK restored the 20-HETE-mediated impairment of acetylcholine-induced relaxation in rat renal interlobar arteries. The results indicate that 20-HETE mediates eNOS uncoupling and endothelial dysfunction via the activation of tyrosine kinase, MAPK, and IKK, and these effects are linked to 20-HETE-mediated endothelial activation.
Collapse
Affiliation(s)
- Jennifer Cheng
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Miller TM, Donnelly MK, Crago EA, Roman DM, Sherwood PR, Horowitz MB, Poloyac SM. Rapid, simultaneous quantitation of mono and dioxygenated metabolites of arachidonic acid in human CSF and rat brain. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877:3991-4000. [PMID: 19892608 DOI: 10.1016/j.jchromb.2009.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/31/2009] [Accepted: 10/07/2009] [Indexed: 11/16/2022]
Abstract
Currently, there are few biomarkers to predict the risk of symptomatic cerebral vasospasm (SV) in subarachnoid hemorrhage (SAH) patients. Mono and dioxygenated arachidonic acid metabolites, involved in the pathogenesis of ischemic injury, may serve as indicators of SV. This study developed a quantitative UPLC-MS/MS method to simultaneously measure hydroxyeicosatetraenoic acid (HETE), dihydroxyeicosatrienoic acid (DiHETrE), and epoxyeicosatrienoic acid (EET) metabolites of arachidonic acid in cerebrospinal fluid (CSF) samples of SAH patients. Additionally, we determined the recovery of these metabolites from polyvinylchloride (PVC) bags used for CSF collection. Linear calibration curves ranging from 0.208 to 33.3 ng/ml were validated. The inter-day and intra-day variance was less than 15% at most concentrations with extraction efficiency greater than 73%. The matrix did not affect the reproducibility and reliability of the assay. In CSF samples, peak concentrations of 8,9-DiHETrE, 20-HETE, 15-HETE, and 12-HETE ranged from 0.293 to 24.9 ng/ml. In rat brain cortical tissue samples, concentrations of 20-, 15-, 12-HETE, 8,9-EET, and 14,15-, 11,12-DiHETrE ranged from 0.57 to 23.99 pmol/g wet tissue. In rat cortical microsomal incubates, all 10 metabolites were measured with formation rates ranging from 0.03 to 7.77 pmol/mg/min. Furthermore, 12-HETE and EET metabolites were significantly altered by contact with PVC bags at all time points evaluated. These data demonstrate that the simultaneous measurement of these compounds in human CSF and rat brain can be achieved with a UPLC-MS/MS system and that this method is necessary for evaluation of these metabolites as potential quantitative biomarkers in future clinical trials.
Collapse
Affiliation(s)
- Tricia M Miller
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Guo AM, Scicli G, Sheng J, Falck JC, Edwards PA, Scicli AG. 20-HETE can act as a nonhypoxic regulator of HIF-1alpha in human microvascular endothelial cells. Am J Physiol Heart Circ Physiol 2009; 297:H602-13. [PMID: 19502554 DOI: 10.1152/ajpheart.00874.2008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
20-HETE increases the expression of VEGF in human dermal microvascular endothelial cells (ECs). Since VEGF is regulated by hypoxia inducible factor (HIF)-1, we studied whether 20-HETE also upregulates HIF-1alpha using the stable 20-HETE analog 20-hydroxyeicosa-5(Z),14(Z)dienoic acid (WIT003; 1-10 microM) and found that it induced a marked increase in HIF-1alpha protein levels. The increases in VEGF after the addition of WIT003 preceded the changes in HIF-1alpha, and the increases in HIF-1alpha were prevented by a VEGF neutralizing antibody. This suggests that 20-HETE first causes increases in VEGF, which then, in turn, cause the upregulation of HIF-1alpha. Stimulation with exogenously added VEGF also led to an upregulation of HIF-1alpha. Incubation with the MEK1/ERK1/2 inhibitor U-0126 (10 microM) completely abolished the increases in VEGF and thus HIF-1alpha, suggesting the involvement of ERK1/2 activation. The addition of WIT003 resulted in a rapid and sustained increase in superoxide formation. When WIT003 was added in the presence of the nitric oxide (NO) synthase (NOS) inhibitor N-nitro-L-arginine, no changes in superoxide, VEGF, or HIF-1alpha were observed. This suggests that NOS is responsible for the early changes in superoxide induced by WIT003. Furthermore, WIT003 induced the expression of the NADPH oxidase subunit p47(phox) in ECs before the increases in HIF-1alpha. Incubation with polyethylene glycol-superoxide dismutase (400 U/ml), apocynin (100 microM), diphenylene iodonium (10 microM), or p47(phox) downregulation with small interfering (si)RNA all inhibited the increases in HIF-1alpha expression. This indicates that the early changes in superoxide lead to VEGF increases and thereby NADPH oxidase-dependent superoxide production, which is required for HIF-1alpha upregulation. We also found that the higher HIF-1alpha expression induced by WIT003 was accompanied by higher expression of erythropoietin receptor and angiopoietin-2 proteins. These increases were caused by HIF-1alpha because their levels were markedly decreased by siRNA downregulation of HIF-1alpha. 20-HETE may be a novel nonhypoxic regulator of HIF-1alpha and HIF-1alpha-regulated genes in ECs.
Collapse
Affiliation(s)
- Austin M Guo
- 1Eye Care Services, Henry Ford Hospital, Wayne State University, Detroit, Michigan 48202-3450, USA
| | | | | | | | | | | |
Collapse
|
39
|
Mu Y, Klamerus MM, Miller TM, Rohan LC, Graham SH, Poloyac SM. Intravenous formulation of N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) for inhibition of rat brain 20-hydroxyeicosatetraenoic acid formation. Drug Metab Dispos 2008; 36:2324-30. [PMID: 18725506 PMCID: PMC2659781 DOI: 10.1124/dmd.108.023150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) is a potent inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) formation by specific cytochrome P450 isoforms. Previous studies have demonstrated that administration of HET0016 inhibits brain formation of 20-HETE and reduces brain damage in a rat model of thromboembolic stroke. Delineation of the dose, concentration, and neuroprotective effect relationship of HET0016 has been hampered by the relative insolubility of HET0016 in aqueous solutions and the lack of information concerning the mechanism and duration of HET0016 inhibition of brain 20-HETE formation. Therefore, it was the purpose of this study to develop a water-soluble formulation of HET0016 suitable for intravenous (i.v.) administration and to determine the time course and mechanism of brain 20-HETE inhibition after in vivo dosing. In this study we report that HET0016 is a noncompetitive inhibitor of rat brain 20-HETE formation, which demonstrates a tissue concentration range for brain inhibition. In addition, we demonstrate that complexation of HET0016 with hydroxypropyl-beta-cyclodextrin results in increased aqueous solubility of HET0016 from 34.2 +/- 31.2 to 452.7 +/- 63.3 microg/ml. Administration of the complex as a single HET0016 i.v. dose (1 mg/kg) rapidly reduced rat brain 20-HETE concentrations from 289 to 91 pmol/g. Collectively, these data demonstrate that the i.v. formulation of HET0016 rapidly penetrates the rat brain and significantly inhibits 20-HETE tissue concentrations. These results will enable future studies to determine biopharmaceutics of HET0016 for inhibition of 20-HETE after cerebral ischemia.
Collapse
Affiliation(s)
- Ying Mu
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
40
|
Wang Z, Tang X, Li Y, Leu C, Guo L, Zheng X, Zhu D. 20-Hydroxyeicosatetraenoic acid inhibits the apoptotic responses in pulmonary artery smooth muscle cells. Eur J Pharmacol 2008; 588:9-17. [PMID: 18455723 DOI: 10.1016/j.ejphar.2008.03.045] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 03/09/2008] [Accepted: 03/19/2008] [Indexed: 12/19/2022]
Abstract
20-Hydroxyeicosatetraenoic acid (20-HETE), a omega-hydroxylation product of arachidonic acid catalyzed by cytochrome P450 4A (CYP4A), plays a role in vascular smooth muscle remodeling. Although its effects on angiogenic responses are known, it remains unclear whether 20-HETE acts on apoptosis of pulmonary arterial smooth muscle cells (PASMC), an important step in PASMC remodeling, and what pathways are involved in the process. Here we show evidence for the missing information. The effect of 20-HETE on PASMC apoptosis and the apoptosis-associated signaling pathways were determined with cell viability assay, Annexin V and propidium idodide binding, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), mitochondrial potentials assay, caspase activity assay and Western blots. We found that exogenous 20-HETE suppressed the serum deprivation-induced loss of bovine PASMCs and prevented Annexin V binding, DNA nick end labeling and chromatin condensation. The effect was worsened by 17-octadecynoic acid (17-ODYA), which inhibited the production of endogenous 20-HETE. Furthermore, 20-HETE induced the expression of bcl-2, maintained the stability of mitochondria membrane, and relieved the activation of caspase-9 and caspase-3. Such effects were reversed in the presence of 17-ODYA. Thus, these findings indicate that 20-HETE protects PASMCs against apoptosis by acting on, at least in part, the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Heilongjiang 150081, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Ishizuka T, Cheng J, Singh H, Vitto MD, Manthati VL, Falck JR, Laniado-Schwartzman M. 20-Hydroxyeicosatetraenoic acid stimulates nuclear factor-kappaB activation and the production of inflammatory cytokines in human endothelial cells. J Pharmacol Exp Ther 2008; 324:103-10. [PMID: 17947496 DOI: 10.1124/jpet.107.130336] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial dysfunction is associated with endothelial cell activation, i.e., up-regulation of surface cell adhesion molecules and the release of proinflammatory cytokines. 20-Hydroxyeicosatetraenoic acid (HETE), a major vasoactive eicosanoid in the microcirculation, has been implicated in the regulation of endothelial cell function through its angiogenic and pro-oxidative properties. We examined the effects of 20-HETE on endothelial cell activation in vitro. Cells transduced with adenovirus containing either CYP4A1 or CYP4A2 produced higher levels of 20-HETE, and they demonstrated increased expression levels of the adhesion molecule intercellular adhesion molecule (ICAM) (4-7-fold) and the oxidative stress marker 3-nitrotyrosine (2-3-fold) compared with cells transduced with control adenovirus. Treatment of cells with 20-HETE markedly increased levels of prostaglandin (PG) E(2) and 8-epi-isoprostane PGF(2alpha), commonly used markers of activation and oxidative stress, and most prominently, interleukin-8, a potent neutrophil chemotactic factor whose overproduction by the endothelium is a key feature of vascular injury. 20-HETE at nanomolar concentrations increased inhibitor of nuclear factor-kappaB phosphorylation by 2 to 5-fold within 5 min, which was followed with increased nuclear translocation of nuclear factor-kappaB (NF-kappaB). Likewise, 20-HETE activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway by stimulating phosphorylation of ERK1/2. Inhibition of NF-kappaB activation and inhibition of ERK1/2 phosphorylation inhibited 20-HETE-induced ICAM expression. It seems that 20-HETE triggers NF-kappaB and MAPK/ERK activation and that both signaling pathways participate in the cellular mechanisms by which 20-HETE activates vascular endothelial cells.
Collapse
Affiliation(s)
- Tsuneo Ishizuka
- Department of Pharmacology, New York Medical College, 15 Dana Rd., Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|